照明控制系统及方法、照明装置与流程

文档序号:15222405发布日期:2018-08-21 17:38阅读:141来源:国知局

本发明涉及照明技术领域,特别是涉及一种照明控制系统及方法、照明装置。



背景技术:

随着智能控制技术的发展,目前在工业、商业、民用的照明环境中都会使得智能控制技术得以应用,如商场、景观灯、室内照明等。在实际使用过程中,传感器与照明模块分离控制,并且是由单个传感器统一控制具有若干照明设备的区域,不能精确到每个照明设备所在区域的变化。比如一个主控控制多个照明节点,那么不同节点之间的照明差异会越明显。并且,照明部署区域特点一般都是比较复杂,不同的区域照明需求也是不同的,传统的控制技术并不能满足不同照明区域的特性要求,照明效果无法满足用户要求。



技术实现要素:

本发明提供了一种照明控制系统及方法、照明装置以克服上述问题或者至少部分地解决上述问题。

根据本发明的一个方面,提供了一种照明控制系统,包括多个可互相通信的照明节点,所述照明节点中设置有无线主控设备、与所述无线主控设备连接的驱动设备以及受控于所述驱动设备的至少一个照明单元;其中,

所述无线主控设备,用于在侦测到距离其所属照明节点指定范围内有用户存在时,检测当前环境的亮度;所述无线主控设备还用于,基于其所属照明节点的环境属性为该照明节点定义照明场景,根据所述亮度以及该照明节点当前定义的照明场景调整该照明节点驱动设备的输出参数,控制所述照明单元的照明亮度;并向所述照明控制系统的其他照明节点发送亮灯指令;

所述无线主控设备还用于接收所述照明控制系统中其他照明节点发送至所述无线主控设备所属照明节点的亮灯指令,根据所述亮灯指令调整该照明节点的照明亮度。

可选地,所述无线主控设备,还用于接收所述照明控制系统中其他照明节点发送至非所述无线主控设备所属照明节点的亮灯指令,并转发该所述亮灯指令。

可选地,所述照明控制系统还包括:设置有预设矩阵图的配置器,所述配置器可与所述照明控制系统中的各照明节点建立无线连接;所述配置器设置用于:

识别所述照明控制系统的照明区域,在所述照明控制系统中各照明节点部署完成后,根据实际区域划分将所述照明控制系统划分为多个独立的照明分区;选择任一所述照明分区,分别与该照明分区中的各照明节点建立通信连接,根据各照明节点的实际位置将其部署至所述预设矩阵图中,为各照明节点生成矩阵坐标进行记录;确认该照明分区中各照明节点的矩阵坐标是否正确;当该照明分区中任一照明节点的矩阵坐标不正确时,重新为该照明节点配置矩阵坐标;当各照明节点的矩阵坐标配置完成后,将各照明节点对应的矩阵坐标传输至各照明节点。

可选地,所述配置器,还用于选择任一所述照明分区,与该照明分区中任一照明节点建立通信连接,将该照明节点作为矩阵坐标原点部署至所述预设矩阵图中;依次与该照明分区中其他各照明节点进行通信连接,根据实际位置将所述其他各照明节点部署至所述预设矩阵图中,为所述其他各照明节点生成矩阵坐标并进行记录。

可选地,所述配置器,还用于当各照明节点的矩阵坐标配置完成后,基于所述照明分区中各照明节点的矩阵坐标,生成以该照明分区中各照明节点为矩阵元素的矩阵图;将所述矩阵图传输至各照明节点,由所述各照明节点的无线主控设备进行存储。

可选地,所述配置器还用于:基于各照明分区的属性功能以及预设的场景控制参数为所述各照明分区中的照明节点设定一种或多种照明场景,并为各照明场景分配场景编号;其中,所述场景控制参数包括各照明节点的多个亮度等级以及各亮度等级的持续时间。

可选地,所述配置器还用于根据以下场景控制参数为所述各照明分区设定一种或多种照明场景:

最大亮度等级,是指距离所述照明节点指定范围内到有用户存在时的最大亮度;

最大亮度持续时间,是指当有用户存在时,所述最大的亮度等级的保持时间;

稳定低亮度等级,是指距离所述照明节点指定范围内无论是否有用户存在时均会保持的照明等级;

稳定低亮度持续时间,是指彻底关灯之前的维持时间;和/或

最低亮度等级,是指所述照明节点不提供照明服务时的最低亮度。

可选地,所述无线主控设备包括:主控制器以及与所述主控制器连接的第一传感器和第二传感器;

所述第一传感器用于侦测当前环境的亮度,并将所述当前环境的亮度转换为可读照度数据传输至所述主控制器;

所述第二传感器用于当侦测到指定范围内有用户存在时,向所述主控制器传输侦测信号;

所述主控制器用于接收所述第一传感器传输的可读照度数据和/或所述第二传感器传输的侦测信号,基于所述可读照度数据和/或侦测信号以及该照明节点当前定义的照明场景调整其所属照明节点中驱动设备的输出参数,控制受控于所述驱动设备的照明单元的照明亮度。

可选地,所述主控制器还用于:

当接收到所述第二传感器传输的有用户存在的侦测信号时,向所述照明控制系统的其他照明节点发送亮灯指令,所述亮灯指令中携带有所述主控制器所属照明节点的矩阵坐标。

可选地,所述主控制器还用于:

当接收到所述其他照明节点发送的亮灯指令后,获取发送所述亮灯指令的照明节点的矩阵坐标;

判断发送所述亮灯指令的照明节点与其所属照明节点属于同一照明分区时,计算发送所述亮灯指令的照明节点与其所属照明节点的距离;

基于所述距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于所述亮度等级调整其所属照明节点的无线主控设备中驱动设备的输出参数,控制受控于所述驱动设备的照明单元的照明亮度。

可选地,所述主控制器还用于:

当接收到多个照明节点发送的亮灯指令时,获取所述多个照明节点的矩阵坐标,分别计算与其所属照明节点属于同一照明分区的照明节点与其所属照明节点的距离,并对计算出的距离进行排序;

根据最短的距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于所述亮度等级调整其所属照明节点的无线主控设备中驱动设备的输出参数,控制受控于所述驱动设备的照明单元的照明亮度。

可选地,所述主控制器还用于:当其所属照明节点当前亮度等级的持续时间达到预设时间后没有接收到新的亮灯指令,控制该照明节点切换至当前定义的照明场景所需的下一级照明亮度。

可选地,所述照明控制系统还包括:与所述照明控制系统中的各照明节点建立无线连接的中继节点,当所述中继节点接收到任一所述照明节点发送的亮灯指令后,转发该亮灯指令;

其中,所述中继节点为所述无线主控设备。

根据本发明的另一个方面,还提供了一种照明装置,包括:无线主控设备、与所述无线主控设备连接的驱动设备以及受控于所述驱动设备的至少一个照明单元;其中,所述无线主控设备用于根据特定范围内的环境信息调整其所属照明节点中驱动设备的输出参数,控制受控于所述驱动设备的照明单元的照明亮度。

可选地,所述无线主控设备包括:主控制器以及与所述主控制器连接的第一传感器和第二传感器;所述第一传感器,用于侦测当前环境的亮度,并将所述当前环境的亮度转换为可读照度数据传输至所述主控制器;所述第二传感器,用于当侦测到指定范围内有用户存在时,向所述主控制器传输侦测信号;所述主控制器,用于接收所述第一传感器传输的可读照度数据和/或所述第二传感器传输的侦测信号,基于所述可读照度数据和/或侦测信号调整其所属照明装置中驱动设备的输出参数,以控制所述驱动设备的照明单元的照明亮度。

可选地,所述无线主控设备集成设置于所述照明单元中,所述驱动设备与所述照明单元分体设置;或所述无线主控设备、驱动设备以及照明单元均为分体设置。

根据本发明的另一个方面,还提供了一种照明控制方法,应用于设置有多个可互相通信的照明节点的照明控制系统,其中,照明节点中设置有无线主控设备,所述方法包括:

若照明控制系统中任一照明节点中的无线主控设备侦测到距离其所属照明节点指定范围内有用户存在,则检测当前环境的亮度;

基于该照明节点的环境属性为该照明节点定义照明场景,根据所述亮度以及该照明节点当前定义的照明场景调整该照明节点的照明亮度;并向所述照明控制系统的其他照明节点发送亮灯指令;

若所述无线主控设备接收到所述照明控制系统中其他照明节点发送至所述无线主控设备所属照明节点的亮灯指令,则根据所述亮灯指令调整该照明节点的照明亮度。

可选地,上述方法还包括:若所述无线主控设备接收到所述照明控制系统中其他照明节点发送至非所述无线主控设备所属照明节点的亮灯指令,则转发该所述亮灯指令。

可选地,所述照明控制系统中还包括设置有预设矩阵图的配置器,所述配置器可与所述照明控制系统中的各照明节点建立无线连接;

所述方法还包括:识别所述照明控制系统的照明区域,在所述照明控制系统中各照明节点部署完成后,根据实际区域划分将所述照明控制系统划分为多个独立的照明分区;选择任一所述照明分区,分别与该照明分区中的各照明节点建立通信连接,根据各照明节点的实际位置将其部署至所述预设矩阵图中,为各照明节点生成矩阵坐标进行记录;确认该照明分区中各照明节点的矩阵坐标是否正确;当该照明分区中任一照明节点的矩阵坐标不正确时,重新为该照明节点配置矩阵坐标;当各照明节点的矩阵坐标配置完成后,将各照明节点对应的矩阵坐标传输至各照明节点。

可选地,选择任一所述照明分区,分别与该照明分区中的各照明节点建立通信连接,根据各照明节点的实际位置将其部署至所述预设矩阵图中,为各照明节点生成矩阵坐标进行记录,包括:

选择任一所述照明分区,与该照明分区中任一照明节点建立通信连接,将该照明节点作为矩阵坐标原点部署至所述预设矩阵图中;依次与该照明分区中其他各照明节点进行通信连接,根据实际位置将所述其他各照明节点部署至所述预设矩阵图中,为所述其他各照明节点生成矩阵坐标并进行记录。

可选地,上述方法还包括:若各照明节点的矩阵坐标配置完成,则基于所述照明分区中各照明节点的矩阵坐标,生成以该照明分区中各照明节点为矩阵元素的矩阵图;将所述矩阵图传输至各照明节点,由所述各照明节点的无线主控设备进行存储。

可选地,将该矩阵图以及与各照明节点对应的矩阵坐标传输至各照明节点,由所述各照明节点的无线主控设备进行存储之后,还包括:

基于各照明分区的属性功能以及预设的场景控制参数为所述各照明分区中的照明节点设定一种或多种照明场景,并为各照明场景分配场景编号;

其中,所述场景控制参数包括各照明节点的多个亮度等级以及各亮度等级的持续时间。

可选地,所述场景控制参数包括:

最大亮度等级,是指距离所述照明节点指定范围内到有用户存在时的最大亮度;

最大亮度持续时间,是指当有用户存在时,所述最大的亮度等级的保持时间;

稳定低亮度等级,是指距离所述照明节点指定范围内无论是否有用户存在时均会保持的照明等级;

稳定低亮度持续时间,是指彻底关灯之前的维持时间;和/或

最低亮度等级,是指所述照明节点不提供照明服务时的最低亮度。

可选地,所述无线主控设备包括:主控制器以及与所述主控制器连接的第一传感器和第二传感器;

所述照明系统中任一照明节点中的无线主控设备侦测到距离其所属照明节点指定范围内有用户存在时检测当前环境的亮度,基于所述当前环境的亮度调整该照明节点中驱动的输出参数,控制受控于所述驱动的照明单元的照明亮度,包括:

所述照明系统中任一照明节点的无线主控设备中第二传感器侦测到指定范围内有用户存在,则向所述主控制器传输侦测信号,并由第一传感器侦测当前环境的亮度,并将所述当前环境的亮度转换为可读照度数据传输至所述主控制器;

由所述主控制器接收所述第一传感器传输的可读照度数据和/或所述第二传感器传输的侦测信号,基于所述可读照度数据和/或侦测信号以及该照明节点当前定义的照明场景调整其所属照明节点的照明亮度。

可选地,由所述主控制器接收所述第一传感器传输的可读照度数据和/或所述第二传感器传输的侦测信号,基于所述可读照度数据和/或侦测信号以及该照明节点当前定义的照明场景调整其所属照明节点的照明亮度之后,还包括:

向所述照明控制系统的其他照明节点发送亮灯指令,所述亮灯指令中携带有所述主控制器所属照明节点的矩阵坐标。

可选地,所述方法还包括:

若所述主控制器接收到所述其他照明节点发送的亮灯指令,则获取发送所述亮灯指令的照明节点的矩阵坐标;

判断发送所述亮灯指令的照明节点与其所属照明节点属于同一照明分区时,计算发送所述亮灯指令的照明节点与其所属照明节点的距离;

基于所述距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于所述亮度等级调整其所属照明节点的照明亮度。

可选地,所述方法还包括:

若所述主控制器接收到多个照明节点发送的亮灯指令,则获取所述多个照明节点的矩阵坐标,分别计算与其所属照明节点属于同一照明分区的照明节点与其所属照明节点的距离,并对计算出的距离进行排序;

根据最短的距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于所述亮度等级调整其所属照明节点的照明亮度。

可选地,所述方法还包括:

若所述主控制器所属照明节点当前亮度等级的持续时间达到预设时间后没有接收到新的亮灯指令,则控制该照明节点切换至当前定义的照明场景所需的下一级照明亮度。

可选地,所述照明控制系统还包括:与所述照明控制系统中的各照明节点建立无线连接的中继节点;

所述方法还包括:若所述中继节点接收到任一亮灯指令时,则转发该亮灯指令;其中,所述中继节点为所述无线主控设备。

本发明提供了一种照明控制系统及方法、照明装置,通过在照明控制系统的照明节点中设置无线主控设备,通过该无线主控设备对照明节点附近的环境进行侦测,进而根据侦测结果结合其所属照明节点当前定义的照明场景将其所属照明节点的照明亮度调节至最佳照明状态,并向照明控制系统中的其他照明节点发送亮灯指令。此外,无线主控设备还可以接收其他照明节点发送的亮灯指令,进而调整其所属照明节点的照明亮度。基于本发明提供的照明控制系统及方法具有以下优势:(1)减少功耗,提升舒适度:不同区域分区控制,各个照明节点自动识别,以达到节能、舒适的管理;(2)各照明节点设置简单,配置丰富;对于楼梯、储物间、展示区等等不同的区域也可以有比较好适配的场景模式进行处理;(3)将各照明节点模块化、组件化、系统化;产品都标配,矩阵生成的同时完成场景的设定与系统联动。

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。

根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。

附图说明

通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:

图1是根据本发明实施例的照明控制系统结构示意图;

图2是根据本发明优选实施例的照明控制系统结构示意图;

图3是根据本发明实施例的照明装置结构示意图;

图4是根据本发明优选实施例的照明装置结构示意图;

图5是根据本发明实施例的照明控制方法流程示意图;

图6是根据本发明实施例的照明分区矩阵图生成方法流程示意图;

图7是根据本发明实施例的照明分区矩阵图;

图8是根据本发明实施例的场景控制参数示意图;

图9是根据本发明优选实施例的照明控制方法流程示意图;以及

图10是根据本发明优选实施例的照明输出控制示意图。

具体实施方式

下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。

随着智能控制技术的发展,照明设备的照明功能也得到了无线的延伸,例如:照明设备可以定时开关,根据季节与时令灵活调整灯具的开关时间;照明设备具备智能特性,可以结合光照传感器技术,在一些特殊天气下(比如暴雨、阴天),照明设备可自动打开;照明设备可调光,在人流量比较大的时段,自动调整到最大照度,而在人流量稀少或无人的时候,自动变暗。

由智能可控的照明设备组成的智能照明控制系统,可以使得照明系统中各灯具的照明效果更美、照明更智能,且对灯光的管理也更加科学。而在实现照明系统的智能控制时,有多种实现方法,但大多是各照明设备独立控制、没有协商过程,因此,对照明系统的整体照明控制效果会有落差。

传统照明控制系统中,传感器与照明模块分离控制,不能精确的每个照明设备的所在区域的变化。比如照度传感器部署在窗口附近,控制附近一排的照明灯盘,但是传感器所在的位置尽管部署的时候已经尽可能控制相同光线的照明位置了,但是越是控制的照明设备越多,那么不同设备之间的照明差异会越明显,这在实际应用中是体验最差的部分。而动静传感器控制的所在的部分,必须在人到达传感器所在位置的时候才能响应,受控照明设备的范围一般都是要比传感器侦测范围要大得多,这样一来不能及时响应,二来控制区域也没有更好的灯光分级控制,舒适度和节能还有待进一步提升。

照明部署区域特点一般都是比较复杂,比如过道、走廊、厕所、前台等等,通过智能控制的场景化处理往往也相对复杂,不同的区域照明需求也是不同的,节能目标其实也都不同。

鉴于上述问题,本发明实施例提供了一种照明控制系统,图1是根据本发明实施例的照明控制系统结构示意图,如图1所示,根据本发明实施例提供的智能控制系统可以包括多个可互相通信的照明节点100,照明节点中可设置有无线主控设备110、与无线主控设备110连接的驱动设备120以及受控于驱动设备120的至少一个照明单元130。其中,无线主控设备110用于在侦测到距离其所属照明节点指定范围内有用户存在时,检测当前环境的亮度;无线主控设备110还可用于基于其所属照明节点的环境属性为该照明节点定义照明场景,根据当前环境的亮度以及该照明节点当前定义的照明场景调整该照明节点中驱动设备120的输出参数,控制照明单元130的照明亮度;并向照明控制系统的其他照明节点发送亮灯指令。驱动设备120的输出参数可以是照明单元的亮度、色温等参数。

优选地,无线主控设备110可预先设置有至少一种照明场景,在为其所属照明节点定义照明场景时,可以基于其所属照明节点的环境属性在上述至少一种照明场景中选取一种照明场景作为该照明节照明场景。例如,照明节点可以设置于客厅、过道、走廊、厕所、前台等,可以根据照明节点实际的环境属性为其定义不同的照明场景,如安全照明、夜间照明、无人照明、过道照明等等。

进一步地,无线主控设备110还可以用于接收照明控制系统中其他照明节点发送至无线主控设备110所属照明节点的亮灯指令,根据该亮灯指令调整该照明节点的照明亮度。

本发明实施例提供了一种更加灵活的照明控制系统,通过在照明控制系统的各照明节点100中设置无线主控设备110,通过该无线主控设备110对照明节点附近的环境进行侦测,进而根据侦测结果结合其所属照明节点当前定义的照明场景将其所属照明节点的照明亮度调节至最佳照明状态,并向照明控制系统中的其他照明节点发送亮灯指令。此外,无线主控设备110还可以接收其他照明节点发送至该照明节点的亮灯指令,进而亮灯指令调整该照明节点的照明亮度。

在本实施例中,照明控制系统中的各照明节点100可以为单独工作的、同时设置有无线主控设备110、驱动设备120以及照明单元130的照明装置,例如独立设置于客厅或是卧室的照明灯;也可以是由一个无线主控设备110以及一个驱动设备120控制的,设置有多个照明单元130的照明节点,例如,前台位置的三个射灯只有一个开关控制,那么三个射灯作为三个照明节点可合用一个无线主控设备与驱动设备,驱动设备自动适配多个led的负载。例如,对于吊灯来说,可以由单个无线主控设备110、单个驱动设备120以及受控于同一驱动设备的一个或多个照明单元130,此时,可电池为其供电,也可以通过电源有线控制上述一个或多个照明单元130,其中,照明单元130可以为射灯、聚光灯等。

其中,无线主控设备110可以为同时集成有无线传播功能(如蓝牙、wifi或zigbee等)以及逻辑处理功能(如,单片机)的芯片。驱动设备120为整个照明节点100提供照明所需电源,将电源电压转换为照明节点100所需的工作电压。驱动设备120可以根据不同的实际情况进行设定,如恒流式驱动、稳压式驱动,本发明不做限定。本实施例中的驱动设备120支持单灯、多灯的驱动能力,通过r、g、b、w、cw缆线插拔,实际应用中可给无线主控设备110的5v供电。

前文介绍,无线主控设备110在控制其所属照明节点中驱动设备120的输出参数时,还可以结合其所属照明节点当前定义的照明场景。照明场景是根据照明节点所处实际区域有关,如过道、走廊、厕所、前台等等,不同的区域配置不同的场景模式,如安全照明、洗墙灯、夜间照明、无人照明、过道照明等等。优选地,驱动设备120可以为自动适配输出负载,其还可以进行状态、电量的测量与反馈、故障检测等。进一步地,驱动设备120还可以对无线主控设备110进行供电。而照明单元130形态可以是多种多样的,且照明单元130中还可以设置基板、光源。当照明单元140为吸顶灯时,可以包括底盘、面罩,如果是筒射灯,可以包括底座、反射器和面环,等等。

在本发明实施例中,可先对照明控制系统的涉及的整个照明区域按照不同的区域属性划分为多个不同的照明分区,并对各照明分区进行矩阵配置后,对各照明分区以及各照明分区中的照明节点进行照明场景的定义。

另外,上文提及,无线主控设备110还可以用于接收照明控制系统中其他照明节点发送至无线主控设备110所属照明节点100亮灯指令,并根据亮灯指令调整该照明节点的照明亮度。实际应用中,亮灯指令中可以携带有受控的目标照明节点或是目标照明区域,当系统中受控的照明节点中的无线主控设备110接收到由其他照明节点发送的亮灯指令时,可对该指令进行分析,判断自身所属照明节点或照明区域是否与亮灯指令中的目标照明节点或是目标照明区域一致,当一致时,调整其所属照明节点的照明亮度,优选地,可调整其所属照明节点中驱动设备的输出参数,进而控制照明单元的照明亮度。

进一步地,无线主控设备110,还可用于接收照明控制系统中其他照明节点发送至非无线主控设备所属照明节点的亮灯指令,并转发该亮灯指令。也就是说,设置于照明节点100中的无线主控设备可接收其他任一照明节点发送的亮灯指令,当接收到亮灯指令后,会判断所接收到的亮灯指令是否为针对其所属照明节点的亮灯指令(可根据发送亮灯指令的照明节点与其所属照明节点是否属于同一照明分区或是其他条件),如果为针对自身所属照明节点的亮灯指令,最根据亮灯指令调整照明节点的照明亮度,如果不是针对自身所属照明节点的亮灯指令,则只对该亮灯指令进行转发。

如图2所示,本发明实施例提供的照明控制系统中还可以包括设置有预设矩阵图的配置器200,配置器200可与照明控制系统中的各照明节点建立无线连接。该配置器200可用于对照明控制系统所控照明区域进行分区并为各照明分区配置矩阵图。优选地,配置器200可识别照明控制系统的照明区域,在照明控制系统中各照明节点部署完成后,根据实际区域划分将照明控制系统划分为多个独立的照明分区;选择任一述照明分区,分别与该照明分区中的各照明节点建立通信连接,根据各照明节点的实际位置将其部署至预设矩阵图中,为各照明节点生成矩阵坐标进行记录;确认该照明分区中各照明节点的矩阵坐标是否正确;当该照明分区中任一照明节点的矩阵坐标不正确时,重新为该照明节点配置矩阵坐标;当各照明节点的矩阵坐标配置完成后,将各照明节点对应的矩阵坐标传输至各照明节点。其中,配置器200可以为移动终端,也可以为可与本实施例提供的照明控制系统配套使用的无线连接的控制器。当配置器200为移动终端时,可以在移动终端中设置相应的应用程序,以完成对照明控制系统区域的划分及照明场景的配置。

配置器200具体在对各照明分区进行矩阵部署时,可以选择任一照明分区,与该照明分区中任一照明节点建立通信连接,将该照明节点作为矩阵坐标原点部署至预设矩阵图中;依次与该照明分区中其他各照明节点进行通信连接,根据实际位置将其他各照明节点部署至预设矩阵图中,为其他各照明节点生成矩阵坐标并进行记录。在进行矩阵部署时,可优选将角落的照明节点作为角落作为起始原点,更加直观、便捷地了解各照明分区的照明节点分布。配置器200将矩阵坐标传输至各照明节点时,可通过蓝牙、wifi、zigbee等无线技术进行传输。

进一步地,配置器200,还用于当各照明节点的矩阵坐标配置完成后,基于照明分区中各照明节点的矩阵坐标,生成以该照明分区中各照明节点为矩阵元素的矩阵图;将矩阵图传输至各照明节点,由各照明节点的无线主控设备进行存储。

照明控制系统中各照明节点100上电后的默认是没有进行矩阵配置的,因此,当照明系统中各照明节点部署完成后,会发送广播信号,即向配置器200发送通知信息,告知其处于被配置状态,以通过与配置器200建立通信连接,由配置器200进行矩阵配置。配置器200在进行矩阵配置时,可以预先在其中设置空的二维矩阵,按照各照明节点的实际位置进行部署放入,进而为各照明分区生成独立的矩阵图。在确定矩阵原点时,可以以该照明分区内的任一照明节点作为原点。具体在部署时,可以优选以角落中的照明节点作为矩阵原点,而对于矩阵原点的选择,可以是矩阵中的任意位置,也就是说原点可以是(0,0),也可以(3,2),本发明不做限定。

各照明分区的矩阵图可以是二维矩阵,也可以是一维矩阵,例如过道或者走廊的照明节点。还可以是单个的点,如安全出口的独立光源节点或者洗墙灯等。

前文介绍,照明节点100中的无线主控设备110中可预先设置有至少一种照明场景。除此之外,还可以通过配置器200为各照明节点配置照明场景。也就是说,配置器200不仅可用于为照明控制系统划分照明分区并部署矩阵图,还可以用于基于各照明分区的属性功能以及预设的场景控制参数为各照明分区中的照明节点设定一种或多种照明场景,并为各照明场景分配场景编号。

为照明分区定义照明场景时,可以根据各照明分区的属性功能进行设定。比如安全照明的场景就是部署在安全出口;洗墙灯就是前台区域等等;夜间照明的场景就是对应需要夜间使用的区域;无人照明则对应储物间,有人时才亮,无人则立刻熄灭。

本发明实施例提供的照明控制系统中,配置器200还可以用于根据预设的场景控制参数为各照明分区中的照明节点设定一种或多种照明场景;其中,场景控制参数可以包括各照明节点的多个亮度等级以及各亮度等级的持续时间。

对于不同的实际环境,所需的照明亮度也是不同的。为各照明节点设置不同的亮度等级可以配合不同的照明需求,使得照明节点的照明亮度更加舒适。当然,照明节点也可预置所有照明场景,当进行矩阵配置时,可根据照明节点实际所处的位置选择其中一种或多种照明场景,本发明不做限定。

优选地,配置器200还用于根据以下场景控制参数为各照明分区设定一种或多种照明场景:最大亮度等级,是指距离照明节点指定范围内到有用户存在时的最大亮度;最大亮度持续时间,是指当有用户存在时,最大的亮度等级的保持时间;稳定低亮度等级,是指距离照明节点指定范围内无论是否有用户存在时均会保持的照明等级;稳定低亮度持续时间,是指彻底关灯之前的维持时间;和/或最低亮度等级,是指照明节点不提供照明服务时的最低亮度。

在本发明优选实施例中,如图2所示,无线主控设备110可以包括:主控制器111以及与主控制器111连接的第一传感器112和第二传感器113。

第一传感器112用于侦测当前环境的亮度,并将当前环境的亮度转换为可读照度数据传输至主控制器111;第二传感器113用于当侦测到指定范围内有用户存在时,向主控制器111传输侦测信号;主控制器111用于接收第一传感器112传输的可读照度数据和/或第二传感器113传输的侦测信号,基于上述可读照度数据和/或侦测信号以及该照明节点当前定义的照明场景调整其所属照明节点中驱动设备120的输出参数,控制受控于该驱动设备120的照明单元130的照明亮度。其中,第二传感器113向主控制器111传输侦测信号可以为电平信号。可选地,第一传感器112优选为照度传感器,第二传感器113优选为动静传感器。

将第一传感器112、第二传感器113与各照明节点结合,可以为各照明节点设置侦测范围,即时获取各照明节点所处范围内的照明情况以及用户存在情况,精确处理传感器状态和数据来控制照明节点。比如第一传感器112修正的仅仅是自己照明节点所在的光线,可以更加精确修正所在区域。基于本发明实施例提供的照明系统,各个照明节点中均可设置有第一传感器112以及第二传感器113,将传统的大区域侦测改成小区域侦测,可以在不影响其他照明节点照明状态的同时提升对自身照明节点的控制及照明效率。尤其是在白天,随着自然光的角度不同,对每个照明节点补偿都是不同的,采用分别处理的方式可以使得照明效果更加舒适。而第二传感器113可以及时的响应所在区域用户的存在,以实现根据用户所处位置实现分级光线控制。在本实施例中,照明节点的形态可以是多种多样的,如筒灯、射灯、吊灯等。一个照明节点中可以设置一个照明单元,也可以设置多个照明单元,如2-6个射灯、聚光灯等,本发明不做限定。

第二传感器113可以通过总扩展器gpio与主控制器111连接,或采用其他方式与主控制器111连接。各照明节点中的主控制器111可集成有无线通信器件,利用蓝牙、wifi、zigbee等技术进行无线通信,主控制器111可以为具备无线通信功能以及逻辑计算等功能的combo芯片,例如具备无线通信功能的单片机等。

本发明实施例提供的照明控制系统中,主控制器111还用于当接收到第二传感器113传输的有用户存在的侦测信号时,向照明控制系统的其他照明节点发送亮灯指令,该亮灯指令中携带有主控制器111所属照明节点100的矩阵坐标。本发明实施例提供的照明控制系统中,各照明节点之间可实现互联,当照明控制系统中任一照明节点侦测到其指定范围内有用户存在时,可以向其他照明节点发送亮灯指令,进行协同照明,以为用户提供更优质的照明服务。

进一步地,主控制器111还可以用于在当接收到其他照明节点发送的亮灯指令后,获取发送该亮灯指令的照明节点的矩阵坐标;判断发送该亮灯指令的照明节点与其所属照明节点属于同一照明分区时,计算发送该亮灯指令的照明节点与其所属照明节点的距离;基于上述距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于该亮度等级调整其所属照明节点的无线主控设备中驱动设备120的输出参数,控制受控于驱动设备120的照明单元130的照明亮度。实际应用中,当超过一个照明节点需要控制的时候,每次控制命令包括二维矩阵的节点坐标来计算相对距离,根据距离来进行照明节点的分级自动控制,实现更多的节能和智能化。

当照明控制系统中多个照明节点侦测到有用户存在时,系统中可能会有多个照明节点发送的亮度命令,作为未主动发送亮灯指令的照明节点来说,接收到多个节点发送的亮灯指令后,会选择距离其最近的照明节点发送的亮灯指令,以调整自身的照明亮度,以为用户提供更加舒适的照明服务。

主控制器111还可以用于当接收到多个照明节点发送的亮灯指令时,获取多个照明节点的矩阵坐标,分别计算与其所属照明节点属于同一照明分区的照明节点与其所属照明节点的距离,并对计算出的距离进行排序;根据最短的距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于亮度等级调整其所属照明节点的无线主控设备中驱动设备120的输出参数,控制受控于驱动设备120的照明单元130的照明亮度。

可选地,主控制器还可用于:当其所属照明节点当前亮度等级的持续时间达到预设时间后没有接收到新的亮灯指令,切换至该照明节点当前定义的照明场景所需的下一级照明亮度。

继续参照图2,照明控制系统中还可以包括与照明控制系统中的各照明节点建立无线连接的中继节点300,当中继节点150接收到任一照明节点100发送的亮灯指令后,转发该亮灯指令。其中,中继节点中为无线主控设备110。比如在某些场地部署不需要照明,但是需要无线信号增强传输的,如封闭会议室或者拐角可能造成无线信号的衰减或者阻挡,那么可以通过该独立设置的无线主控设备110进行转接。当无线主控设备110在照明控制系统中作为中继节点独立设置时,可以通过电源供电或电池供电。

本发明实施例提供的照明控制系统,将照明节点与传感器控制相结合,精确处理传感器状态和数据来控制照明节点,比如照度传感器修正的仅仅是自己照明节点所在的光线,这样可以更加精确修正所在区域,大区域改成小区域进行处理,提升效率,不影响别的节点。本发明提供的照明控制系统可以将智能控制实现更灵活、更准确、更节能,照明光线更舒适。除了基本开关需求,也包括不同创新的场景组合,节能环保的同时有着更好的用户体验。

在本发明另一实施例中,还提供了一种照明装置400,如图3所示,本实施例中的照明装置400可以包括:无线主控设备410、与无线主控设备410连接的驱动设备420以及受控于驱动设备420的至少一个照明单元430。其中,无线主控设备410用于根据特定范围内的环境信息调整其所属照明节点中驱动设备420的输出参数,控制受控于驱动设备420的照明单元430的照明亮度。其中,照明单元430形态可以是多种多样的,且照明单元430中还可以设置基板、光源。当照明单元430为吸顶灯时,可以包括底盘、面罩,如果是筒射灯,可以包括底座、反射器和面环,等等。

进一步地,如图4所示,无线主控设备410可以包括:主控制器411以及与主控制器411连接的第一传感器412和第二传感器413;第一传感器412,用于侦测当前环境的亮度,并将当前环境的亮度转换为可读照度数据传输至主控制器411;第二传感器413,用于当侦测到指定范围内有用户存在时,向主控制器411传输侦测信号;主控制器411,用于接收第一传感器412传输的可读照度数据和/或第二传感器413传输的侦测信号,基于可读照度数据和/或侦测信号调整其所属照明装置400中驱动设备420的输出参数,以控制照明单元430的照明亮度。

在该实施例中,无线主控设备410中的主控制器411、第一传感器412以及第二传感器413集成设置以组成无线主控设备410,而对于照明装置400的整体构造而言,无线主控设备410可集成设置于照明单元430中,驱动设备420与照明单元430分体设置;也可以是无线主控设备410、驱动设备420以及照明单元430均为分体设置,本发明不做限定。

本实施例所提供的照明装置400可在多各应用场景单独设置,也可以在室内或室外场景中设置多个,并相互建立通信连接。优选地,主控制器411还可以具备无线通信功能,当系统中有多个照明装置400时,任一照明装置400可通过主控制器411利用蓝牙、wifi、zigbee等无线通信技术与其他照明装置或其他无线设备建立无线连接,进而进行数据传输。在实际应用中,主控制器411可以是集成有无线功能的单片机,或是其他具有上述功能的器件。

对应于上述照明控制系统,本发明实施例还提供了一种照明控制方法,应用于设置有多个可互相通信的照明节点的照明控制系统,其中,照明节点中可设置有无线主控设备,如图5所示,根据本发明实施例的照明控制方法可以包括:

步骤s502,若照明控制系统中任一照明节点中的无线主控设备侦测到距离其所属照明节点指定范围内有用户存在,则检测当前环境的亮度;

步骤s504,基于该照明节点的环境属性为该照明节点定义照明场景,根据上述当前环境的亮度以及该照明节点当前定义的照明场景调整该照明节点的照明亮度;并向照明控制系统的其他照明节点发送亮灯指令;

步骤s506,若无线主控设备接收照明控制系统中其他照明节点发送的亮灯指令,则根据该指令调整其所属照明节点的照明亮度。

本发明实施例提供了一种更加智能化的照明控制方法,当任一照明节点指定范围内有用户存在时,可以结合当前的环境亮度以及该照明节点当前定义的照明场景为用户提供照明服务。此外,还可以向其他照明节点发送亮度指令,以实现照明节点的互联,灵活地根据用户的位置控制不同照明节点的工作状态,使得照明节点的智能控制更加灵活、准确、节能。

进一步地,在上述步骤s504之后,上述方法还可以包括步骤s508,接收所述照明控制系统中其他照明节点发送至非所述无线主控设备所属照明节点的亮灯指令,则转发该所述亮灯指令。也就是说,设置于无线主控设备可接收其他任一照明节点发送的亮灯指令,当接收到亮灯指令后,会判断所接收到的亮灯指令是否为针对其所属照明节点的亮灯指令(可根据发送亮灯指令的照明节点与其所属照明节点是否属于同一照明分区或是其他条件),如果为针对自身所属照明节点的亮灯指令,最根据亮灯指令调整照明节点的照明亮度,如果不是针对自身所属照明节点的亮灯指令,则只对该亮灯指令进行转发。

可选地,照明控制系统中还可以包括设置有预设矩阵图的配置器;该配置器可与照明控制系统中的各照明节点建立无线连接。本实施例提供的照明控制方法还可以包括:

步骤s1,由所配置器识别照明控制系统的照明区域,在照明控制系统中各照明节点部署完成后,根据实际区域划分将照明控制系统划分为多个独立的照明分区;

步骤s2,选择任一照明分区,分别与该照明分区中的各照明节点建立通信连接,根据各照明节点的实际位置将其部署至预设矩阵图中,为各照明节点生成矩阵坐标进行记录;

步骤s3,确认该照明分区中各照明节点的矩阵坐标是否正确;当该照明分区中任一照明节点的矩阵坐标不正确时,重新为该照明节点配置矩阵坐标;

步骤s4,当各照明节点的矩阵坐标配置完成后,将各照明节点对应的矩阵坐标传输至各照明节点。

进行区域划分时,每个相同照明区域作为一组,按照矩阵方式进行节点部署,每个节点都可作为主控节点也可以从节点,其中,主控节点即为发送亮度指令的照明节点,从节点为接收其他照明节点发送的亮灯指令的照明节点,并根据亮灯指令调整自身的照明亮度。不同的照明分区之间可以对亮度指令进行转发,但不会执行自己照明输出。而将各照明节点对应的矩阵坐标传输至各照明节点时,可以是在同一照明分区各照明节点的矩阵坐标全部生成之后。由配置器一一进行传输,也可以在每个照明节点的矩阵坐标生成之后直接进行传输,本发明不做限定。

上述步骤s2在为任一照明分区生成矩阵图时,可以进一步包括:选择任一照明分区,与该照明分区中任一照明节点建立通信连接,将该照明节点作为矩阵坐标原点部署至预设矩阵图中;依次与该照明分区中其他各照明节点进行通信连接,根据实际位置将其他各照明节点部署至预设矩阵图中,为其他各照明节点生成矩阵坐标并进行记录。

优选地,上述方法还可以包括步骤s5,若各照明节点的矩阵坐标配置完成,则基于照明分区中各照明节点的矩阵坐标,生成以该照明分区中各照明节点为矩阵元素的矩阵图;将所述矩阵图传输至各照明节点,由各照明节点的无线主控设备进行存储。其中,预设矩阵图可以优选为二维矩阵;配置器优选为移动终端。生成该照明分区的矩阵图之后,还可以统一将该矩阵图传输至各照明节点,由各照明节点的无线主控设备进行存储。

图6为根据本发明实施例的通过移动终端对任一照明分区的矩阵图生成方法流程示意图,如图6所示,根据本发明的照明分区的矩阵图生成方法可以包括:

步骤s602,首先识别照明控制系统所覆盖的照明区域,在照明节点部署完毕之后进行分区,对每个照明分区分别进行矩阵配置;比如开放式办公区、过道、前台、封闭会议室等等;每个区域光源不会影响到别的区域的控制;各照明节点上电后光源默认为未经部署,因此,在各照明节点上电后会低功耗的进行beacon信号的广播,等待移动终端的连接确认;

步骤s604,当对任一照明分区进行矩阵部署时,选择该照明分区中处于角落的照明节点作为矩阵图的坐标原点,将其部署至预设的空的二维矩阵图中;接近该照明分区中的其他照明节点,每次获取到一个照明节点之后根据与坐标原点的照明节点的实际位置相应地部署到矩阵图中,生成并记录矩阵坐标后将矩阵坐标传输至对应的照明节点中,由各照明节点的无线主控设备进行存储;

步骤s606,确认该照明分区中各照明节点的矩阵坐标是否正确;若否,即说明则误写入了坐标信息,那么上电之后需要在较短时间之内重新进行配置,重复步骤s604,若是则执行步骤s608;

步骤s608,确认该照明分区内的所以照明节点是否部署完毕,若否,则重复步骤s604~s606,若是,则执行步骤s610;

步骤s610,确认该照明分区中各照明节点的矩阵坐标已生成并无误后,保存并记录在移动终端;照明分区的矩阵图可以如图7所示;

步骤s612,将包含有各照明节点的矩阵坐标的矩阵图传输至各个照明节点,完成该照明分区矩阵图的生成。

各照明分区的矩阵图不仅可以为二维矩阵图,也可以是一维的坐标,比如过道或者走廊的节点;也只是包括单个点,比如安全出口的独立光源节点或者洗墙灯等,本发明不做限定。

上述步骤s604在生成照明节点的矩阵坐标之后,可以先仅将各照明节点的矩阵坐标记录在本地,整个照明分区中各照明节点的矩阵坐标全部生成后,再将坐标信息通过无线网络统一传输至各照明节点。

基于上述实施例提供的方法可以对照明控制系统中的各个照明分区进行矩阵配置,进而生成矩阵图。完成对各照明分区的矩阵配置后,每个矩阵实际都对应不同的功能区域,也需要选择相应的场景协同矩阵计算控制,每个照明节点都会默认有若干的常见的场景,比如安全照明、洗墙灯、夜间照明、无人照明、过道照明等等。每个照明节点物理上电后开始一段时间内会低功率发射beacon广播包,配置器通过接近感应获取各照明节点的mac地址,同时将相应的矩阵坐标传输至照明节点中,完成配置后重启进入正常工作模式。一定时间内没有收到配置器的连接控制则进入出厂配置模式。每个照明分区在矩阵部署完后都是一张二维矩阵图,矩阵可大、可小。

在本发明实施例中,为各照明分区定义照明场景是基于矩阵方法来进行控制应用的。每个照明节点都有常用的默认的场景设定,只需要选择场景编号即可,每个场景都是以下单个场景控制参数或者场景控制参数的组合来构成。因此,将该矩阵图以及与各照明节点对应的矩阵坐标传输至各照明节点之后,还可以包括:基于各照明分区的属性功能以及预设的场景控制参数为各照明分区中的照明节点设定一种或多种照明场景,并为各照明场景分配场景编号;其中,场景控制参数包括各照明节点的多个亮度等级以及各亮度等级的持续时间。

优选地,如图8所示,场景控制参数可以包括:

1、最大亮度等级(maxlumlevel),是指距离照明节点指定范围内到有用户存在时的最大亮度。通常情况下,新的照明节点的照明亮度一般不是100%,而是80%左右;考虑到照明节点的长时间使用会导致led光衰,如果需要维持该照明亮度的时候可以自动提高亮度等级,以维持该最大亮度等级。

另外考虑到舒适度和节能的均衡,白天自然光补偿,以80%为目标,自然光不够的led进行实际亮度的修正。比如当前640lux,目标需要调节到320lux,可以首次调节到340(5~10%),然后每个区域单独微调,小区域逼近,直到满意为止;

2、最大亮度持续时间(holdingtime),是指当有用户存在时,最大的亮度等级的保持时间;如果无线主控设备在一定时间内未检测到有用户存在,则切换到稳定低亮度等级,自动降低亮度来节能。这一时间可以为10秒~60分钟,默认为10分钟,以达到节能与舒适度的一个平衡。

3、稳定低亮度等级(lowlumlevel),是指距离照明节点指定范围内无论是否有用户存在时均会保持的照明等级;比如安全照明,不管是否有人都需要保持非零等级;夜间过道无人时10%亮度等级;无人或者下班的电梯间也需要自动的维持;

4、稳定低亮度持续时间(lowlumtime),是指彻底关灯之前的维持时间;默认可以为10分钟;

5、最低亮度等级(minlumlevel),是指照明节点不提供照明服务时的最低亮度;即彻底关灯的最低亮度,基本上是0;当稳定低亮度持续时间达到时,可自动使照明节点处于关闭状态,不需要下班时间人工去物理断电关灯,节省用户时间。

通过以上场景控制参数,可以在不需要用户手动参与的情况下,自动根据用户的需要为用户提供照明服务,进而提升用户体验。

上述场景控制参数可进行组合以适用不同的照明场景以及不同的照明功能,比如封闭会议室、厕所、储物间、过道、开放办公区等等。上述场景控制参数只是示意性的列出,实际应用中也可根据需求设定其他场景控制参数进行新的照明场景的自定义。

优选地,各照明节点中的无线主控设备可以包括:主控制器以及与主控制器连接的第一传感器和第二传感器;上述步骤s502可进一步包括:照明系统中任一照明节点的无线主控设备中第二传感器侦测到指定范围内有用户存在,则向主控制器传输侦测信号,并由第一传感器侦测当前环境的亮度,并将当前环境的亮度转换为可读照度数据传输至主控制器;上述步骤s504可进一步包括:由主控制器接收第一传感器传输的可读照度数据和/或第二传感器传输的侦测信号,基于可读照度数据和/或侦测信号以及该照明节点当前定义的照明场景调整其所属照明节点的照明亮度。可选地,第一传感器112优选为照度传感器,第二传感器113优选为动静传感器。

本发明实施例中,照度传感器与照明节点结合,仅仅修正自己节点的照度,而不控制照明分区中的其他照明节点,使得照明节点更加舒适,大大减少在诸如窗口、墙壁等不同的位置会导致的较大效果影响。而通过将动静传感器与照明节点结合,使每个照明节点都可以及时、快速地响应用户的存在,通过照明节点之间的距离,可以选择合适的侦测范围的热点红外动静传感器。

继上述步骤s5023之后,还可以向照明控制系统的其他照明节点发送亮灯指令,亮灯指令中携带有主控制器所属照明节点的矩阵坐标。实际应用中,侦测到有用户存在的照明节点独立提供照明亮度时,照明效果不太理想。上述实施例中,照明节点侦测到有用户存在后,可以向其他照明节点发送亮灯指令,由其他照明节点辅助照明。

上述步骤s504提及,如果无线主控设备接收到其他照明节点发送的亮灯指令后,可基于该亮灯指令控制其所属照明节点的照明亮度。其进一步可以包括:

步骤s5041,若主控制器接收到其他照明节点发送的亮灯指令,则获取发送亮灯指令的照明节点的矩阵坐标;

步骤s5042,判断发送该亮灯指令的照明节点与其所属照明节点属于同一照明分区时,计算发送该亮灯指令的照明节点与其所属照明节点的距离;

步骤s5043,基于上述距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于亮度等级调整其所属照明节点的照明亮度。

在本实施例中,每个照明节点作为主控发送亮灯指令,并都包含自身的矩阵坐标,除了自己照明输出外,同一区域的照明节点收到亮灯命令,根据自己坐标计算距离,从而根据各自当前定义的照明场景计算自己照明节点的输出参数。如果接收到的是多个亮灯指令,进行计算后按照最近的亮灯指令执行输出

一个照明节点的亮度等级与发生亮灯指令的照明节点的距离有关。若一个照明节点的动静传感器侦测到其指定范围内有用户存在,那么距离该用户最近的照明节点(即动静传感器所属照明节点)也为最大输出100%,距离稍远的亮度等级依次变化为70%、40%、10%、0,使得人所在的区域光线永远维持最舒适态,较远的对人影响不大可以节能降低照明输出。各亮度等级还可以根据实际应用环境进行调整,本发明不做限定。

进一步地,上述实施例还可以包括步骤s5044,若主控制器接收到多个照明节点发送的亮灯指令,则获取多个照明节点的矩阵坐标,分别计算与其所属照明节点属于同一照明分区的照明节点与其所属照明节点的距离,并对计算出的距离进行排序;

步骤s5045,根据最短的距离以及其所属照明节点当前定义的照明场景,计算该照明节点所需亮度等级,基于该亮度等级调整其所属照明节点的照明亮度。

当某一应用场景中有多个用户处于不同位置时,可以会有多个照明节点同时发送亮灯指令,未侦测到用户的照明节点同时接收到多个亮灯指令时,以距离最近的一个照明节点发送的亮灯指令为准,进而辅助照明。

基于本发明实施例提供的方法还可以在提供没有新的亮灯指令的情况下,自动进行照明亮度的调整。即上述方法还可以包括:若主控制器所属照明节点当前亮度等级的持续时间达到预设时间后没有接收到新的亮灯指令,则控制该照明节点切换至当前定义的照明场景所需的下一级照明亮度。

此外,照明控制系统中还可以包括与照明控制系统中的各照明节点建立无线连接的中继节点;若中继节点接收到任一亮灯指令时,则转发该亮灯指令;其中,中继节点优选为无线主控设备。比如在某些场地部署不需要照明,但是需要无线信号增强传输的,如封闭会议室或者拐角可能造成无线信号的衰减或者阻挡,那么可以通过该独立模块进行转接。

下面通过一个具体实施例进行详细说明。图9是根据本发明实施例的照明控制方法流程示意图,如图9所示,根据本发明实施例的照明控制方法可以包括:

步骤s902,当有用户进入照明控制系统的任一照明分区时,对应照明节点中的动静传感器侦测到有用户存在;由照明节点中无线主控设备的主控制器将该照明节点当前定义的照明场景,调整本照明节点所需的最大亮度;

步骤s904,如果是白天,则由照度传感器侦测当前环境的亮度,将其转换为可读数据后的数据传输至主控制器,主控制器结合自然光的补偿修正本照明节点的驱动输出;

步骤s906,发送携带有该照明节点的矩阵坐标的亮灯指令;

步骤s908,其他照明节点收到带有矩阵坐标的亮灯指令,如果判断发送该亮灯指令的照明节点是同一照明分区,计算自身到发送节点的距离,按照最佳路径算法来计算距离;

主控点(发送亮灯指令的照明节点)坐标:(x0,y0)

受控点坐标(接收亮灯指令的照明节点):(xi,yi)

距离等级:d=(xi-x0)+(yi-y0)

步骤s910,其他照明节点根据计算出的距离和当前定义的照明场景计算本照明节点所需的亮度等级,并切换到新的亮度等级;

步骤s912,当照明节点在当前亮度等级的维持时间到达之后没有收到新的命令,切换到当前照明场景所需的下一级亮度等级;

照明场景的数据举例如下:

maxlum=100

holdingtime=10min

level1=100%,level2=70%,level3=40%,level4=10%,level5~=10%

lowlum=10%

deep=0%

lowlumtime=10min

根据计算的距离来得到对应的目标等级数据。如果接收到新的命令更近level那么立刻进行切换到新的等级,如果是变暗,那么等待持续时间过了后慢慢降低到下一个等级。该场景适合一般商业办公环境,当有节点侦测到有人,那么距离最近的灯节点也为最大输出100%,距离稍远的依次亮度变化为70%、40%、10%、0,使得人所在的区域光线永远维持最舒适态,较远的对人影响不大可以节能降低照明输出。图10示意性地示出了照明输出控制图。

本发明实施例提供了一种照明控制系统及方法、照明装置,通过在照明控制系统的各照明节点中设置无线主控设备,通过该无线主控设备对照明节点附近的环境进行侦测,进而根据侦测结果结合其所属照明节点当前定义的照明场景将其所属照明节点的照明亮度调节至最佳照明状态,并向照明控制系统中的其他照明节点发送亮灯指令。此外,无线主控设备还可以接收其他照明节点发送的亮灯指令,进而调整其所属照明节点的照明亮度。

基于本发明实施例提供的照明控制系统及方法还具有以下优势:(1)减少功耗,提升舒适度:不同区域分区控制,各个照明节点自动识别,以达到节能、舒适的管理;(2)各照明节点设置简单,配置丰富;对于楼梯、储物间、展示区等等不同的区域也可以有比较好适配的场景模式进行处理;(3)将各照明节点模块化、组件化、系统化;产品都标配,矩阵生成的同时完成场景的设定与系统联动。

本发明实施例提供了单节点校准技术,每个照明节点都可以支持关联窗口、天窗或者阳光直射、黑夜、地板颜色等环境因素导致的照明是输出修正,真正做到舒适。而对于照明单元(如led灯)随着时间光衰的问题也可以通过最大亮度逐步提升的方法来解决,充分延长led有效工作寿命。

在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。

类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。

此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。

应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1