本发明属于雾化片技术领域,具体涉及超声波雾化片生产工艺。
背景技术:
超声波雾化片是通过陶瓷雾化片的高频谐振,将液态水分子结构打散而产生自然飘逸的水雾,不需加热或添加任何化学试剂;与加热雾化方式比较,能源节省了90%;另外在雾化过程中将释放大量的负离子,其与空气中漂浮的烟雾、粉尘等产生静电式反应,使其沉淀,同时还能有效去除甲醛、一氧化碳、细菌等有害物质,使空气得到净化,减少疾病的发生。传统网孔式超声波雾化片的主要结构由环形压电陶瓷、圆心部位有大量微米级小孔的不锈钢金属薄片、焊接在环形压电陶瓷一个电极上的导线和焊接在不锈钢金属薄片上的另外一条导线组成,而基于fpc柔性电路板的网孔式雾化片是通过fpc柔性电路板与锡膏或粘胶等在和环形压电陶瓷粘合制成,相对于传统网孔式超声波雾化片来说基于fpc柔性电路板的网孔式雾化片生产的成本更低;
但是在通过fpc柔性电路板与锡膏或粘胶等在和环形压电陶瓷粘合制成的超声波雾化片的产品测试中发现当材料fpc柔性电路板的中心位置pi薄膜处于尽可能平整的状态时雾化片的能量转换效率最高,对应的出雾的雾量处于最大状态,但由于fpc柔性电路板的物理特性决定其平整度无法受到良好的控制;
在进一步的测试中发现当fpc柔性电路板的中心位置pi薄膜处于紧绷状态时pi薄膜的平整度最好且雾化片的能量转换效率更进一步的提高了,这种情况下导致的良性收益我们称之为鼓面效应;鼓能够发出声响主要是由于鼓面处于紧绷状态,在外力锤击鼓面的时候鼓面的膜会产生反复的震荡,由此产生了声波;同理当fpc柔性电路板中心位置的pi薄膜处于紧绷状态的时候此时由环形压电陶瓷传递过来的高频震荡会通过铜箔作用于中心位置的pi薄膜,此时pi薄膜会产生类似于鼓面的反复震荡,且其波形是由四周逐渐向中心位置传递并在圆心处产生最大振幅,具体的波形传递示意图如图3所示;当薄膜在震荡的过程中超声波雾化片的小孔会从最外延逐渐到中心位置规律性的产生垂直于雾化片方向的运动,由此将液体挤压喷射而出产生雾。
在进一步测试发现当fpc柔性电路板的中心位置pi薄膜处于非紧绷状态的时候由环形压电陶瓷产生的高频振动会被pi薄膜吸收,其产生的振幅不足以让pi薄膜产生规律性的震荡;测试还发现即使pi薄膜处于绷紧状态,但是由于四周的铜箔形成的褶皱也会导致效率的下降,导致效率下降的原因是由于四周铜箔的褶皱在传递超声波形成的高频震荡的过程中在褶皱处形成了散射状的波形传递,从而使薄膜的震荡幅度下降,具体的波形传递示意图如图4所示;
综上所述,通过fpc柔性电路板与锡膏或粘胶等在和环形压电陶瓷粘合制成的超声波雾化片得到的产品铜箔容易形成褶皱,并且pi薄膜不容易处于紧绷状态;且产品生产的稳定性较差。
技术实现要素:
针对上述背景技术所提出的问题,本发明的目的是:旨在提供超声波雾化片生产工艺。为实现上述技术目的,本发明采用的技术方案如下:
超声波雾化片生产工艺,包括以下步骤:
s1:将压力热固导电胶膜切割成与环形压电陶瓷相同大小的环形备用;
s2:将压力热固导电胶膜放置在fpc柔性电路板上面,其中fpc柔性电路板由圆形pi薄膜和环形铜箔组成,然后将环形压电陶瓷放置在压力热固导电胶膜上;
s3:将s2中得到的产品的上下两侧均放一张红色硅胶胶垫片,然后放入压力机中,压力机以6~15mpa的压力同时加热至80~150℃将产品压合,并持续100~300秒;
s4:将s3压合好的产品使用激光机对fpc柔性电路板的中心的pi薄膜上均匀打若干微米级小孔;
s5:将s4得到的产品进行通电检测,得到合格产品。
作为本发明发一种优选方案,所述s3中压力机的压力为10mpa。压力为10mpa为最佳压力,不会因为压力过大造成压坏的情况,也不会因为压力过小产生压不紧的情况。
作为本发明发一种优选方案,所述s3中压力机的加热温度为125℃。加热温度125℃最佳,不会因为温度过高造成压力热固导电胶膜熔化过量,也不会出现温度过低,达不到粘接的目的。
作为本发明发一种优选方案,所述s3中中压力机持续时间为200秒。持续压力时间的最佳为200秒,避免出现时间过长导致超声波雾化片损坏,同时也不会出现压制时间短,压不紧的情况。
作为本发明发一种优选方案,所述s4中微米级小孔为圆锥形台结构,这样的设计,可以使得液体越往fpc柔性电路板的上表面运动所受到的挤压力越大,液体也越容易通过fpc柔性电路板上的微米级小孔4,从而容易形成水雾。
作为本发明发一种优选方案,所述s微米级小孔上部的直径尺寸为2μm~8μm、下部的直径尺寸为50μm~60μm,微米级小孔的孔径可以直接影响水雾的雾滴颗粒,这样的尺寸设计,可以使得雾化效果较佳。
本发明的有益效果:
1、本发明的工艺均可以实现大规模化量产,且各项设备及材料的技术数据一致性高可控性高,因此在生产的过程中可以得到更好的产品一致性,解决了过去基于液态胶水粘合的各种离散性误差导致的不良品的问题;
2、解决了过去基于fpc柔性电路板出雾量一致性的问题,并且进一步的提高了于fpc柔性电路板的工作效率;
3、本发明简化了工艺流程并且能够适用大规模制造;
4、本发明中的fpc柔性电路板、热固导电胶膜和环形压电陶瓷的热压工艺可以很方便的使用自动化工艺,且该工艺融合到fpc的生产流程中,可以合理的利用现有的成熟技术生产线进行生产;
5、本发明的工艺在融入fpc生产线中可以适用fpc整版的方式进行作业,提高了作业效率;
6、本发明生产的超声波雾化片可以使得供应链得到了大幅度缩短,fpc厂家即可提供到除打孔外的所有制造工艺,降低了项目的资金投入。
附图说明
本发明可以通过附图给出的非限定性实施例进一步说明;
图1为本发明制备的超声波雾化片的结构示意图;
图2为本发明制备超声波雾化片的压合示意图;
图3为pi薄膜绷紧状态震荡波形传递示意图;
图4为铜箔为褶皱状态下导致的波形散射状传递示意图;
主要元件符号说明如下:
fpc柔性电路板1、pi薄膜11、铜箔12、压力热固导电胶膜2、环形压电陶瓷3、微米级小孔4、红色硅胶胶垫片5。
具体实施方式
为了使本领域的技术人员可以更好地理解本发明,下面结合附图和实施例对本发明技术方案进一步说明。
超声波雾化片生产工艺,包括以下步骤:
s1:将压力热固导电胶膜2切割成与环形压电陶瓷3相同大小的环形备用;
s2:将压力热固导电胶膜放置在fpc柔性电路板1上面,其中fpc柔性电路板1由圆形pi薄膜11和环形铜箔12组成,然后将环形压电陶瓷3放置在压力热固导电胶膜2上;
s3:将s2中得到的产品的上下两侧均放一张红色硅胶胶垫片5,然后放入压力机中,压力机以6~15mpa的压力同时加热至80~150℃将产品压合,并持续100~300秒;
s4:将s3压合好的产品使用激光机对fpc柔性电路板1的中心的pi薄膜11上均匀打若干微米级小孔4;
s5:将s4得到的产品进行通电检测,得到合格产品,其结构如图1所示。
本发明为了达到最大能量转换效率,将生产工艺由原来的粘合后热固的工艺改为了热压合工艺,为了适应工艺的改变对粘合材料也进行了更换,由原来的锡膏或热固胶的粘合工艺更新为压力热固导电胶膜2,该粘合材料在高压力并且加热的情况下能够在很短的时间内固化并拥有极佳的站合力,同时由于这种是一种薄膜类材料,拥有极佳的塑性能力,可以十分方便的裁切成各种形状,材料本身的平整度很好,因此具备极佳的批量生产一致性,避免了采用传统锡膏和液态胶涂覆不均匀导致的产品粘合一致性差的问题;粘合材料的变更使得对应的设备也产生了更新,将原来的热风焊接设备更新为热压力机,热压力机将叠合好的超声波雾化片两面同时施加极大的压力并进行加热,在短时间对粘合材料进行固化形成良好的粘合强度,同时为了使超声波雾化片中心的pi薄膜产生紧绷的状态需要在压合的过程中添加辅助红色硅胶胶垫片5;
如图2所示,在堆叠好的超声波雾化片正面和反面垫上特定厚度的红色硅胶胶垫片5,然后进入热压力机进行压合,在压合过程中红色硅胶胶垫片5会使软质的材料部分产生形变,例如fpc柔性电路板1的铜箔12和pi薄膜11;环形压电陶瓷3在均匀受力的情况下不会产生形变,fpc柔性电路板1会在薄弱部位产生塑性形变,最终fpc柔性电路板1的中心位置会因为受到对称压力产生自然的凸起,且凸起的高度搞好位于环形压电陶瓷3厚度的中心位置附近,并且在拉伸变形的过程中将中心位置的pi薄膜11绷紧产生鼓面效应,并且没有明显的应力拉扯点。
注意:由于热压的过程中fpc柔性电路板1的pi薄膜11会被绷紧产生张力,fpc柔性电路板1本身也承受形变带来的应力,因此为避免压合的过程中对已打好的微米级小孔4进行拉扯的过程中导致微米级小孔4出现撕裂问题,打孔的工艺应该在压合之后进行。
综上所述,通过本发明制备的超声波雾化片,铜箔不会出现褶皱,并且pi薄膜处于紧绷状态;且产品生产的稳定性较好,合格率高。
上述实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。