一种非线性透射光处理器的制作方法

文档序号:20584331发布日期:2020-04-29 01:41阅读:488来源:国知局
一种非线性透射光处理器的制作方法

本发明涉及光防护技术领域,具体涉及一种非线性透射光处理器。



背景技术:

高灵敏的红外探测器在强光如激光照射下会出现信号饱和,严重情况下还可能导致探测器某些像元永久损坏。因此防止强光干扰或破坏红外探测器是现今探测器应用特别是光电对抗应用中必须解决的问题。现有的防护措施包括在光学系统和探测器上通过合理的涂层设计提高抗强光阈值,或者在红外探测器前配置非线性透射光元件来阻挡或限制强光通过,但是仍然保持弱光通过。非线性透射光元件主要有两类,一类是基于热致相变的薄膜光开关元件,如vo2薄膜光开关,另一类是基于非线性光学吸收或散射效应而导致透射光饱和的光学涂层元件,如石墨烯类涂层。其中基于相变薄膜的非线性透射元件虽然具有结构简单和智能响应的特性,但是它们的光开关响应特性比较单一,响应时间较长。



技术实现要素:

本发明的目的在于克服上述技术不足,提供一种非线性透射光处理器,解决现有技术中光开关响应时间长,无法很好的保护探测器的技术问题。

为达到上述技术目的,本发明的技术方案提供一种非线性透射光处理器,包括衬底、电加热器以及温度控制器,所述衬底的一面上沉积有相变膜,所述衬底的另一面上设置所述电加热器,所述电加热器用于对所述衬底进行加热,所述电加热器通过所述温度控制器与外部电源电连接,所述温度控制器用于控制所述衬底的温度低于所述相变膜的相变温度。

与现有技术相比,本发明的有益效果包括:本发明在衬底上配置一个电加热器,电加热器对衬底加热,衬底向相变膜传热。通过温度控制器控制电加热器的加热温度,预先将衬底以及相变膜加热到接近相变膜的相变温度但低于相变膜相变温度的温度值,降低相变膜产生相变的光功率阈值,从而可以大大缩短相变开关时间,提高光处理器对强光辐照的及时响应能力,降低反应时间。当激光来袭时,只需要较短的时间以及较小的光功率即可让相变膜发生相变。在应用于探测器的保护时可以大大缩短探测器被强光辐照的时间,降低被强光辐照的功率,减少强光干扰,更好地保护探测器。本发明通过在无源的非线性透射光元件上集成电加热器,使之具备了相变阈值可调性能,并由于降低了相变阈值,缩短了强光预警时间,能够更好地保护探测器。

附图说明

图1是本发明提供的非线性透射光处理器一实施方式的俯视图;

图2是图1中a-a处的截面图;

图3是本发明提供的非线性透射光处理器一实施方式的正视图;

图4是本发明涉及的典型曲线和相关功率值的示意图。

附图标记:

1、衬底,2、电加热器,21、加热电极,22、连接电极,3、相变膜,31、金属电极,4、偏置电源,5、信号采集电路。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

如图1、图2所示,本发明的实施例1提供了非线性透射光处理器,以下简称本光处理器,包括衬底1、电加热器2以及温度控制器,所述衬底1的一面上沉积有相变膜3,所述衬底1的另一面上设置所述电加热器2,所述电加热器2用于对所述衬底1进行加热,所述电加热器2通过所述温度控制器与外部电源电连接,所述温度控制器用于控制所述衬底1的温度低于所述相变膜3的相变温度,所述温度控制器的控制温度与所述相变温度的差值小于设定阈值。

本发明的工作原理为:强光ir照射大面积衬底1上的相变膜3时,主要通过辐射加热升温作用,产生热致可逆相变。在相变前后,相变膜3的红外透射性能发生很大的变化,从低温时的高透明状态迅速转变成高温时的低透射状态,故这种非线性的变化也称为相变光开关。在强光ir辐照时,由于光的辐射加热需要一定的时间积累,故热致相变产生的开关作用时间一般只能达到ms量级。本发明实施例在衬底1上配置一个电加热器2,电加热器2预先对衬底1加热到接近相变温度的一个温度值,就可以大大缩短相变开关时间,同时也可以降低产生相变的光功率阈值。在应用于探测器的保护时可以大大缩短探测器被强光辐照的时间,降低被强光辐照的功率。另外,相变膜3发生相变还存在一个相变阈值,也就是产生相变需要的光功率,一般在没有预先加热时,相变膜3的相变阈值较高,强光ir经过相变膜3后的透射光功率峰值高于探测器的信号饱和阈值,故即使使用相变膜3仍然可能存在一段时间探测器信号会产生饱和,导致在该时间段内探测器不能有效工作。但本实施例中设置电加热器2预先将衬底1以及相变膜3加热到一定温度,可以降低相变膜3的相变阈值,同时也可以降低经过相变膜3的光功率,有助于光处理器及时响应强光辐照,降低强光反应时间,对于减少强光干扰和保护探测器是很有利的。

图4给出了涉及强光辐照、相变膜3以及探测器接收的光功率分布的示意图。pl为激光峰值功率,曲线1为强光ir辐照脉冲的示意曲线;曲线2为vo2相变膜3未预热的透射光功率曲线,曲线3为vo2相变膜3已预热的透射光功率曲线,pvo2为vo2相变膜3未预热的透射光峰值功率,pvo2为vo2相变膜3已预热的透射光峰值功率;ps,max为正常情况下探测器接收的信号光的最大光功率值,ps,th为信号饱和时探测器接收的信号光的光功率阈值,pd,th为受到强光辐照破坏时探测器接收的的光功率阈值。从图4中可看出,在进行预热后,相变膜3的透射光峰值功率降低,相变阈值降低,相变反应更快。

本发明通过在无源的非线性透射光元件上集成电加热器2,结合温度控制器构成了可以主动预热的有源光处理器,使之具备了相变阈值可调性,从而可以降低相变阈值,缩短热值相变反应时间,能够更好地保护探测器。

优选的,所述电加热器2包括加热电极21以及两个连接电极22,所述加热电极21以及两个所述连接电极22均设置于所述衬底1上,所述加热电极21的一端与其中一所述连接电极22电连接,所述加热电极21的另一端与另一所述连接电极22电连接,两个所述连接电极22分别通过所述温度控制设备与外部电源电连接,实现加热与温控的功能。

优选的,如图1所示,所述加热电极21呈蛇形。

蛇形的加热电极21可以均匀分布于衬底1上,有利于衬底1以及相变膜3的均匀受热。加热电极21的电阻范围可设置在100-300ω。

优选的,所述加热电极21为红外透明电极。为了确保对中波红外波段的透明性,本实施例中加热电极21选用红外透明电极,即红外波段光可透射的材料制成的加热电极21,红外透明电极可用透明导电金属氧化物薄膜实现,如掺杂in2o3、nico2o4、lico2o4等的薄膜。

优选的,如图3所示,本光处理器还包括偏置电源4以及信号采集电路5,所述偏置电源4与所述相变膜3电连接,所述信号采集电路5与所述相变膜3电连接,并用于测量所述相变膜3的电阻变化。

本优选实施例中信号采集电路5用于及时输出强光出现的预警信号,从而实现不用等相变完成后才能输出预警信号的能力。具体的,在相变膜3相对的两侧沉积一对金属电极31,相变膜3通过金属电极31连接偏置电源4,偏置电源4为相变膜3提供偏置电压,同时相变膜3通过金属电极31电连接外置的信号采集电路5,信号采集电路5用于测量因相变膜3的电阻变化引起的电压变化。信号采集电路5可以采用分压测量电路实现,只要能实现电阻变化的测量即可。在强光与相变膜3的作用过程中,随着温度的升高,相变膜3的电阻在不断的下降,通过信号采集电路5获得的电压信号也在发生变化,但是透射的强光功率仍然在增长。当透射功率已明显高于正常光的最大功率值ps,max,但还未达到饱和时的光功率阈值ps,th时,信号采集电路5就可以将实时的信号与预设信号值比较,得出强光出现的判断结果,因此可以快速地给探测器或其他装置发出强光出现的预警信号,以便探测器或其他装置及时采取防范措施或执行某些动作。另一方面,基于事先定标的数据,还可以通过这个电压的变化判断衬底1的温度值是否达到或超过了设定值。

优选的,所述相变膜3有多层,多层所述相变膜3依次层叠沉积于所述衬底1上,多层所述相变膜3分别为不同材料的相变膜3。

采用多层结构的相变膜3,用于进一步提高红外透射率,同时提高抗强光损伤阈值。

优选的,所述衬底1为蓝宝石衬底1。

本实施例采用蓝宝石材料制成的蓝宝石衬底1,还可以采用其他的衬底1,如硅、锗、znse等中波红外透明衬底1。

优选的,所述相变膜3为vo2相变膜3。

本实施例中采用二氧化钒制成的vo2相变膜3。具体的,在蓝宝石衬底1第一表面沉积方形或矩形的vo2相变膜3,厚度50-200nm。相变膜3还可以是以vo2膜为主的膜系,该膜系包括表面减反层,如sio2层,还包括位于vo2膜与衬底1之间的缓冲层,如al2o3层。

以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1