
1.本发明涉及电路技术领域,尤其涉及一种放大器电路和包络跟踪电源调制器。
背景技术:2.功率放大器(power amplifier,pa)用于放大用于无线电传输的射频(radio-frequency,rf)信号。pa常见于无线通信设备中,用于驱动发射器的天线。pa的功耗对于电池供电的无线通信设备至关重要。传统上,pa使用固定电源电压进行偏置(bias)。当输入到pa的rf输入信号处于最大电平时,通常会出现峰值(peak)rf输出功率情况。然而,当pa从峰值rf输出功率条件回退(backed-off)时,多余的输入功率必须由pa耗散,因为它没有被转换为有用的rf输出功率。也就是说,传统的固定pa电源电压会导致大量的功率损失为热量。包络跟踪(envelope tracking)是一种技术,需要使用射频输入信号的包络动态调制pa的电源电压。这将使pa在任何时候都更接近峰值水平,并显著提高pa的效率。也就是说,包络跟踪技术调制pa电源电压以跟踪rf输入信号的包络,以减少作为热量耗散的功率量。
3.在无线通信中,带宽(bandwidth)是调制载波信号所占据的频率范围。随着无线通信技术的进步,一个调制载波信号使用的带宽越来越宽。例如,5g新空口(new radio,nr)应用中的带宽需求迅速增加。因此,包络跟踪电源调制器需要宽带宽线性放大器,用于向具有高峰均功率比(peak to average power ratio,papr)输出信号的pa提供调制电源电压。然而,典型的线性放大器通常会消耗大量静态电流以实现较宽的包络跟踪带宽。因此,典型的宽带包络跟踪设计非常耗电。
4.因此,需要一种创新的放大器设计,其以减少的静态电流消耗实现宽带包络跟踪。
技术实现要素:5.有鉴于此,本发明提供一种放大器电路和包络跟踪电源调制器,以解决上述问题。
6.根据本发明的第一方面,公开一种放大器电路,包括:
7.电压到电流转换电路,用于根据输入电压信号产生电流信号,其中该电压到电流转换电路包括:运算跨导放大器,用于在该运算跨导放大器的输出埠输出该电流信号;以及
8.电流到电压转换电路,用于根据该电流信号产生输出电压信号,其中该电流到电压转换电路包括:线性放大器,其中该线性放大器的输入端口耦接到该运算跨导放大器的该输出端口,且输出电压信号源自线性放大器的输出端口的输出信号。
9.根据本发明的第二方面,公开一种包络跟踪电源调制器,包括:
10.放大器电路,用于接收包络输入,并根据该包络输入产生放大器输出,其中该放大器输出参与设置功率放大器的调制电源电压,该放大器电路包括:
11.电压到电流转换电路,用于根据该包络输入产生电流信号,其中该电压到电流转换电路包括:运算跨导放大器,用于在该运算跨导放大器的输出埠输出该电流信号;以及电流到电压转换电路,用于根据该电流信号产生该放大器输出,其中该电流到电压转换电路包括:线性放大器,其中该线性放大器的输入端口耦接到该运算跨导放大器的该输出端口,
线性放大器的输出端口耦接到该功率放大器,并且该放大器输出来自该线性放大器的输出端口的输出信号。
12.本发明的放大器电路由于包括:电压到电流转换电路,用于根据输入电压信号产生电流信号,其中该电压到电流转换电路包括:运算跨导放大器,用于在该运算跨导放大器的输出埠输出该电流信号;以及电流到电压转换电路,用于根据该电流信号产生输出电压信号,其中该电流到电压转换电路包括:线性放大器,其中该线性放大器的输入端口耦接到该运算跨导放大器的该输出端口,且输出电压信号源自线性放大器的输出端口的输出信号。本发明提出了一种使用具有单位增益回馈的线性放大器的放大器电路以获得更好的功率效率。本发明因为使用运算跨导放大器来实现可使回馈因子β为1,相较于一般设计的回馈因子β更大(一般设计会小于1,例如为0.5),所以电流到电压转换电路的静态电流可以降低。
附图说明
13.图1是说明根据本发明的实施例的包络跟踪电源调制器(envelope tracking supply modulator)的框图。
14.图2是图示根据本发明实施例的放大器电路的图。
15.图3是图示根据本发明实施例的源极退化放大器source(degenerated amplifier)的图。
16.图4是图示根据本发明的实施例的具有跨导升压(transconductance boosting)的源极退化放大器(source degenerated amplifier)。
17.图5是图示根据本发明实施例的具有至少一个补偿电容器(compensation capacitor)的两级(two-stage)放大器的图。
具体实施方式
18.在下面对本发明的实施例的详细描述中,参考了附图,这些附图构成了本发明的一部分,并且在附图中通过图示的方式示出了可以实践本发明的特定的优选实施例。对这些实施例进行了足够详细的描述,以使本领域技术人员能够实践它们,并且应当理解,在不脱离本发明的精神和范围的情况下,可以利用其他实施例,并且可以进行机械,结构和程序上的改变。本发明。因此,以下详细描述不应被理解为限制性的,并且本发明的实施例的范围仅由所附权利要求限定。
19.将理解的是,尽管术语“第一”、“第二”、“第三”、“主要”、“次要”等在本文中可用于描述各种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、这些层和/或部分不应受到这些术语的限制。这些术语仅用于区分一个元素,组件,区域,层或部分与另一区域,层或部分。因此,在不脱离本发明构思的教导的情况下,下面讨论的第一或主要元件、组件、区域、层或部分可以称为第二或次要元件、组件、区域、层或部分。
20.此外,为了便于描述,本文中可以使用诸如“在...下方”、“在...之下”、“在...下”、“在...上方”、“在...之上”之类的空间相对术语,以便于描述一个元件或特征与之的关系。如图所示的另一元件或特征。除了在图中描述的方位之外,空间相对术语还意图涵盖设备在使用或操作中的不同方位。该装置可以以其他方式定向(旋转90度或以其他定向),
factor)和输入共模抑制(input common-mode rejection)。如图1所示,放大器电路106包括电压到电流转换电路(标记为“v/i conv”)108和电流到电压转换电路(标记为“i/v conv”)110。电压到电流转换电路108根据输入电压信号(例如,包络输入s
env
)产生电流信号i
env
。电流到电压转换电路110用以根据电流信号i
env
产生输出电压信号(例如放大器输出v
ac
)。输出电压信号(例如放大器输出v
ac
)产生于电流到电压转换电路110的输出端口na,电流到电压转换电路110的输出端口na耦接swc 104通过电感l
dc
。需要说明的是,电流到电压转换电路110不需要用于将电流信号i
env
转换为线性放大器的输入电压的输入电阻。所提出的宽带放大器架构的进一步细节描述如下。
27.图2是图示根据本发明实施例的放大器电路的图。图1所示的放大器电路106可由图2所示的放大器电路200实现,图1所示的pa 101可作为放大器电路200的负载201,其中负载201可以由并联连接的电阻器r
pa
和电容器c
pa
建模(model),并通过印刷电路板(pcb)走线电感器l
pcb
耦接到放大器电路200。放大器电路200包括电压-电流转换电路(或电压到电流转换电路)202和电流-电压转换电路(或电流到电压转换电路)204。电压-电流转换电路202包括输入滤波器组212和具有跨导gm的运算跨导放大器(operational transconductance amplifier,ota)214。在本实施例中,包络输入s
env
作为放大器电路200的输入电压信号,是由正信号vp和负信号vn组成的差分信号。输入滤波器组212在包络输入s
env
由ota 214处理之前对包络输入s
env
应用噪声滤波。ota 214通过对通过输入滤波器组212的包络输入s
env
应用电压-电流转换在输出埠n3产生电流信号i
env
,其中i
env
=gm*s
env
。
28.电流-电压转换电路204包括线性放大器(linear amplifier,la)216、回馈网络218和可选的ac耦接电容器cac。la 216的输入埠(input port)可以包括第一输入节点n1和第二输入节点n2,其中由数模转换器(digital-to-analog converter,dac)提供的电压信号v
dac
耦接到第一输入节点n1,并且电流从电压到电流转换电路202(特别是ota 214)产生的信号i
env
耦接到第二输入节点n2。具体地,la 216的输入埠(尤其是la 216的第二输入节点n2)直接连接到ota 214的输出埠(第二输入节点)n2,使得la 216没有输入电阻。回馈网络218耦接在la 216的输入埠(特别是la 216的第二输入节点n2)和la 216的输出埠n4之间,并且包括至少一个电阻器r
fb
和至少一个可选的电容器c
fb
。电阻器r
fb
是回馈电阻器,用于将来自la 216的输出埠n4的部分输出信号(输出电压)la_out返回到la 216的第二输入节点n2。在本实施例中,回馈电阻器r
fb
网络218进一步处理电流信号i
env
的电流到电压转换。在回馈网络218中实现电容器c
fb
的情况下,电容器c
fb
可用于噪声过滤。然而,这并不意味着对本发明的限制。或者,可以从回馈网络218中省略电容器c
fb
。
29.如图2所示,la 216在输出埠n4处产生输出信号la_out,其中放大器电路200的放大器输出v
ac
是从输出信号(输出电压)la_out导出的。在电流到电压转换电路204中实现交流耦接电容c
ac
的情况下,放大器输出v
ac
是通过将输出信号la_out通过交流耦接电容c
ac
而获得的。ac耦接电容器c
ac
能够对输出信号la_out施加dc平滑,从而允许la 216在较低电压范围下操作以额外降低静态电流。然而,这并不意味着对本发明的限制。在本发明的一些实施例中,电流到电压转换电路204可以省略交流耦接电容c
ac
,而输出信号la_out可以直接作为放大器输出v
ac
。
30.由于ota 214的固有特性,ota 214的输出阻抗r
out
(即,从电流到电压转换电路204看ota 214的阻抗(或电阻))很大。因此,回馈网络218的回馈因子β可视为具有等于1的值。
也就是说,由于ota拥有的大输出阻抗rout,回馈网络218可具有单位回馈因子(β=1)214、回馈网络218的回馈因子β可用下式表示。
31.其中r
out
》》r
fb
ꢀꢀꢀꢀꢀꢀ
(1)
32.与回馈因子β小于1的传统la设计相比,运算放大器需要消耗更大的静态电流以具有更大的开环增益以满足目标闭环增益(closed loop gain)要求。为了解决这个问题,本发明提出使用具有大输出阻抗r
out
的电压到电流转换电路202来使回馈因子β等于1,因此允许la216在较低的静态电流消耗下满足相同的目标闭环增益要求。换句话说,本发明提出了一种使用具有单位增益(unity-gain)回馈的la的放大器电路以获得更好的功率效率。本发明因为使用ota来实现可使回馈因子β为1,相较于一般设计的回馈因子β更大(一般设计会小于1,例如0.5),所以电流到电压转换电路204的静态电流可以降低。
33.如上所述,放大器输出v
ac
决定调制电源电压vpa的ac部分(即,高频部分)。因此,传统的la设计可能会因调制电源电压vpa处的包络跟踪摆动而受到输入共模(common-mode,cm)摆动的影响,该电压被回馈回la的电压输入。为了解决这个问题,本发明提出使用电压到电流转换电路202来为la 216提供电流模式输入而不是电压模式输入,其中电流信号i
env
不受包络跟踪摆动的影响在调制电源电压v
pa
。简而言之,电压-电流转换电路202在电流模式下提供输入cm抑制,因此确保la 216的cm电压摆幅较小。由于la 216在其输入端具有固定的cm电压电平,因此la 216可以提高线性度并降低静态电流消耗。
34.放大器电路200的闭环增益g可以使用以下公式表示。
[0035][0036]
由于回馈电阻r
fb
的阻值是固定的,ota 214提供的跨导gm的变化会影响闭环增益g的稳定性。为了实现稳定的跨导gm,本发明提出使用源极退化放大器(source degenerated amplifier)。图3为本发明一实施例的源极退化放大器的示意图。图2所示的ota 214可由图3所示的源极退化放大器300实现。为简洁起见,图3仅示出了源极退化放大器300的一部分。源极退化放大器300包括具有源极退化的差分对,其中差分对由两个p沟道金属氧化物半导体(pmos)晶体管mp1和mp2组成,pmos晶体管mp1的源极端串联连接到电阻器r1的一端(r1=rdeg),pmos管mp2的源极端串联电阻r2的一端(r2=rdeg),电阻r1的另一端和电阻r2的另一端均通过电流源302耦接到电源电压vdd。源极退化放大器300的跨导gm可以使用以下公式表示。
[0037][0038]
上式(3)中,gm表示每个pmos晶体管mp1/mp2的跨导。如果gm和r
deg
中的一个或两个被适当地设置为gm·rdeg
》》1,则源极退化放大器300的跨导gm可以使用以下公式表示。
[0039]
其中gm·rdeg
》》1,其中(4)
[0040]
因此,在其中gm·rdeg
》》1的条件下,放大器电路200的闭环增益g可以使用以下公式表示。
[0041][0042]
由于闭环增益g由回馈电阻器的电阻与源极退化的电阻的比率确定,所以闭环增益g是固定值,而不管放大器电路200的操作。
[0043]
在本发明的一些实施例中,可以采用跨导增强技术来确保满足条件。图4是图示根据本发明实施例的具有跨导升压(transconductance boosting)的源极退化放大器的图。图2所示的ota 214可由图4所示的源极退化放大器400实现。源极退化放大器400包括pmos晶体管mp1、mp2、nmos晶体管mn1、mn2、放大器a1、a2、电阻器r1、r2和电流源402。源极负反馈放大器400具有源极负反馈的差分对,由两个nmos晶体管mn1和mn2组成,其中nmos晶体管mn1的源极端串联电阻r1的一端(r1=rdeg),nmos管mn2的源极端串联电阻r2的一端(r2=rdeg),电阻r1的另一端和电阻r2的另一端均经由电流源402耦接到接地电压gnd。具体地,放大器a1用于提升nmos晶体管mn1的跨导,放大器a2用于提升nmos晶体管mn2的跨导。
[0044]
随着无线通信技术的进步,一个调制载波信号使用的带宽越来越宽。例如,5g新空口(new radio,nr)应用中的带宽需求迅速增加。因此,包络跟踪电源调制器需要宽带宽线性放大器,用于向功率放大器提供调制电源电压。当使用具有跨导升压的源极负反馈放大器的放大器电路200用于宽带应用时,本发明进一步提出使用具有至少一个补偿电容器的两级放大器作为跨导升压放大器(例如,所示的放大器a1或a2在图4)中,以确保在较高频率下仍然满足条件。在先前技术中,一般是直接将电压信号(例如包络输入(电压信号)s
env
)转换为调制电源电压v
pa
,例如通过电压转换器等部件直接进行电压到电压的转换。先前技术的电路中回馈因子β小于1,运算放大器需要消耗更大的静态电流以具有更大的开环增益以满足目标闭环增益要求。本发明中,如图1所示,本发明中增加了电压到电流转换电路108和电流到电压转换电路110,也就是说先将包络输入(电压信号)s
env
转换为电流信号i
env
,然后再将电流信号i
env
转换为放大器输出(输出电压信号)v
ac
,进而得到调制电源电压v
pa
。本发明的方案使得电路回馈因子β等于1,因此允许la 216在较低的静态电流消耗下满足相同的目标闭环增益要求。此外,先前技术中在滤波器与线性放大器之间会设置有电阻器。而本发明中,如图2所示,本发明在输入滤波器组212与la 216的第二输入节点n2之间增加了ota 214,以用于宽带应用。并且本发明中去除了先前技术中的电阻器(也即ota 214与la 216的第二输入节点n2之间没有电阻器,而是直接连接),因此ota 214的输出阻抗r
out
很大。因此,回馈网络218的回馈因子β等于1。这样降低了达到相同频率所需的带宽需求,降低了线性放大器所需的带宽要求,降低了线性放大器的耗电量。
[0045]
图5是图示根据本发明的实施例的具有至少一个补偿电容器的两级放大器的图。图4所示的放大器a1和a2中的每一个都可以由图5所示的两级放大器500实现。两级放大器500接收输入电压v
inn
和v
inp
,并产生输出电压v
outp
至跨导升压目标(例如,图4中所示的nmos晶体管mn1或mn2)。如图5所示,两级放大器500包括pmos晶体管mp1、mp2、mp3、nmos晶体管mn1、mn2、mn3、电阻r、电流源502、米勒补偿电容(miller compensation capacitor)cm和前馈补偿电容(feed forward compensation capacitor)c
ff
。米勒补偿电容cm和/或前馈补偿电容c
ff
的使用可以保证nmos晶体管mn1/mn2的跨导gm在较高频率下仍然得到提升。在本实施例中,米勒补偿电容cm和前馈补偿电容c
ff
均实施于两级放大器500中。然而,这仅用于说明的目的,并不意味着对本发明的限制。在一种替代设计中,可以修改两级放大器500以省
略前馈补偿电容器c
ff
。在另一替代设计中,两级放大器500可被修改以省略米勒补偿电容器cm。
[0046]
本领域的技术人员将容易地观察到,在保持本发明教导的同时,可以做出许多该装置和方法的修改和改变。因此,上述公开内容应被解释为仅由所附权利要求书的界限和范围所限制。