潜标装置及其控制方法与流程

文档序号:29976308发布日期:2022-05-11 12:09阅读:131来源:国知局
潜标装置及其控制方法与流程

1.本发明涉及海洋观测设备技术领域,尤其是涉及一种潜标装置及其控制方法。


背景技术:

2.随着经济的发展和科技的进步,人类对海洋资源的需求日益增加,海洋环境在油气开采、海洋渔业、海洋灾害预警和气候预测等领域起着重要作用,为了更好的监测、获取海洋环境和资源,世界各国相继提出并制定了相应的海洋开发战略,将海洋开发提升至国家高度。
3.近年来,深海潜标观测系统已广泛应用科学家的海洋调查,是进行海洋观测并获取深海原位多要素(如海流剖面数据、温盐深数据等)的重要手段之一,目前将潜标水下观测的多要素数据进行采集和数据传输逐渐成为主要的应用方向。现有技术中,潜标观测及数据传输由以下几个部分组成:测量传感器(多种类型)、数据采集器、通讯控制单元、水下通讯装置;各个单元均独立密封在水密耐压舱内,完成对应的功能,各单元之间通过水密电缆进行连接。
4.但是,在现有技术中的潜标装置中,各功能单元是相互分离独立的,不能针对不同的应用场景实现快速配置和自适应连接,需要根据应用配置预先对不同单元进行设置和二次开发,因此会造成潜标装置安装成本较高、系统整体可靠性不高,以及安装施工复杂的问题。


技术实现要素:

5.本发明的目的在于提供一种潜标装置及其控制方法,以缓解现有技术中存在的潜标装置各功能单元是相互分离独立,需要根据应用配置预先对不同单元进行设置和二次开发,造成安装成本高、可靠性低以及安装复杂的技术问题。
6.本发明提供的一种潜标装置,包括:封装壳体、水密穿舱插座、水声通讯主体、数据采集主体、控制主体和安装支架;所述封装壳体内部容置有密封腔体,所述数据采集主体、所述控制主体和所述安装支架均位于所述密封腔体内,且所述安装支架与所述封装壳体内部连接,所述数据采集主体和所述控制主体均安装于所述安装支架上;所述水密穿舱插座的一端贯穿所述封装壳体,且所述水密穿舱插座与所述封装壳体密封连接,所述水密穿舱插座伸入至所述密封腔体的一端与所述数据采集主体电连接,所述水密穿舱插座的另一端用于与外部传感器连接;所述水声通讯主体的一端贯穿所述封装壳体,且所述水声通讯主体与所述封装壳体密封连接,所述水声通讯主体伸入至所述密封腔体的一端分别与所述数据采集主体和所述控制主体电连接。
7.在本发明较佳的实施例中,所述封装壳体包括固定外壳、第一端盖和第二端盖;所述第一端盖和所述第二端盖分别位于所述固定外壳的两端,且所述第一端盖和
所述第二端盖分别与所述固定外壳密封连接,以使所述固定外壳内部形成密封腔体;所述第二端盖上设置有第一通孔,所述水密穿舱插座的一端贯穿所述第一通孔,所述水密穿舱插座与所述第二端盖连接,且所述水密穿舱插座与所述第一通孔呈密封连接。
8.在本发明较佳的实施例中,所述水声通讯主体包括水声通讯控制板和水声通讯换能器;所述第一端盖上开设有第二通孔,所述水声通讯换能器的一端贯穿所述第二通孔,且所述水声通讯换能器的另一端与所述第二端盖的表面贴合,所述水声通讯换能器与所述第一端盖连接,且所述水声通讯换能器与所述第二通孔密封连接;所述水声通讯控制板位于所述密封腔体内,所述水声通讯控制板安装于所述安装支架上,所述水声通讯控制板与所述水声通讯换能器通过漆包排线电连接。
9.在本发明较佳的实施例中,所述第二通孔包括呈阶梯槽;所述水声通讯换能器伸入至所述密封腔体的一端与所述阶梯槽卡接,且所述水声通讯换能器的另一端与所述第一端盖的表面贴合固定。
10.在本发明较佳的实施例中,还包括第一密封主体;所述水声通讯换能器上开设有第一密封槽,所述第一端盖背离所述密封腔体的一侧对应布置有第二密封槽,所述第二密封槽套设于所述第二通孔的外部,所述第一密封主体分别容置于所述第一密封槽和所述第二密封槽内;所述第一密封槽沿着远离所述第二密封槽的一端至另一端具有倾斜面,所述第一密封主体与所述倾斜面抵接,所述倾斜面具有令所述第一密封主体挤压所述第二密封槽的运动趋势。
11.在本发明较佳的实施例中,还包括第二密封主体、第三密封主体和第四密封主体;所述第二密封主体位于所述第二端盖和所述水密穿舱插座之间,所述第二密封主体通过端面对所述水密穿舱插座与所述第一通孔形成密封;所述第三密封主体设置有多个,多个所述第三密封主体依次套设于所述第一端盖的外部,且所述第三密封主体位于所述第一端盖和所述固定外壳之间;所述第四密封主体设置有多个,多个所述第四密封主体依次套设于所述第二端盖的外部,且所述第四密封主体位于所述第二端盖和所述固定外壳之间。
12.在本发明较佳的实施例中,还包括第一护栏和第二护栏;所述第一护栏与所述第一端盖远离所述固定外壳的一侧连接,且所述第一护栏与所述第一端盖的间距大于所述水声通讯换能器伸出所述第一端盖的高度;所述第二护栏与所述第二端盖远离所述固定外壳的一侧连接,且所述第二护栏与所述第二端盖的间距大于所述水密穿舱插座伸出所述第二端盖的高度。
13.在本发明较佳的实施例中,所述水密穿舱插座的两端分别设置有接线端子和密封插口,所述水密穿舱插座通过接线端子和排线与所述数据采集主体进行电气连接,且所述水密穿舱插座用于通过所述密封插口与外部传感器进行电气连接。
14.在本发明较佳的实施例中,所述封装壳体的材料为钛合金材料;所述固定外壳和所述第一端盖通过钛合金螺栓固定连接,所述固定外壳和所述第二端盖通过钛合金螺栓固定连接。
15.本发明提供的一种基于所述的潜标装置的控制方法,包括以下步骤:利用水密穿舱插座与传感器连接建立通讯连接;将传感器检测到信息利用数据采集主体输送控制主体处;其中,数据采集主体能够对接收到的信息进行存储;控制主体对接收到的信息进行核验;启动水声通讯主体,将控制主体核验完成的数据进行数字/模拟的信号转换;将模拟信号转换为声学信号的数据进行声学传输通讯。
16.本发明提供的一种潜标装置,包括:封装壳体、水密穿舱插座、水声通讯主体、数据采集主体、控制主体和安装支架;通过将数据采集主体、控制主体和安装支架均位于密封腔体内,利用安装支架完成对数据采集主体和控制主体的安装;通过水密穿舱插座与封装壳体密封连接的基础上,水密穿舱插座还能够与数据采集主体电连接,以及与外部传感器连接;同时,水声通讯主体与封装壳体密封连接,水声通讯主体分别与数据采集主体和控制主体电连接,通过将水密穿舱插座、水声通讯主体、数据采集主体和控制主体一体集成于封装壳体上,能够对潜标装置中不同类型的多传感器数据进行自动采集和处理,通过控制主体对各功能模块的统一进行自适应调度和联动控制,从而实现将全部测量数据到声学通讯传输的一站式全自动操作,实现了多个功能模块的一体化、自动化、智能化应用,缓解了现有技术中存在的潜标装置各功能单元是相互分离独立,需要根据应用配置预先对不同单元进行设置和二次开发,造成安装成本高、可靠性低以及安装复杂的技术问题。
附图说明
17.为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
18.图1为本发明实施例提供的潜标装置的整体结构示意图;图2为本发明实施例提供的潜标装置的水声通讯换能器的结构示意图;图3为本发明实施例提供的潜标装置的外观整体结构示意图;图4为本发明实施例提供的潜标装置的内部结构示意图。
19.图标:100-封装壳体;101-固定外壳;102-第一端盖;103-第二端盖;200-水密穿舱插座;300-水声通讯主体;301-水声通讯控制板;302-水声通讯换能器;312-第一密封槽;400-数据采集主体;500-控制主体;600-安装支架;700-第三密封主体;800-第四密封主体;900-第一护栏;110-第二护栏。
具体实施方式
20.下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
21.如图1-图4所示,本实施例提供的一种潜标装置,包括:封装壳体100、水密穿舱插
座200、水声通讯主体300、数据采集主体400、控制主体500和安装支架600;封装壳体100内部容置有密封腔体,数据采集主体400、控制主体500和安装支架600均位于密封腔体内,且安装支架600与封装壳体100内部连接,数据采集主体400和控制主体500均安装于安装支架600上;水密穿舱插座200的一端贯穿封装壳体100,且水密穿舱插座200与封装壳体100密封连接,水密穿舱插座200伸入至密封腔体的一端与数据采集主体400电连接,水密穿舱插座200的另一端用于与外部传感器连接;水声通讯主体300的一端贯穿封装壳体100,且水声通讯主体300与封装壳体100密封连接,水声通讯主体300伸入至密封腔体的一端分别与数据采集主体400和控制主体500电连接。
22.需要说明的是,本实施例提供的潜标装置,属于对多传感器的数据采集、控制总成和水声通讯传输形成一体化装置,具体地,封装壳体100可以形成水密耐压舱,数据采集主体400和控制主体500通过安装支架600固定在封装壳体100的密封腔体内,水密穿舱插座200密封安装在封装壳体100上,水密穿舱插座200能够作为外部传感器的连接主体,利用水密穿舱插座200将外部传感器与数据采集主体400形成水密耐压电气连接,并且水声通讯主体300密封安装在封装壳体100内,水声通讯主体300能够与控制主体500形成水密耐压电气连接,从而完成外部传感器和供电电源的电源、控制信号以及数据连接,实现了多功能一体化的应用,避免了分体设计的漏水和错误连接风险,克服了现有技术中各个功能单元相互独立,不能进行统一快速设置和自适应不同应用场景的缺陷,实现了多个功能模块的一体化、自动化、智能化应用,避免了使用人员对各个模块独立设置和系统匹配带来的不确定性,提高了使用效率和可靠性,整机集成度高,整体尺寸小巧,提高了深海使用场景中的安装便捷性和操作实用性。
23.需要说明的是,本实施例提供的数据采集主体400可以采用数据采集及存储板,控制主体500可以采用系统总控制板,其中,数据采集主体400和控制主体500的型号可以采用属于潜标装置能够实现其功能的结构均可,此处对此不再赘述。
24.本实施例提供的一种潜标装置,包括:封装壳体100、水密穿舱插座200、水声通讯主体300、数据采集主体400、控制主体500和安装支架600;通过将数据采集主体400、控制主体500和安装支架600均位于密封腔体内,利用安装支架600完成对数据采集主体400和控制主体500的安装;通过水密穿舱插座200与封装壳体100密封连接的基础上,水密穿舱插座200还能够与数据采集主体400电连接,以及与外部传感器连接;同时,水声通讯主体300与封装壳体100密封连接,水声通讯主体300分别与数据采集主体400和控制主体500电连接,通过将水密穿舱插座200、水声通讯主体300、数据采集主体400和控制主体500一体集成于封装壳体100上,能够对潜标装置中不同类型的多传感器数据进行自动采集和处理,通过控制主体500对各功能模块的统一进行自适应调度和联动控制,从而实现将全部测量数据到声学通讯传输的一站式全自动操作,实现了多个功能模块的一体化、自动化、智能化应用,缓解了现有技术中存在的潜标装置各功能单元是相互分离独立,需要根据应用配置预先对不同单元进行设置和二次开发,造成安装成本高、可靠性低以及安装复杂的技术问题。
25.在上述实施例的基础上,进一步地,在本发明较佳的实施例中,封装壳体100包括固定外壳101、第一端盖102和第二端盖103;第一端盖102和第二端盖103分别位于固定外壳101的两端,且第一端盖102和第二端盖103分别与固定外壳101密封连接,以使固定外壳101内部形成密封腔体;第二端盖103上设置有第一通孔,水密穿舱插座200的一端贯穿第一通
孔,水密穿舱插座200与第二端盖103连接,且水密穿舱插座200与第一通孔呈密封连接。
26.在本发明较佳的实施例中,封装壳体100的材料为钛合金材料;固定外壳101和第一端盖102通过钛合金螺栓固定连接,固定外壳101和第二端盖103通过钛合金螺栓固定连接。
27.本实施例中,固定外壳101可以采用圆桶外壳,第一端盖102和第二端盖103可以与圆桶外壳的两端形成密封连接,优选地,固定外壳101可以采用钛合金圆桶外壳,第一端盖102采用钛合金顶部端盖,第二端盖103采用钛合金底部端盖,钛合金顶部端盖与钛合金圆桶外壳通过钛合金螺栓进行机械固定连接,钛合金底部端盖与钛合金圆桶外壳通过钛合金螺栓进行机械连接,通过钛合金材料可以保证封装壳体100在深海中的耐压性,同时,利用钛合金螺栓使得固定外壳101分别与第一端盖102和第二端盖103形成紧密机械连接,从而能够满足将数据采集主体400和控制主体500通过安装支架600固定在封装壳体100的密封腔体内的需求;另外,可选地,安装支架600也可以通过螺栓连接的方式与第一端盖102或者第二端盖103的内壁固定连接,从而能够将安装支架600固定在封装壳体100的密封腔体内部。
28.在本发明较佳的实施例中,水声通讯主体300包括水声通讯控制板301和水声通讯换能器302;第一端盖102上开设有第二通孔,水声通讯换能器302的一端贯穿第二通孔,且水声通讯换能器302的另一端与第二端盖103的表面贴合,水声通讯换能器302与第一端盖102连接,且水声通讯换能器302与第二通孔密封连接;水声通讯控制板301位于密封腔体内,水声通讯控制板301安装于安装支架600上,水声通讯控制板301与水声通讯换能器302通过漆包排线电连接。
29.本实施例中,水声通讯控制板301安装在安装支架600上,并且数据采集主体400和控制主体500通过安装支架600的板间连接器完成电气连接,并与水声通讯控制板301通过排线完成电气连接,完成电源、控制信号和数据连接,其中,水声通讯换能器302能够将水声通讯控制板301接收到的控制主体500的信号进行信号转换,通过将数字信号转换为模拟的声学信号在海水中传输,并且水声通讯换能器302的一端贯穿第一端盖102,水声通讯换能器302与第一端盖102的第一通孔密封连接,即水声通讯换能器302能够在保证与水声通讯控制板301电气连接的基础上,实现了水声通讯换能器302与密封腔体之间的防水密封功能。
30.在本发明较佳的实施例中,第二通孔包括呈阶梯槽;水声通讯换能器302伸入至密封腔体的一端与阶梯槽卡接,且水声通讯换能器302的另一端与第一端盖102的表面贴合固定。
31.在本发明较佳的实施例中,还包括第一密封主体;水声通讯换能器302上开设有第一密封槽312,第一端盖102背离密封腔体的一侧对应布置有第二密封槽,第二密封槽套设于第二通孔的外部,第一密封主体分别容置于第一密封槽312和第二密封槽内;第一密封槽312沿着远离第二密封槽的一端至另一端具有倾斜面,第一密封主体与倾斜面抵接,倾斜面具有令第一密封主体挤压第二密封槽的运动趋势。
32.本实施例中,第一密封主体可以采用o型密封圈,具体地,水声通讯换能器302伸入密封腔体的一端与阶梯槽卡接,其中,水声通讯换能器302可以包括两个部分,其中一部分水声通讯换能器302沿着第一端盖102背离的密封腔体一侧插设于第二通孔内,另外一部分
的水声通讯换能器302能够与插设与第二通孔的部分进行机械固定连接,并且位于阶梯槽内的水声通讯换能器302能够与水声通讯控制板301电气连接;当水声通讯换能器302与第一端盖102形成连接时,通过将o型密封圈卡设在第一密封槽312和第二密封槽内部,利用水声通讯换能器302与第一端盖102背离密封腔体一侧紧密贴合;进一步地,通过在第一密封槽312布置有倾斜面,倾斜面与o型密封圈抵接,利用倾斜面能够更好的对o型密封圈施加挤压作用力,同时,当第一端盖102收到深海水压作用下,倾斜面在o型密封圈的弹性作用力下,倾斜面会施加偏转作用力,使得第一密封主体能够沿着斜向的作用力挤压第二密封槽,从而能够更好的保证o型密封圈的端面密封方式实现耐压和防水密封功能。
33.在本发明较佳的实施例中,还包括第二密封主体、第三密封主体700和第四密封主体800;第二密封主体位于第二端盖103和水密穿舱插座200之间,第二密封主体通过端面对水密穿舱插座200与第一通孔形成密封;第三密封主体700设置有多个,多个第三密封主体700依次套设于第一端盖102的外部,且第三密封主体700位于第一端盖102和固定外壳101之间;第四密封主体800设置有多个,多个第四密封主体800依次套设于第二端盖103的外部,且第四密封主体800位于第二端盖103和固定外壳101之间。
34.本实施例中,第二密封主体、第三密封主体700和第四密封主体800均可以采用o型密封圈,其中,当水密穿舱插座200贯穿第一通孔后,此时水密穿舱插座200的端面与第二端盖103的表面贴合,通过可以在第二端盖103的表面设置有密封槽,并且第二密封主体在内径大于第一通孔的内径的基础上,第二密封主体卡设在密封槽中,利用呈o型密封圈的第二密封主体采用端面密封方式实现耐压和防水密封功能。
35.可选地,第三密封主体700可以采用2个,利用在第一端盖102的外侧环形套设有2个o型密封圈的径向密封方式实现耐压和防水密封功能;同样地,第四密封主体800可以采用2个,利用在第二端盖103的外侧环形套设有2个o型密封圈的径向密封方式实现耐压和防水密封功能。
36.需要说明的是,由于封装壳体100在深海运行的过程中,水声通讯主体300以及水密穿舱插座200会伸出封装壳体100的两端的端部,为了防止水声通讯主体300、水密穿舱插座200以及其他电气连接线与深海中固体物质发生碰撞,造成不必要的损失,在本发明较佳的实施例中,还包括第一护栏900和第二护栏110;第一护栏900与第一端盖102远离固定外壳101的一侧连接,且第一护栏900与第一端盖102的间距大于水声通讯换能器302伸出第一端盖102的高度;第二护栏110与第二端盖103远离固定外壳101的一侧连接,且第二护栏110与第二端盖103的间距大于水密穿舱插座200伸出第二端盖103的高度。
37.可选地,第一护栏900与第一端盖102的连接方式可以为多种,例如插接、铆接或者通过螺栓连接,优选地,第一护栏900与第一端盖102的连接方式为通过螺栓连接;同样地,第二护栏110与第二端盖103的连接方式也可以为多种,例如插接、铆接或者通过螺栓连接,优选地,第二护栏110与第二端盖103的连接方式为通过螺栓连接。
38.在本发明较佳的实施例中,水密穿舱插座200的两端分别设置有接线端子和密封插口,水密穿舱插座200通过接线端子和排线与数据采集主体400进行电气连接,且水密穿舱插座200用于通过密封插口与外部传感器进行电气连接。
39.本实施例中,由于封装壳体100将数据采集、系统总控、声学通讯所有功能模块集成于一体,对外仅有传感器数据采集接口,利用水密穿舱插座200通过接线端子和排线进行
电气连接,完成数据采集主体400与外部传感器和供电单元的电源以及信号连接功能,各个单元通过排线连接,避免了分体设计的漏水和错误连接风险,实现了一键设置、即插即用的简易操作,适用于不同传感器接入和不同应用场景的快速部署,实现了数据采集到声学传输的全自动操作。
40.本实施例提供的一种基于的潜标装置的控制方法,包括以下步骤:利用水密穿舱插座200与传感器连接建立通讯连接;将传感器检测到信息利用数据采集主体400输送控制主体500处;其中,数据采集主体400能够对接收到的信息进行存储;控制主体500对接收到的信息进行核验;启动水声通讯主体300,将控制主体500核验完成的数据进行数字/模拟的信号转换;将模拟信号转换为声学信号的数据进行声学传输通讯。
41.本实施例中,通过水密电缆与水密穿舱插座200建立rs232串口通讯连接,数据采集主体400负责采集和存储所有传感器的测量数据,并将所获取的数据信息通过rs232串口通讯连接发送给控制主体500,控制主体500在对数据采集主体400所获取的数据进行校验核对无误后,将所有传感器数据尽心统一封装打包处理后,控制水声通讯控制板301启动,并通过水声通讯换能器302将数字信号转换为模拟的声学信号在海水中传输;本实施例提供的一种基于的潜标装置的控制方法,可以将多传感器的数据采集和水声通讯传输一体化设置,以克服现有技术中各个功能单元相互独立,不能进行统一快速设置和自适应不同应用场景的缺陷,能够对潜标装置内不同类型的多传感器数据进行自动采集和存储,并对各功能模块的统一进行自适应调度和联动控制,从而实现将全部测量数据到声学通讯传输的一站式全自动操作,实现了多个功能模块的一体化、自动化、智能化应用,避免了使用人员对各个模块独立设置和系统匹配带来的不确定性,提高了使用效率和可靠性。
42.最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1