一种基于云技术的智能摄像系统的制作方法

文档序号:11961134阅读:367来源:国知局
一种基于云技术的智能摄像系统的制作方法与工艺

本发明涉及摄像领域,具体涉及一种基于云技术的智能摄像系统。



背景技术:

随着社会不断进步,经济快速发展和技术突飞猛进,公共秩序安全、生产安全、财产安全等越来越受到人们的重视,从而使以视频信息为特征的视频监控更为广泛地被应用在各行业领域,从传统的安防监控向管理和生产经营监控发展,从室内到无人值守特定场合应用的监控。传统的监控模式已不能满足政府“平安城市”、金融系统、高等教育、监管、监狱、文博等行业对安防的需求,而拥有网络化、智能化、数字化、远程化特点的网络视频监控系统则成为新的应用趋势,并形成一个高效、安全、先进的网络视频监控体系。但是现有网络摄像远程监控装置需要足够大的本地硬盘进行视频信息存储,操作复杂,成本高,而且图像信息当云网络受到攻击时容易泄露给恶意第三方。



技术实现要素:

针对上述问题,本发明提供一种基于云技术的智能摄像系统。

本发明的目的采用以下技术方案来实现:

一种基于云技术的智能摄像系统,包括摄像头、视频信号处理器、主控制器、报警器、移动终端、云网络和安全防护系统;所述摄像头为红外夜视摄像头,其拍摄到的图像信息被传送至视频信号处理器进行清晰化处理,然后送至主控制器,并通过WIFI网络、3G网络或者蓝牙网络发送至用户的移动终端以供用户查看;同时,当主控制器发现视频图像出现异常时,发送信号至报警器,及时通知管理人员查看;所述云网络用于为主控制器提供图像处理和储存支撑,其包括m个网路节点和n条链路;所述安全防护系统用于为所述云网络提供安全防护。

本智能摄像系统的有益效果为:支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入。

附图说明

利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。

图1为一种基于云技术的智能摄像系统的结构框图;

图2是安全防护系统的结构框图。

附图标记:摄像头-1;视频信号处理器-2;主控制器-3;移动终端-4;报警器-5;云网络-6;安全防护系统-7;云网络节点安全分级子系统-10;安全防护配置子系统-20;网络安全监测子系统-30;云服务子系统-40;关联矩阵生成模块-11;最小生成树模块-12;分级模块-13;更替模块-14。

具体实施方式

结合以下实施例对本发明作进一步描述。

应用场景1:

如图1所示的一种基于云技术的智能摄像系统,包括摄像头1、视频信号处理器2、主控制器3、报警器5、移动终端4、云网络6和安全防护系统7;所述摄像头1为红外夜视摄像头,其拍摄到的图像信息被传送至视频信号处理器2进行清晰化处理,然后送至主控制器3,并通过WIFI网络、3G网络或者蓝牙网络发送至用户的移动终端4以供用户查看;同时,当主控制器3发现视频图像出现异常时,发送信号至报警器5,及时通知管理人员查看;所述云网络6用于为主控制器3提供图像处理和储存支撑,其包括m个网路节点和n条链路。安全防护系统7用于为所述云网络6提供安全防护。

本发明支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入。

优选地,所述主控器3还包括视频亮度检测单元和照明控制单元,所述视频亮度检测单元检测获取到的图像的亮度,并与标准值做比较,并将比较结果反馈到照明控制单元中来控制照明电流,从而控制图像的亮度;所述照明控制单元的照明装置内置在摄像头1中。

优选地,所述摄像头为角度可调式旋转摄像头。

优选地,如图2所示,安全防护系统7,用于为所述云网络提供安全防护,其包括云网络节点安全分级子系统10、安全防护配置子系统20、网络安全监测子系统30和云服务子系统40,所述网络节点安全分级系统10通过计算网络节点的重要性值将网络节点分为4个不同的安全等级,所述安全防护配置子系统20根据云网络节点安全分级子系统10的分级结果,为不同安全等级的网络节点以及节点之间的链路提供不同的安全加密服务;所述网络安全监测子系统30用于监测网络节点状态,所述云服务子系统40为整个安全防护云系统提供云支撑。

(1)云网络节点安全分级子系统10包括关联矩阵生成模块11、最小生成树模块12、分级模块13和更替模块14:

云网络节点安全分级子系统10的重要性值获得主要基于以下理论:通过移除待测节点来评估该节点在该网络中的地位,具体地说,如果待测节点被移除后,得到的新图中生成树的数目越少,那么该节点的重要性值就越大。

a、关联矩阵生成模块11:

用G表示一个具有m个网络节点V和n条链路E的无向图,其中V={V1,V2,…Vm},E={E1,E2,…En},用一个m×n的关联矩阵R表示网络结构中节点和链路的连接关系,矩阵R的一行对应网络中的一个网络节点,R的一列表示网络节点与对应边的关联属性的值,R中每个元素的值均为0或1,其中0代表链路与网络节点不关联,1代表链路与网络节点关联;例如,如果R中第m行第n列的元素为1,则代表第m个网络节点与第n条链路关联;

b.最小生成树模块12:

用(i,j)代表无向图G中连接网络节点Vi与网络节点Vj的链路,ω(Vi,Vj)代表此链路的权重,若存在T为E的子集且为无循环图,使得ω(T)最小,就将T称为G的最小生成树,则G中最小生成树总数τ(G)=det(RRT),其中det(.)代表行列式生成函数,;

c.分级模块13:

由下式得到节点Vi的重要性值ri:其中τ(G)为由最小生成树计算模块得到的最小生成树总数;k为关联矩阵R中第i行非零元素的数量,Z是移除R的第i行和第i行的非零元素所在列之后得到的新的矩阵,det(Zi)代表Z的行列式;ri的值越大,即节点显示出越高的重要性,当ri的值取1的时候,则表示Vi是该网络中最重要的网络节点,一旦该网络节点被破坏图的连通性就会极大程度地被破坏,从而造成网络通信中断;按以上方法分别计算所有网络节点的重要性值,同时设定分级阈值T1、T2、T3,且T1>T2>T3,如果ri>T1,则将该网络节点标记为重要节点,如果T1>ri>T2,则将该网络节点标记为次重要节点,如果T2>ri>T3,则将该网络节点标记为中间节点,如果ri小于T3,则将该网络节点标记为边缘节点,并且将重要节点、次重要节点、中间节点和边缘节点的安全等级分别记为等级1、等级2、等级3和等级4;T3=0.25,边缘节点数不会超过总网络节点数的30%;

d.更替模块14:

每当网络节点数量或者节点位置发生变化时,自动重新计算每个网络节点的重要性值,并重新进行安全分级和标记;

(2)安全防护配置子系统20:在安全等级相同的网络节点之间,采用基于网络层的安全网际协议IPSec进行信息交互,提供通道级的信息安全防护,IPSec协议将密码技术应用于网络层,提供点到点数据传输的包括安全认证、数据加密、访问控制、完整性鉴别的安全服务;不同安全等级的网络节点之间采用工作在网络层协议之上的应用层协议进行信息交互,应用层的安全以PKI系统为基础,用密码技术确保信息文件传输、共享和使用的安全,具体来说采用以下的加密方式进行加密:

a.对于安全等级为n1的网络节点A和安全等级为n2的网络节点B,当A要向B传送信息MES时,首先由A向B发送请求,B返回丨n1-n2丨个随机数RD1,B保留RD1;

b.A用预先分配的密匙对每个RD1进行数字签名,并产生丨n1-n2丨个对应的随机数RD2;将RD1和RD2组成一个丨n1-n2丨×丨n1-n2丨阶的矩阵,利用矩阵加密技术对信息MES进行加密,将加密结果发送到B;由于n1和n2的取值范围均为1-4,容易知对于不同安全等级的网络节点来说,该矩阵最大为3×3阶矩阵,最小为1×1矩阵,而对于安全等级相同的网络节点来说,n1-n2=0,即不进行矩阵加密的操作;当安全等级越级传递级数越高,丨n1-n2丨就越大,则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性。

c.B调用解密函数对加密后的信息进行解密,得到RD1′和信息MES,将RD1和RD1′进行比较匹配,如果匹配成功则接收并保留MES,如果不一致则将MES返还A或者将其丢弃;

(3)网络安全监测子系统30,用于监测网络节点数和网络节点位置,其包括感知模块和传输模块:

所述感知模块通过在网络节点周围部署大量无线传感器实现,由于网络节点并不知道自身位置,所述无线传感器通过接受网络节点无线信号,结合自身与其他传感器位置关系,对网络节点位置进行定位;

(4)云服务子系统40,包括云存储模块和云计算模块:

所述云存储模块包括公有云存储子模块和私有云存储子模块,所述公有存储云子模块主要存储网络节点分级数据,其存储内容外界可进行自由访问,所述私有云存储子模块主要存储密匙和解密函数,只有通过身份验证的人员才能够进行访问;

所述云计算模块通过部署SOA服务器实现,包括公有云计算子模块和私有云计算子模块,所述公有云计算子模块为云网络节点安全分级子系统和网络安全监测子系统提供计算支撑,所述私有云计算子模块为安全防护配置子系统提供计算支撑,各类用户通过终端程序获取云端数据。

在此实施例中:支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入;网络系统节点安全分级系统10采用最小生成树为基础的节点重要性计算,能较精确、计算量较小地计算网络节点的重要性,并以此为依据对网络内的节点进行安全分级,T3=0.25,边缘节点数不会超过总网络节点数的30%;安全防护配置子系统20对不同安全等级的网络节点之间的信息传递采用不同的加密策略,而且当安全等级越级传递越高(丨n1-n2丨越大时),则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性;设置云服务模块,能够节约存储空间,提高计算速度,节约时间成本。

优选地,所述网络安全监测子系统中网络节点的具体定位操作如下:

以网络节点为圆心,r为半径画圆,落在圆内的无线传感器数量为n,第i个无线传感器接受到该网络节点的信号强度对应为qi,i=1,2,…,n;

网络节点的位置(x,y)如下:

<mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

<mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

所述传输模块用于将感知模块的监测结果传输到云服务子系统40。

在此实施例中设置网络安全监测子系统,能够及时采集网络节点数据,定位准确。

应用场景2:

如图1所示的一种基于云技术的智能摄像系统,包括摄像头1、视频信号处理器2、主控制器3、报警器5、移动终端4、云网络6和安全防护系统7;所述摄像头1为红外夜视摄像头,其拍摄到的图像信息被传送至视频信号处理器2进行清晰化处理,然后送至主控制器3,并通过WIFI网络、3G网络或者蓝牙网络发送至用户的移动终端4以供用户查看;同时,当主控制器3发现视频图像出现异常时,发送信号至报警器5,及时通知管理人员查看;所述云网络6用于为主控制器3提供图像处理和储存支撑,其包括m个网路节点和n条链路。安全防护系统7用于为所述云网络6提供安全防护。

本发明支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入。

优选地,所述主控器3还包括视频亮度检测单元和照明控制单元,所述视频亮度检测单元检测获取到的图像的亮度,并与标准值做比较,并将比较结果反馈到照明控制单元中来控制照明电流,从而控制图像的亮度;所述照明控制单元的照明装置内置在摄像头1中。

优选地,所述摄像头为角度可调式旋转摄像头。

优选地,如图2所示,安全防护系统7,用于为所述云网络提供安全防护,其包括云网络节点安全分级子系统10、安全防护配置子系统20、网络安全监测子系统30和云服务子系统40,所述网络节点安全分级系统10通过计算网络节点的重要性值将网络节点分为4个不同的安全等级,所述安全防护配置子系统20根据云网络节点安全分级子系统10的分级结果,为不同安全等级的网络节点以及节点之间的链路提供不同的安全加密服务;所述网络安全监测子系统30用于监测网络节点状态,所述云服务子系统40为整个安全防护云系统提供云支撑。

(1)云网络节点安全分级子系统10包括关联矩阵生成模块11、最小生成树模块12、分级模块13和更替模块14:

云网络节点安全分级子系统10的重要性值获得主要基于以下理论:通过移除待测节点来评估该节点在该网络中的地位,具体地说,如果待测节点被移除后,得到的新图中生成树的数目越少,那么该节点的重要性值就越大。

a、关联矩阵生成模块11:

用G表示一个具有m个网络节点V和n条链路E的无向图,其中V={V1,V2,…Vm},E={E1,E2,…En},用一个m×n的关联矩阵R表示网络结构中节点和链路的连接关系,矩阵R的一行对应网络中的一个网络节点,R的一列表示网络节点与对应边的关联属性的值,R中每个元素的值均为0或1,其中0代表链路与网络节点不关联,1代表链路与网络节点关联;例如,如果R中第m行第n列的元素为1,则代表第m个网络节点与第n条链路关联;

b.最小生成树模块12:

用(i,j)代表无向图G中连接网络节点Vi与网络节点Vj的链路,ω(Vi,Vj)代表此链路的权重,若存在T为E的子集且为无循环图,使得ω(T)最小,就将T称为G的最小生成树,则G中最小生成树总数τ(G)=det(RRT),其中det(.)代表行列式生成函数,;

c.分级模块13:

由下式得到节点Vi的重要性值ri:其中τ(G)为由最小生成树计算模块得到的最小生成树总数;k为关联矩阵R中第i行非零元素的数量,Z是移除R的第i行和第i行的非零元素所在列之后得到的新的矩阵,det(Zi)代表Z的行列式;ri的值越大,即节点显示出越高的重要性,当ri的值取1的时候,则表示Vi是该网络中最重要的网络节点,一旦该网络节点被破坏图的连通性就会极大程度地被破坏,从而造成网络通信中断;按以上方法分别计算所有网络节点的重要性值,同时设定分级阈值T1、T2、T3,且T1>T2>T3,如果ri>T1,则将该网络节点标记为重要节点,如果T1>ri>T2,则将该网络节点标记为次重要节点,如果T2>ri>T3,则将该网络节点标记为中间节点,如果ri小于T3,则将该网络节点标记为边缘节点,并且将重要节点、次重要节点、中间节点和边缘节点的安全等级分别记为等级1、等级2、等级3和等级4;T3=0.28,边缘节点数不会超过总网络节点数的27%;

d.更替模块14:

每当网络节点数量或者节点位置发生变化时,自动重新计算每个网络节点的重要性值,并重新进行安全分级和标记;

(2)安全防护配置子系统20:在安全等级相同的网络节点之间,采用基于网络层的安全网际协议IPSec进行信息交互,提供通道级的信息安全防护,IPSec协议将密码技术应用于网络层,提供点到点数据传输的包括安全认证、数据加密、访问控制、完整性鉴别的安全服务;不同安全等级的网络节点之间采用工作在网络层协议之上的应用层协议进行信息交互,应用层的安全以PKI系统为基础,用密码技术确保信息文件传输、共享和使用的安全,具体来说采用以下的加密方式进行加密:

a.对于安全等级为n1的网络节点A和安全等级为n2的网络节点B,当A要向B传送信息MES时,首先由A向B发送请求,B返回丨n1-n2丨个随机数RD1,B保留RD1;

b.A用预先分配的密匙对每个RD1进行数字签名,并产生丨n1-n2丨个对应的随机数RD2;将RD1和RD2组成一个丨n1-n2丨×丨n1-n2丨阶的矩阵,利用矩阵加密技术对信息MES进行加密,将加密结果发送到B;由于n1和n2的取值范围均为1-4,容易知对于不同安全等级的网络节点来说,该矩阵最大为3×3阶矩阵,最小为1×1矩阵,而对于安全等级相同的网络节点来说,n1-n2=0,即不进行矩阵加密的操作;当安全等级越级传递级数越高,丨n1-n2丨就越大,则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性。

c.B调用解密函数对加密后的信息进行解密,得到RD1′和信息MES,将RD1和RD1′进行比较匹配,如果匹配成功则接收并保留MES,如果不一致则将MES返还A或者将其丢弃;

(3)网络安全监测子系统30,用于监测网络节点数和网络节点位置,其包括感知模块和传输模块:

所述感知模块通过在网络节点周围部署大量无线传感器实现,由于网络节点并不知道自身位置,所述无线传感器通过接受网络节点无线信号,结合自身与其他传感器位置关系,对网络节点位置进行定位;

(4)云服务子系统40,包括云存储模块和云计算模块:

所述云存储模块包括公有云存储子模块和私有云存储子模块,所述公有存储云子模块主要存储网络节点分级数据,其存储内容外界可进行自由访问,所述私有云存储子模块主要存储密匙和解密函数,只有通过身份验证的人员才能够进行访问;

所述云计算模块通过部署SOA服务器实现,包括公有云计算子模块和私有云计算子模块,所述公有云计算子模块为云网络节点安全分级子系统和网络安全监测子系统提供计算支撑,所述私有云计算子模块为安全防护配置子系统提供计算支撑,各类用户通过终端程序获取云端数据。

在此实施例中:支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入;网络系统节点安全分级系统10采用最小生成树为基础的节点重要性计算,能较精确、计算量较小地计算网络节点的重要性,并以此为依据对网络内的节点进行安全分级,T3=0.28,边缘节点数不会超过总网络节点数的27%;安全防护配置子系统20对不同安全等级的网络节点之间的信息传递采用不同的加密策略,而且当安全等级越级传递越高(丨n1-n2丨越大时),则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性;设置云服务模块,能够节约存储空间,提高计算速度,节约时间成本。

优选地,所述网络安全监测子系统中网络节点的具体定位操作如下:

以网络节点为圆心,r为半径画圆,落在圆内的无线传感器数量为n,第i个无线传感器接受到该网络节点的信号强度对应为qi,i=1,2,…,n;

网络节点的位置(x,y)如下:

<mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

<mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

所述传输模块用于将感知模块的监测结果传输到云服务子系统40。

在此实施例中设置网络安全监测子系统,能够及时采集网络节点数据,定位准确。

应用场景3:

如图1所示的一种基于云技术的智能摄像系统,包括摄像头1、视频信号处理器2、主控制器3、报警器5、移动终端4、云网络6和安全防护系统7;所述摄像头1为红外夜视摄像头,其拍摄到的图像信息被传送至视频信号处理器2进行清晰化处理,然后送至主控制器3,并通过WIFI网络、3G网络或者蓝牙网络发送至用户的移动终端4以供用户查看;同时,当主控制器3发现视频图像出现异常时,发送信号至报警器5,及时通知管理人员查看;所述云网络6用于为主控制器3提供图像处理和储存支撑,其包括m个网路节点和n条链路。安全防护系统7用于为所述云网络6提供安全防护。

本发明支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入。

优选地,所述主控器3还包括视频亮度检测单元和照明控制单元,所述视频亮度检测单元检测获取到的图像的亮度,并与标准值做比较,并将比较结果反馈到照明控制单元中来控制照明电流,从而控制图像的亮度;所述照明控制单元的照明装置内置在摄像头1中。

优选地,所述摄像头为角度可调式旋转摄像头。

优选地,如图2所示,安全防护系统7,用于为所述云网络提供安全防护,其包括云网络节点安全分级子系统10、安全防护配置子系统20、网络安全监测子系统30和云服务子系统40,所述网络节点安全分级系统10通过计算网络节点的重要性值将网络节点分为4个不同的安全等级,所述安全防护配置子系统20根据云网络节点安全分级子系统10的分级结果,为不同安全等级的网络节点以及节点之间的链路提供不同的安全加密服务;所述网络安全监测子系统30用于监测网络节点状态,所述云服务子系统40为整个安全防护云系统提供云支撑。

(1)云网络节点安全分级子系统10包括关联矩阵生成模块11、最小生成树模块12、分级模块13和更替模块14:

云网络节点安全分级子系统10的重要性值获得主要基于以下理论:通过移除待测节点来评估该节点在该网络中的地位,具体地说,如果待测节点被移除后,得到的新图中生成树的数目越少,那么该节点的重要性值就越大。

a、关联矩阵生成模块11:

用G表示一个具有m个网络节点V和n条链路E的无向图,其中V={V1,V2,…Vm},E={E1,E2,…En},用一个m×n的关联矩阵R表示网络结构中节点和链路的连接关系,矩阵R的一行对应网络中的一个网络节点,R的一列表示网络节点与对应边的关联属性的值,R中每个元素的值均为0或1,其中0代表链路与网络节点不关联,1代表链路与网络节点关联;例如,如果R中第m行第n列的元素为1,则代表第m个网络节点与第n条链路关联;

b.最小生成树模块12:

用(i,j)代表无向图G中连接网络节点Vi与网络节点Vj的链路,ω(Vi,Vj)代表此链路的权重,若存在T为E的子集且为无循环图,使得ω(T)最小,就将T称为G的最小生成树,则G中最小生成树总数τ(G)=det(RRT),其中det(.)代表行列式生成函数,;

c.分级模块13:

由下式得到节点Vi的重要性值ri:其中τ(G)为由最小生成树计算模块得到的最小生成树总数;k为关联矩阵R中第i行非零元素的数量,Z是移除R的第i行和第i行的非零元素所在列之后得到的新的矩阵,det(Zi)代表Z的行列式;ri的值越大,即节点显示出越高的重要性,当ri的值取1的时候,则表示Vi是该网络中最重要的网络节点,一旦该网络节点被破坏图的连通性就会极大程度地被破坏,从而造成网络通信中断;按以上方法分别计算所有网络节点的重要性值,同时设定分级阈值T1、T2、T3,且T1>T2>T3,如果ri>T1,则将该网络节点标记为重要节点,如果T1>ri>T2,则将该网络节点标记为次重要节点,如果T2>ri>T3,则将该网络节点标记为中间节点,如果ri小于T3,则将该网络节点标记为边缘节点,并且将重要节点、次重要节点、中间节点和边缘节点的安全等级分别记为等级1、等级2、等级3和等级4;T3=0.28,边缘节点数不会超过总网络节点数的27%;

d.更替模块14:

每当网络节点数量或者节点位置发生变化时,自动重新计算每个网络节点的重要性值,并重新进行安全分级和标记;

(2)安全防护配置子系统20:在安全等级相同的网络节点之间,采用基于网络层的安全网际协议IPSec进行信息交互,提供通道级的信息安全防护,IPSec协议将密码技术应用于网络层,提供点到点数据传输的包括安全认证、数据加密、访问控制、完整性鉴别的安全服务;不同安全等级的网络节点之间采用工作在网络层协议之上的应用层协议进行信息交互,应用层的安全以PKI系统为基础,用密码技术确保信息文件传输、共享和使用的安全,具体来说采用以下的加密方式进行加密:

a.对于安全等级为n1的网络节点A和安全等级为n2的网络节点B,当A要向B传送信息MES时,首先由A向B发送请求,B返回丨n1-n2丨个随机数RD1,B保留RD1;

b.A用预先分配的密匙对每个RD1进行数字签名,并产生丨n1-n2丨个对应的随机数RD2;将RD1和RD2组成一个丨n1-n2丨×丨n1-n2丨阶的矩阵,利用矩阵加密技术对信息MES进行加密,将加密结果发送到B;由于n1和n2的取值范围均为1-4,容易知对于不同安全等级的网络节点来说,该矩阵最大为3×3阶矩阵,最小为1×1矩阵,而对于安全等级相同的网络节点来说,n1-n2=0,即不进行矩阵加密的操作;当安全等级越级传递级数越高,丨n1-n2丨就越大,则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性。

c.B调用解密函数对加密后的信息进行解密,得到RD1′和信息MES,将RD1和RD1′进行比较匹配,如果匹配成功则接收并保留MES,如果不一致则将MES返还A或者将其丢弃;

(3)网络安全监测子系统30,用于监测网络节点数和网络节点位置,其包括感知模块和传输模块:

所述感知模块通过在网络节点周围部署大量无线传感器实现,由于网络节点并不知道自身位置,所述无线传感器通过接受网络节点无线信号,结合自身与其他传感器位置关系,对网络节点位置进行定位;

(4)云服务子系统40,包括云存储模块和云计算模块:

所述云存储模块包括公有云存储子模块和私有云存储子模块,所述公有存储云子模块主要存储网络节点分级数据,其存储内容外界可进行自由访问,所述私有云存储子模块主要存储密匙和解密函数,只有通过身份验证的人员才能够进行访问;

所述云计算模块通过部署SOA服务器实现,包括公有云计算子模块和私有云计算子模块,所述公有云计算子模块为云网络节点安全分级子系统和网络安全监测子系统提供计算支撑,所述私有云计算子模块为安全防护配置子系统提供计算支撑,各类用户通过终端程序获取云端数据。

在此实施例中:支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入;网络系统节点安全分级系统10采用最小生成树为基础的节点重要性计算,能较精确、计算量较小地计算网络节点的重要性,并以此为依据对网络内的节点进行安全分级,T3=0.28,边缘节点数不会超过总网络节点数的27%;安全防护配置子系统20对不同安全等级的网络节点之间的信息传递采用不同的加密策略,而且当安全等级越级传递越高(丨n1-n2丨越大时),则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性;设置云服务模块,能够节约存储空间,提高计算速度,节约时间成本。

优选地,所述网络安全监测子系统中网络节点的具体定位操作如下:

以网络节点为圆心,r为半径画圆,落在圆内的无线传感器数量为n,第i个无线传感器接受到该网络节点的信号强度对应为qi,i=1,2,…,n;

网络节点的位置(x,y)如下:

<mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

<mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

所述传输模块用于将感知模块的监测结果传输到云服务子系统40。

在此实施例中设置网络安全监测子系统,能够及时采集网络节点数据,定位准确。

应用场景4:

如图1所示的一种基于云技术的智能摄像系统,包括摄像头1、视频信号处理器2、主控制器3、报警器5、移动终端4、云网络6和安全防护系统7;所述摄像头1为红外夜视摄像头,其拍摄到的图像信息被传送至视频信号处理器2进行清晰化处理,然后送至主控制器3,并通过WIFI网络、3G网络或者蓝牙网络发送至用户的移动终端4以供用户查看;同时,当主控制器3发现视频图像出现异常时,发送信号至报警器5,及时通知管理人员查看;所述云网络6用于为主控制器3提供图像处理和储存支撑,其包括m个网路节点和n条链路。安全防护系统7用于为所述云网络6提供安全防护。

本发明支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入。

优选地,所述主控器3还包括视频亮度检测单元和照明控制单元,所述视频亮度检测单元检测获取到的图像的亮度,并与标准值做比较,并将比较结果反馈到照明控制单元中来控制照明电流,从而控制图像的亮度;所述照明控制单元的照明装置内置在摄像头1中。

优选地,所述摄像头为角度可调式旋转摄像头。

优选地,如图2所示,安全防护系统7,用于为所述云网络提供安全防护,其包括云网络节点安全分级子系统10、安全防护配置子系统20、网络安全监测子系统30和云服务子系统40,所述网络节点安全分级系统10通过计算网络节点的重要性值将网络节点分为4个不同的安全等级,所述安全防护配置子系统20根据云网络节点安全分级子系统10的分级结果,为不同安全等级的网络节点以及节点之间的链路提供不同的安全加密服务;所述网络安全监测子系统30用于监测网络节点状态,所述云服务子系统40为整个安全防护云系统提供云支撑。

(1)云网络节点安全分级子系统10包括关联矩阵生成模块11、最小生成树模块12、分级模块13和更替模块14:

云网络节点安全分级子系统10的重要性值获得主要基于以下理论:通过移除待测节点来评估该节点在该网络中的地位,具体地说,如果待测节点被移除后,得到的新图中生成树的数目越少,那么该节点的重要性值就越大。

a、关联矩阵生成模块11:

用G表示一个具有m个网络节点V和n条链路E的无向图,其中V={V1,V2,…Vm},E={E1,E2,…En},用一个m×n的关联矩阵R表示网络结构中节点和链路的连接关系,矩阵R的一行对应网络中的一个网络节点,R的一列表示网络节点与对应边的关联属性的值,R中每个元素的值均为0或1,其中0代表链路与网络节点不关联,1代表链路与网络节点关联;例如,如果R中第m行第n列的元素为1,则代表第m个网络节点与第n条链路关联;

b.最小生成树模块12:

用(i,j)代表无向图G中连接网络节点Vi与网络节点Vj的链路,ω(Vi,Vj)代表此链路的权重,若存在T为E的子集且为无循环图,使得ω(T)最小,就将T称为G的最小生成树,则G中最小生成树总数τ(G)=det(RRT),其中det(.)代表行列式生成函数,;

c.分级模块13:

由下式得到节点Vi的重要性值ri:其中τ(G)为由最小生成树计算模块得到的最小生成树总数;k为关联矩阵R中第i行非零元素的数量,Z是移除R的第i行和第i行的非零元素所在列之后得到的新的矩阵,det(Zi)代表Z的行列式;ri的值越大,即节点显示出越高的重要性,当ri的值取1的时候,则表示Vi是该网络中最重要的网络节点,一旦该网络节点被破坏图的连通性就会极大程度地被破坏,从而造成网络通信中断;按以上方法分别计算所有网络节点的重要性值,同时设定分级阈值T1、T2、T3,且T1>T2>T3,如果ri>T1,则将该网络节点标记为重要节点,如果T1>ri>T2,则将该网络节点标记为次重要节点,如果T2>ri>T3,则将该网络节点标记为中间节点,如果ri小于T3,则将该网络节点标记为边缘节点,并且将重要节点、次重要节点、中间节点和边缘节点的安全等级分别记为等级1、等级2、等级3和等级4;T3=0.33,边缘节点数不会超过总网络节点数的35%;

d.更替模块14:

每当网络节点数量或者节点位置发生变化时,自动重新计算每个网络节点的重要性值,并重新进行安全分级和标记;

(2)安全防护配置子系统20:在安全等级相同的网络节点之间,采用基于网络层的安全网际协议IPSec进行信息交互,提供通道级的信息安全防护,IPSec协议将密码技术应用于网络层,提供点到点数据传输的包括安全认证、数据加密、访问控制、完整性鉴别的安全服务;不同安全等级的网络节点之间采用工作在网络层协议之上的应用层协议进行信息交互,应用层的安全以PKI系统为基础,用密码技术确保信息文件传输、共享和使用的安全,具体来说采用以下的加密方式进行加密:

a.对于安全等级为n1的网络节点A和安全等级为n2的网络节点B,当A要向B传送信息MES时,首先由A向B发送请求,B返回丨n1-n2丨个随机数RD1,B保留RD1;

b.A用预先分配的密匙对每个RD1进行数字签名,并产生丨n1-n2丨个对应的随机数RD2;将RD1和RD2组成一个丨n1-n2丨×丨n1-n2丨阶的矩阵,利用矩阵加密技术对信息MES进行加密,将加密结果发送到B;由于n1和n2的取值范围均为1-4,容易知对于不同安全等级的网络节点来说,该矩阵最大为3×3阶矩阵,最小为1×1矩阵,而对于安全等级相同的网络节点来说,n1-n2=0,即不进行矩阵加密的操作;当安全等级越级传递级数越高,丨n1-n2丨就越大,则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性。

c.B调用解密函数对加密后的信息进行解密,得到RD1′和信息MES,将RD1和RD1′进行比较匹配,如果匹配成功则接收并保留MES,如果不一致则将MES返还A或者将其丢弃;

(3)网络安全监测子系统30,用于监测网络节点数和网络节点位置,其包括感知模块和传输模块:

所述感知模块通过在网络节点周围部署大量无线传感器实现,由于网络节点并不知道自身位置,所述无线传感器通过接受网络节点无线信号,结合自身与其他传感器位置关系,对网络节点位置进行定位;

(4)云服务子系统40,包括云存储模块和云计算模块:

所述云存储模块包括公有云存储子模块和私有云存储子模块,所述公有存储云子模块主要存储网络节点分级数据,其存储内容外界可进行自由访问,所述私有云存储子模块主要存储密匙和解密函数,只有通过身份验证的人员才能够进行访问;

所述云计算模块通过部署SOA服务器实现,包括公有云计算子模块和私有云计算子模块,所述公有云计算子模块为云网络节点安全分级子系统和网络安全监测子系统提供计算支撑,所述私有云计算子模块为安全防护配置子系统提供计算支撑,各类用户通过终端程序获取云端数据。

在此实施例中:支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入;网络系统节点安全分级系统10采用最小生成树为基础的节点重要性计算,能较精确、计算量较小地计算网络节点的重要性,并以此为依据对网络内的节点进行安全分级,T3=0.33,边缘节点数不会超过总网络节点数的35%;安全防护配置子系统20对不同安全等级的网络节点之间的信息传递采用不同的加密策略,而且当安全等级越级传递越高(丨n1-n2丨越大时),则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性;设置云服务模块,能够节约存储空间,提高计算速度,节约时间成本。

优选地,所述网络安全监测子系统中网络节点的具体定位操作如下:

以网络节点为圆心,r为半径画圆,落在圆内的无线传感器数量为n,第i个无线传感器接受到该网络节点的信号强度对应为qi,i=1,2,…,n;

网络节点的位置(x,y)如下:

<mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

<mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

所述传输模块用于将感知模块的监测结果传输到云服务子系统40。

在此实施例中设置网络安全监测子系统,能够及时采集网络节点数据,定位准确。

应用场景5:

如图1所示的一种基于云技术的智能摄像系统,包括摄像头1、视频信号处理器2、主控制器3、报警器5、移动终端4、云网络6和安全防护系统7;所述摄像头1为红外夜视摄像头,其拍摄到的图像信息被传送至视频信号处理器2进行清晰化处理,然后送至主控制器3,并通过WIFI网络、3G网络或者蓝牙网络发送至用户的移动终端4以供用户查看;同时,当主控制器3发现视频图像出现异常时,发送信号至报警器5,及时通知管理人员查看;所述云网络6用于为主控制器3提供图像处理和储存支撑,其包括m个网路节点和n条链路。安全防护系统7用于为所述云网络6提供安全防护。

本发明支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入。

优选地,所述主控器3还包括视频亮度检测单元和照明控制单元,所述视频亮度检测单元检测获取到的图像的亮度,并与标准值做比较,并将比较结果反馈到照明控制单元中来控制照明电流,从而控制图像的亮度;所述照明控制单元的照明装置内置在摄像头1中。

优选地,所述摄像头为角度可调式旋转摄像头。

优选地,如图2所示,安全防护系统7,用于为所述云网络提供安全防护,其包括云网络节点安全分级子系统10、安全防护配置子系统20、网络安全监测子系统30和云服务子系统40,所述网络节点安全分级系统10通过计算网络节点的重要性值将网络节点分为4个不同的安全等级,所述安全防护配置子系统20根据云网络节点安全分级子系统10的分级结果,为不同安全等级的网络节点以及节点之间的链路提供不同的安全加密服务;所述网络安全监测子系统30用于监测网络节点状态,所述云服务子系统40为整个安全防护云系统提供云支撑。

(1)云网络节点安全分级子系统10包括关联矩阵生成模块11、最小生成树模块12、分级模块13和更替模块14:

云网络节点安全分级子系统10的重要性值获得主要基于以下理论:通过移除待测节点来评估该节点在该网络中的地位,具体地说,如果待测节点被移除后,得到的新图中生成树的数目越少,那么该节点的重要性值就越大。

a、关联矩阵生成模块11:

用G表示一个具有m个网络节点V和n条链路E的无向图,其中V={V1,V2,…Vm},E={E1,E2,…En},用一个m×n的关联矩阵R表示网络结构中节点和链路的连接关系,矩阵R的一行对应网络中的一个网络节点,R的一列表示网络节点与对应边的关联属性的值,R中每个元素的值均为0或1,其中0代表链路与网络节点不关联,1代表链路与网络节点关联;例如,如果R中第m行第n列的元素为1,则代表第m个网络节点与第n条链路关联;

b.最小生成树模块12:

用(i,j)代表无向图G中连接网络节点Vi与网络节点Vj的链路,ω(Vi,Vj)代表此链路的权重,若存在T为E的子集且为无循环图,使得ω(T)最小,就将T称为G的最小生成树,则G中最小生成树总数τ(G)=det(RRT),其中det(.)代表行列式生成函数,;

c.分级模块13:

由下式得到节点Vi的重要性值ri:其中τ(G)为由最小生成树计算模块得到的最小生成树总数;k为关联矩阵R中第i行非零元素的数量,Z是移除R的第i行和第i行的非零元素所在列之后得到的新的矩阵,det(Zi)代表Z的行列式;ri的值越大,即节点显示出越高的重要性,当ri的值取1的时候,则表示Vi是该网络中最重要的网络节点,一旦该网络节点被破坏图的连通性就会极大程度地被破坏,从而造成网络通信中断;按以上方法分别计算所有网络节点的重要性值,同时设定分级阈值T1、T2、T3,且T1>T2>T3,如果ri>T1,则将该网络节点标记为重要节点,如果T1>ri>T2,则将该网络节点标记为次重要节点,如果T2>ri>T3,则将该网络节点标记为中间节点,如果ri小于T3,则将该网络节点标记为边缘节点,并且将重要节点、次重要节点、中间节点和边缘节点的安全等级分别记为等级1、等级2、等级3和等级4;T3=0.35,边缘节点数不会超过总网络节点数的37%;

d.更替模块14:

每当网络节点数量或者节点位置发生变化时,自动重新计算每个网络节点的重要性值,并重新进行安全分级和标记;

(2)安全防护配置子系统20:在安全等级相同的网络节点之间,采用基于网络层的安全网际协议IPSec进行信息交互,提供通道级的信息安全防护,IPSec协议将密码技术应用于网络层,提供点到点数据传输的包括安全认证、数据加密、访问控制、完整性鉴别的安全服务;不同安全等级的网络节点之间采用工作在网络层协议之上的应用层协议进行信息交互,应用层的安全以PKI系统为基础,用密码技术确保信息文件传输、共享和使用的安全,具体来说采用以下的加密方式进行加密:

a.对于安全等级为n1的网络节点A和安全等级为n2的网络节点B,当A要向B传送信息MES时,首先由A向B发送请求,B返回丨n1-n2丨个随机数RD1,B保留RD1;

b.A用预先分配的密匙对每个RD1进行数字签名,并产生丨n1-n2丨个对应的随机数RD2;将RD1和RD2组成一个丨n1-n2丨×丨n1-n2丨阶的矩阵,利用矩阵加密技术对信息MES进行加密,将加密结果发送到B;由于n1和n2的取值范围均为1-4,容易知对于不同安全等级的网络节点来说,该矩阵最大为3×3阶矩阵,最小为1×1矩阵,而对于安全等级相同的网络节点来说,n1-n2=0,即不进行矩阵加密的操作;当安全等级越级传递级数越高,丨n1-n2丨就越大,则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性。

c.B调用解密函数对加密后的信息进行解密,得到RD1′和信息MES,将RD1和RD1′进行比较匹配,如果匹配成功则接收并保留MES,如果不一致则将MES返还A或者将其丢弃;

(3)网络安全监测子系统30,用于监测网络节点数和网络节点位置,其包括感知模块和传输模块:

所述感知模块通过在网络节点周围部署大量无线传感器实现,由于网络节点并不知道自身位置,所述无线传感器通过接受网络节点无线信号,结合自身与其他传感器位置关系,对网络节点位置进行定位;

(4)云服务子系统40,包括云存储模块和云计算模块:

所述云存储模块包括公有云存储子模块和私有云存储子模块,所述公有存储云子模块主要存储网络节点分级数据,其存储内容外界可进行自由访问,所述私有云存储子模块主要存储密匙和解密函数,只有通过身份验证的人员才能够进行访问;

所述云计算模块通过部署SOA服务器实现,包括公有云计算子模块和私有云计算子模块,所述公有云计算子模块为云网络节点安全分级子系统和网络安全监测子系统提供计算支撑,所述私有云计算子模块为安全防护配置子系统提供计算支撑,各类用户通过终端程序获取云端数据。

在此实施例中:支持WiFi网络、蓝牙网络、3G网络协议,可以随时随地用移动终端查看视频监控信息,了解监控地点视频信息,发生异常情况时,可实现联动报警功能,安全性高;利用云网络来支撑整个系统的计算了储存,大大减少了本地服务器的投入;网络系统节点安全分级系统10采用最小生成树为基础的节点重要性计算,能较精确、计算量较小地计算网络节点的重要性,并以此为依据对网络内的节点进行安全分级,T3=0.35,边缘节点数不会超过总网络节点数的37%;安全防护配置子系统20对不同安全等级的网络节点之间的信息传递采用不同的加密策略,而且当安全等级越级传递越高(丨n1-n2丨越大时),则加密矩阵的阶数越大,加密安全性就越好,而对于同级或者越级不大时,加密算法的计算量相应降低,有较强的自适应性;设置云服务模块,能够节约存储空间,提高计算速度,节约时间成本。

优选地,所述网络安全监测子系统中网络节点的具体定位操作如下:

以网络节点为圆心,r为半径画圆,落在圆内的无线传感器数量为n,第i个无线传感器接受到该网络节点的信号强度对应为qi,i=1,2,…,n;

网络节点的位置(x,y)如下:

<mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

<mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>q</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow>

所述传输模块用于将感知模块的监测结果传输到云服务子系统40。

在此实施例中设置网络安全监测子系统,能够及时采集网络节点数据,定位准确。

最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1