相关申请的交叉引用
本申请要求2010年2月12日提交的美国临时专利申请No.61/303,967、2010年2月12日提交的美国临时专利申请No.61/304,217和2010年2月12日提交的美国临时专利申请No.61/304,371的权益,每个申请的内容以引用的方式结合于此。
背景技术:
在当前和演进型蜂窝系统中,提供一致的用户体验(例如吞吐量、服务质量(QoS)等)通常是非常困难的,因为在小区边缘(cell-edge)用户体验受到来自其他小区的干扰的限制。当频率重用因子为1时,这个问题甚至更严重。已提议不同的小区可使用不同组的分量载波(CC)。然而,该方案导致有效频率重用因子大于1,这不利于传统宏小区场景维持有效的频谱利用率。
并且,支持用于载波聚合(CA)的多个CC典型地受限于一个服务演进型节点B(eNB)。这排除了标准兼容无线发射/接收单元(WTRU)同时使用在不同eNB上的CC维持数据连接的可能性。
期望提供一种将WTRU同时与在不同CC上的若干不同传输站点(site)相连接以提高小区边缘性能的方法和设备。
技术实现要素:
描述了一种用于增强无线发射/接收单元(WTRU)小区边缘性能的无线通信网络和方法。WRTU可通过各个下行链路(DL)与多个站点建立连接。每个DL可包括在与其它DL CC的一个或多个相同或不同频率上运行的至少一个DL分量载波(CC)。这些站点可为特定DL CC运行频率控制它们的传输功率,使得从这些站点的特定一个到它的小区边缘的距离可通过增加它在该特定DL CC运行频率上的传输功率变得更大,并且从其他站点至少一个到其各自小区边缘的距离可通过降低它在特定DL CC运行频率上的传输功率变得更小。因此,不同CC频率间的覆盖重叠(coverage overlap)可在维持频率重用模式为1的同时得以创建。WTRU可通过在不同CC频率间执行切换来避免至少一个CC频率的小区边缘。WTRU可通过从可不在CC频率的小区边缘附近的不同站点选择性地接入多个CC来在传统小区边缘处获得吞吐量性能提高。
附图说明
更详细的理解可以从下述结合附图以示例的方式给出的详细描述中得到,其中:
图1展示了具有协作配置的多个分量载波(CC)使得WTRU可聚合CC带宽以增加数据传输速率的特定无线通信系统的示例;
图2展示了无线通信系统的示例,其中使用不同的传输功率两个DL CC可被配置在每个站点上,产生来自与不同站点相关联的不同CC的小区覆盖重叠的区域;
图3A展示了在其中一个或多个公开实施例可得以实现的示例通信系统;
图3B展示了可在图3A所示的通信系统中使用的示例无线发射/接收单元(WTRU);
图3C展示了可在图3A所示的通信系统中使用的示例无线电接入网和示例核心网;
图4展示了提高在无线通信系统消息边界处WTRU接收信干噪比(SINR)的CC的使用;
图5是在一个CC频率中扇区天线旋转的概念图;
图6-12展示了与两个不同站点(eNB)通信的WTRU的各种操作场景;
图13展示了基站的几何布局;
图14使用功率简档展示了CC的优化载波干扰比(C/I)图;
图15是具有相等功率和不相等功率的非标准和速率(sum rate)的累积分布函数(CDF)的图形表示;
图16是假设每个WTRU使用3个CC的标准化和速率的CDF的图形表示;
图17展示了由于在协作分量载波(CCC)中的移动的示例无线电链路失败;和
图18展示了示例eNB接入层(access stratum)协议架构。
具体实施方式
当在以下涉及时,术语“无线发射/接收单元(WTRU)”包括但不限于用户设备(WTRU)、移动站、固定或移动订户单元、寻呼机、蜂窝电话、个人数字助手(PDA)、计算机或任意其他类型的能够在无线环境中运行的用户设备。当在以下涉及时,术语“基站”包括但不限于节点B(Node-B)、演进型节点B(eNB)、站点控制器、接入点(AP)或任意其他类型的能够在无线环境中运行的接口设备。
支持更高数据速率和频谱效率的无线通信系统可使用基于正交频分多址(OFDMA)空中接口的DL传输方案。对于上行链路(UL)方向,基于离散傅里叶变换(DFT)扩展OFDMA(DFT-S-OFDMA)的单载波(SC)传输可被使用。与诸如正交频分复用(OFDM)的多载波传输相比,在UL使用单载波传输可由较低的峰均功率比(PAPR)来激励。
为了进一步提高无线通信无线电接入系统的可完成吞吐量和覆盖范围,并且为了满足在DL和UL方向上分别1Gbps和500Mbps峰值数据速率的国际移动电信(IMT)高级需求,若干载波可被聚合以便在支持灵活的带宽设置特征的同时,将最大传输带宽从20Mbps增加至100MHz。每个载波(即分量载波(CC))可具有20MHz的最大带宽。CA在DL和UL中得以支持。附加地,不同的CC可具有不同的覆盖范围。
使用多个CC的CA的概念与处于无线电资源控制(RRC)连接状态的无线发射/接收单元(WTRU)相关。空闲的WTRU将通过单UL和DL载波对接入网络。CA可在单个演进型节点B(eNB)上得以支持。当实施CA时,小区由唯一的演进型通用移动电信系统(E-UMTS)陆地无线电接入网络(E-UTRAN)小区全球标识(ECGI)来标识,并且小区相应于在一个CC中的系统信息的传输。锚定载波是为特定小区提供系统信息、同步和寻呼的载波。并且,锚定载波使能在其中从WTRU的角度干扰协作提供至少一个可检测(可访问)锚定载波的异构网络环境中的同步、驻留(camping)、接入和可靠的控制覆盖范围。在该上下文中,WTRU特定锚定载波可被认为是小区特定锚定载波的一个子集。WTRU特定锚定载波可被用来携带多个分开的物理DL控制信道(PDCCH),每个PDCCH相应于一个CC。
在某些无线通信系统中,以下3个参数可从较高层信号发送以管理DL功率分配:参考信号功率、ρA和ρB。这些参数可被用来确定小区特定DL参考信号(RS)每资源元素的能量(energy per resource element,EPRE),在小区特定RS EPRE上物理DL共享信道(PDSCH)EPRE的WTRU特定比(ρA或ρB)以及小区特定比ρB/ρA。eNB可确定DL传输EPRE,并且WTRU可假设DL小区特定RS EPRE在DL系统带宽间是常数并且在所有子帧间是常数,直到接收到不同的小区特定RS功率信息。DL参考信号EPRE可从由较高层提供的参数参考信号功率给出的DL参考信号传输功率导出。DL参考信号传输功率被定义为在运营系统带宽内携带小区特定参考信号的所有资源元素的功率贡献(power contribution)上的线性平均。根据是ρA和ρB的函数的OFDM符号索引,在用于每个OFDM符号的PDSCH资源元素(RE)间的PDSCH EPRE与小区特定RS EPRE的比可由ρA或ρB来表示。
在某些无线通信系统中,参考信号功率、ρA和ρB参数可由在PDSCH配置信息元素(IE)中的RRC对等消息来提供。WTRU有两种方式可获得PDSCH配置IE。在空闲模式下,WTRU可在驻留在小区中时从系统信息块2(SIB2)获取包括PDSCH配置的缺省无线电承载配置。一旦从空闲模式转换为活动(active)模式,WTRU可使用存储的缺省无线电承载配置(包括PDSCH配置)来建立初始RRC连接。一旦WTRU处于活动模式,RRC连接重配置消息可被网络用来向WTRU提供包括在移动控制信息IE中的PDSCH配置IE。PDSCH信息可和物理小区ID和频率一起得以提供,使得网络可控制WTRU在活动模式期间可连接到哪里。在切换(HO)的情况下,在准备执行切换时,目标eNB的物理DL共享信道(PDSCH)配置由服务eNB通过X2信令获得。
图1展示了包括WTRU 105和两个站点(eNB 110和115)的无线通信系统100的示例。系统100可被配置使得WTRU 105可聚合CC带宽以增加数据传输速率。如图1所示,WTRU 105通过两个分开的CC,CC 120和CC125,仅与eNB 110通信。可能有禁止WTRU接收在来自不同站点的CC上的数据的特定限制(例如无准入机制、定时提前(timing advance)、信道质量指示符(CQI)信令、肯定确认(ACK)/否定确认(NACK)信令等)。
例如,图2展示了在其中可配置两个DL CC的一个可能无线通信系统配置。每个站点使用不同的功率(即全功率或降低的功率)在一个CC上传输。所有WTRU在给定的CC上体验可接受的信干噪比(SINR)等级。图2展示了在其中WTRU 105位于CC 2和CC 3均可接入的WTRU 1位置的场景。如果WTRU 105位于WTRU 3的位置,CC 1和CC 4均可接入。当WTRU 105位于WTRU 2的位置时,仅CC 1或CC 2的其中之一可接入。例如,如果WTRU 105正接入在站点1上的CC 2,网络无线电资源管理(RRM)实体(未示出)可确定是否执行切换丢弃CC 2以便接入在站点1上的CC 1,而非通过使用来自不同站点的多个CC来充分利用数据吞吐量增长。
例如,如果每个站点有两个UL CC(UC)频率,UC频率1和UC频率2,在这些UL CC频率的每一个上的WTRU 1和站点1之间的路径损耗可比到站点2的路径损耗小。类似地,对于WTRU 3,到站点2的路径损耗可能更有利。然而,对于WTRU 2,UL信道质量可不同于DL信号质量。因此,到站点1的在UC频率1和UC频率2上的路径损耗可能均较小,即使由于站点2增加在CC 1上的传输功率,在CC 1上的DL传输从站点2得以接收。
图3A展示了在其中一个或多个公开实施例可得以实现的示例通信系统。通信系统300可以是多接入系统,向多个无线用户提供内容,例如语音、数据、视频、消息发送、广播等等。通信系统300可以使多无线用户通过系统资源的共享访问所述内容,所述系统资源包括无线带宽。例如,通信系统300可使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)等等。
如图3A所示,通信系统300可以包括无线发射/接收单元(WTRU)302a、302b、302c、302d,无线电接入网(RAN)304,核心网306,公共交换电话网(PSTN)308,因特网310和其他网络312,不过应该理解的是公开的实施方式考虑到了任何数量的WTRU、基站、网络和/或网络元件。WTRU302a、302b、302c、302d中每一个可以是配置为在无线环境中进行操作和/或通信的任何类型设备。作为示例,WTRU 302a、302b、302c、302d可以被配置为传送和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、笔记本电脑、上网本、个人计算机、无线传感器、消费者电子产品等等。
通信系统300还可以包括基站314a和基站314b。基站314a、314b中每一个可以是配置为无线连接WTRU 302a、302b、302c、302d中至少一个的任何类型设备,以便于接入一个或多个通信网络,例如核心网306、因特网310和/或其他网络312。作为示例,基站314a、314b可以是基站收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、无线路由器、远程无线电头(RRH)等等。虽然基站314a、314b被描述为单独的元件,但是应该理解的是基站314a、314b可以包括任何数量互连的基站和/或网络元件。
基站314a可以是RAN 304的一部分,所述RAN还可包括其他基站和/或网络元件(未示出),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站314a和/或基站314b可被配置成在特定地理区域内传送和/或接收无线信号,所述特定地理区域可被称作小区(未示出)。所述小区可进一步划分为小区扇区。例如,与基站314a相关联的小区可划分为三个扇区。因而,在一个实施方式中,基站314a可包括三个收发信机,即小区的每个扇区使用一个收发信机。在另一个实施方式中,基站314a可使用多输入多输出(MIMO)技术,并且因此可使用多个收发信机用于小区的每个扇区。
基站314a、314b可通过空中接口316与WTRU 302a、302b、302c、302d中一个或多个进行通信,所述空中接口316可以是任何适当的无线通信链路(例如,射频(RF)、微波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口316可使用任何适当的无线电接入技术(RAT)进行建立。
更具体地说,通信系统300可以是多接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN 304中的基站314a和WTRU 302a、302b、302c可以实施无线电技术,例如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其可以使用宽带CDMA(WCDMA)建立空中接口316。WCDMA可以包括通信协议,例如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)。HSPA可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。
在另一个实施方式中,基站314a和WTRU 302a、302b、302c可实施无线电技术,例如演进型UTRA(E-UTRA),其可以使用长期演进(LTE)和/或LTE高级(LTE-A)来建立空中接口316。
在其他实施方式中,基站314a和WTRU 302a、302b、302c可实施无线电技术,例如IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000演进数据优化(EV-DO)、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、GSM演进型增强型数据速率(EDGE)、GSM/EDGE RAN(GERAN)等等。
图3A中的基站314b可以是无线路由器、节点B、家庭节点B、RNC和节点B的组合、家庭e节点B、具有关联基站的RRH、或接入点,例如,并且可以使用任何适当的RAT来便于局部区域中的无线连接,例如商业处所、住宅、车辆、校园等等。在一个实施方式中,基站314b和WTRU 302c、302d可以实施例如IEEE 802.31的无线电技术来建立无线局域网(WLAN)。在另一个实施方式中,基站314b和WTRU 302c、302d可以实施例如IEEE802.15的无线技术来建立无线个域网(WPAN)。仍然在另一个实施方式中,基站314b和WTRU 302c、302d可以使用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A等)来建立微微小区或毫微微小区。如图3A所示,基站314b可以具有到因特网310的直接连接。因此,基站314b可以不必须经由核心网306接入到因特网310。
RAN 304可以与核心网306通信,所述核心网306可以是配置为向WTRU 302a、302b、302c、302d中一个或多个提供语音、数据、应用和/或通过网际协议的语音(VoIP)服务的任何类型网络。例如,核心网306可以提供呼叫控制、计费服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分配等,和/或执行高级安全功能,例如用户认证。虽然图3A中未示出,应该理解的是RAN 304和/或核心网306可以与使用和RAN 304相同的RAT或不同RAT的其他RAN进行直接或间接的通信。例如,除了连接到正在使用E-UTRA无线电技术的RAN 304上之外,核心网306还可以与使用GSM无线电技术的另一个RAN(未示出)通信。
核心网306还可以充当WTRU 302a、302b、302c、302d接入到PSTN 308、因特网310和/或其他网络312的网关。PSTN 308可以包括提供普通老式电话服务(POTS)的电路交换电话网。因特网310可以包括使用公共通信协议的互联计算机网络和设备的全球系统,所述公共通信协议例如有TCP/IP组中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。网络312可以包括被其他服务提供商拥有和/或操作的有线或无线的通信网络。例如,网络312可以包括连接到一个或多个RAN中的另一个核心网,所述RAN可以使用和RAN 304相同的RAT或不同的RAT。
通信系统300中的WTRU 302a、302b、302c、302d的某些或所有可以包括多模式能力,即WTRU 302a、302b、302c、302d可以包括在不同无线链路上与不同无线网络进行通信的多个收发信机。例如,图3A中示出的WTRU 302c可被配置成与基站314a通信,所述基站314a可以使用基于蜂窝的无线电技术,以及与基站314b通信,所述基站314b可以使用IEEE 802无线电技术。
图3B展示了可在图3A所示的通信系统中使用的示例无线发射/接收单元(WTRU)。如图3B所示,WTRU 302可以包括处理器318、收发信机1320、发射/接收元件322(例如天线)、扬声器/麦克风324、键盘326、显示器/触摸屏328、不可移动存储器330、可移动存储器332、电源334、全球定位系统(GPS)芯片组336和其他外围设备338。应该理解的是WTRU 302可以在保持与实施方式一致时,包括前述元件的任何子组合。
处理器318可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、微处理器、一个或多个与DSP核相关联的微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、集成电路(IC)、状态机等等。处理器318可执行信号编码、数据处理、功率控制、输入/输出处理和/或使WTRU 302能够在无线环境中进行操作的任何其他功能。处理器318可以耦合到收发信机320,所述收发信机320可耦合到发射/接收元件322。虽然图3B示出了处理器318和收发信机20是单独的部件,处理器318和收发信机320可以一起集成在在电子封装或芯片中。
发射/接收元件322可以被配置成通过空中接口316将信号传送到基站(例如,基站314a),或从该基站接收信号。例如,在一个实施方式中,发射/接收元件322可以是被配置为传送和/或接收RF信号的天线。在另一个实施方式中,发射/接收元件322可以是被配置为传送和/或接收例如IR、UV或可见光信号的发射器/检测器。仍然在另一个实施方式中,发射/接收元件322可以被配置为传送和接收RF和光信号两者。发射/接收元件322可以被配置为传送和/或接收无线信号的任何组合。
此外,虽然发射/接收元件322在图3B中示出为单独的元件,但是WTRU302可以包括任意数量的发射/接收元件322。更具体地说,WTRU 302可以使用MIMO技术。因此,在一个实施方式中,WTRU 302可以包括通过空中接口316传送和接收无线信号的两个或更多个发射/接收元件322(例如,多个天线)。
收发信机320可以被配置为调制要由发射/接收元件322传送的信号,和解调由发射/接收元件322接收的信号。WTRU 302可以具有多模式能力。因此,收发信机320可以包括使WTRU 302能够经由多个RAT通信的多个收发信机,所述多个RAT例如有UTRA和IEEE 802.11。
WTRU 302的处理器318可以耦合到下述设备,并且可以从下述设备接收用户输入数据,该设备为扬声器/麦克风324、键盘326和/或显示器/触摸屏328(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)。处理器318还可以输出用户数据到扬声器/麦克风324、键盘326和/或显示/触摸屏328。此外,处理器318可以从任何类型的适当的存储器中存取信息,并且可以存储数据到所述存储器中,例如不可移动存储器330和/或可移动存储器332。不可移动存储器330可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储器设备。可移动存储器332可以包括用户标识模块(SIM)卡、记忆棒、安全数字(SD)存储卡等等。在其他的实施方式中,处理器318可以从物理上没有位于WTRU 302上(例如在服务器或家用计算机(未示出)上)的存储器中访问信息,并且可以将数据存储在所述存储器中。
图3C展示了可在图3A所示的通信系统中使用的示例无线电接入网和示例核心网。RAN 304可使用E-UTRA无线电技术通过空中接口316与WTRU 302a、302b、302c通信。RAN 304还可与核心网306通信。
RAN 304可包括e节点B 340a、340b、340c,但是应该理解的是在与实施方式保持一致的同时,RAN 304可包括任意数量的e节点B。e节点B 340a、340b、340c每一个可包括用于通过空中接口116与WTRU 302a、302b、302c通信的一个或多个收发信机。在一个实施方式中,e节点B 340a、340b、340c可实施MIMO技术。因而,e节点B 340a,例如,可使用多个天线将无线信号传送到WTRU 302a,以及从WTRU 302a接收无线信号。
e节点B 340a、340b、340c的每一个都可以与特定小区(未示出)关联,并且可被配置为处理无线资源管理决策、切换决策、上行链路和/或下行链路中的用户调度等等。如图3C中所示,e节点B340a、340b、340c可通过X2接口彼此通信。
图3C中示出的核心网306可包括移动性管理网关(MME)342、服务网关(S-GW)344、和分组数据网(PDN)网关346。虽然前述的每个元件都被描述为核心网306的一部分,但是应该理解的是这些元件中的任何一个都可由除核心网运营商之外的实体拥有和/或操作。
MME 342可经由S1接口连接到RAN 304中的每一个e节点B 340a、340b、340c,并且可用作控制节点。例如,MME 342可负责认证WTRU 302a、302b、302c的用户、管理和存储上下文、承载激活/去激活、在WTRU 302a、302b、302c的初始附着期间选择特定服务网关等等。MME 342还可提供控制平面功能,用于在RAN 304和使用其它无线电技术(例如GSM或WCDMA)的其它RAN(未示出)之间进行切换。MME 342可以是网关通用服务分组无线电服务(GPRS)支持节点。服务网关344可经由S1接口连接到RAN 304中e节点B 340a、340b、340c的每一个。服务网关344通常可路由和转发到/来自WTRU 302a、302b、302c的用户数据分组。服务网关344还可以执行其它功能,例如在e节点B间切换期间锚定用户平面,在下行链路数据可用于WTRU 302a、302b、302c时触发寻呼。S-GW可以是服务通用分组无线电服务(GPRS)支持节点(GGSN。)
服务网关344还可连接到PDN网关346,所述PDN网关166可向WTRU 302a、302b、302c提供对例如因特网310的分组交换网的接入,以便于WTRU 302a、302b、302c和IP使能设备间的通信。
核心网306可便于与其它网络的通信。例如,核心网306可向WTRU 302a、302b、302c提供对例如PSTN 308的电路交换网的接入,以便于WTRU 302a、302b、302c和传统陆线通信设备间的通信。例如,核心网306可包括或可与用作核心网306和PSTN 308之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)通信。此外,核心网306还可向WTRU 302a、302b、302c提供对网络312的接入,所述网络312可包括由其它服务提供商拥有和/或操作的其它有线或无线网络。
出于灵活部署的目的,某些无线通信系统支持1.4、3、5、10、15或20MHz的可扩展传输带宽。这些系统可运行在频分双工(FDD)、时分双工(TDD)或半双工FDD模式下。
在某些无线通信系统中,每个无线电帧(10ms)可由每个一(1)ms的10个大小相等的子帧组成。每个子帧可由每个0.5ms的两个大小相等的时隙组成。每个时隙可有七(7)或六(6)个OFDM符号。七(7)个符号可和普通循环前缀长度一起使用,而在可替换系统配置中的六(6)个符号每时隙可与扩展循环前缀长度一起使用。这些系统的子载波间隔可以是15kHz。使用7.5kHz的可替换减少子载波间隔模式也是可能的。资源元素(resource element,RE)在一(1)个OFDM符号间隔期间可相应于一(1)个子载波。在0.5ms时隙期间十二(12)个连续的子载波可构成一(1)个资源块(resource block,RB)。因此,对于七(7)个符号每时隙,每个RB可由12×7=84个RE组成。DL载波可由从最小6个RB到最大100个RB的、可扩展数目的资源块(RB)组成。这相应于大约一(1)MHz至二十(20)MHz的整个可扩展传输带宽。然而,通用传输带宽组可以是特定的(例如,1.4、3、5、10或20MHz)。动态调度的基本时域单元可以是包括两个连续时隙(即资源块对)的一个子帧。在某些OFDM符号上的特定子载波可被分配来携带时频网格(time-frequency grid)中的导频信号。在传输带宽边缘处的给定数目的子载波可被传输,以便符合频谱限制(spectral mask)要求。
在DL方向,WTRU可由eNB分配来接收在整个传输带宽间任意位置的它的数据,例如可使用OFDMA方案。DL在频谱中心可具有未使用的直流(DC)偏移子载波。
DL许可可在PDCCH上被携带。为了支持带宽聚合,单独的PDCCH编码(例如用于不同CC的PDCCH消息使用不同的循环冗余校验(CRC)和卷积码得以编码的单独编码方法)可被用于使用以下两种选择调度DL资源:
1)选择1a:在每个载波上的不同PDCCH可被用于调度该载波的DL资源;和
2)选择1b:在给定载波上的单独编码的一个PDCCH信道可被用于借助载波指示符(CI)字段来调度在多个载波上的资源。
WTRU可被用于监视用于在每个非连续接收(DRX)子帧中控制信息的PDCCH候选者集合,其中监视意味着尝试根据各种被监视的DL控制信息(DCI)格式来解码在该集合中的每个PDCCH。
在某些无线通信系统中,WTRU监视的DCI格式可被划分为WTRU特定搜索空间和通用搜索空间。对于WTRU特定搜索空间,取决于传输模式,WTRU可监视DCI 0/1A和DCI,其可通过RRC信令半静态配置。可定义PDCCH DL监视集合,其包括WTRU可被配置为在其上接收用于跨载波调度(cross-carrier scheduling)的调度分配的、来自WTRU DL CC集合的DL CC。WTRU可不必在其未被配置为在其上接收PDCCH的DL CC中进行盲解码,这减少了PDCCH错误检测的可能性。
WTRU可具有与网络的一个RRC连接。CC的增加和移除可无RRC连接HO地得以执行,只要在移除的情况下,被移除的CC不是特殊小区。特殊小区可以是主分量载波(PCC)或为WTRU提供控制面信令交换的载波。
通过使用介质接入控制(MAC)或物理(PHY)技术,可允许单独的激活/去激活。CC可存在两种状态:1)被配置但去激活;和2)激活的。在DL中,WTRU可不在去激活的CC上接收PDCCH或PDSCH。在激活的载波上,WTRU可接收PDSCH和PDCCH(如果存在的话)。另外,在去激活的CC上可不使用WTRU进行CQI测量。对于UL,可不引入显式激活/去激活过程。
网络可配置移动性测量以基于参考信号接收功率(RSPR)或参考信号接收质量(RSRQ)支持WTRU站点间切换。有多种方式来上报邻居小区测量。例如,WTRU可被配置为以事件或周期上报为基础测量邻居小区功率。网络依赖于来自WTRU的这些邻居小区测量,以对在给定的CC集合中何时将WTRU切换到不同的站点作出决策。网络配置WTRU,使得它在支持的CC中监视(例如作出测量)邻居小区/站点以将WTRU移动到维持支持WTRU移动性的传输服务质量的CC上。对于可被使用的CC,以及当这样的CC特定(站间)切换(CSHO)发生时,周期测量或测量事件(1×和2×)可向网络提供足够的信息,以选取可被用于向特定WTRU传输数据的适当CC。
在某些无线通信系统中,测量事件(1×和2×)可被应用于使用CA配置的WTRU。这些测量事件能够识别在切换中包括的各个CC。
当数据从多个站点发送给WTRU时,WTRU数据可在多个站点处出现。通常,如果以对与在其中多个传输点/站点协作它们的传输的协作多点(CoMP)传输相同的方式完成的话,这对回程造成附加的负担。该协作可采取若干不同的形式,例如在调度、联合传输数据给WTRU等方面的协作。在联合传输中,WTRU数据的完整拷贝可在参与CoMP传输的每个站点处可获得。支持一个演进型分组系统(EPS)无线电接入承载(RAB)的多个CC的架构可由无线电接入网通过介质访问控制(MAC)复用和解复用来维持。在该方法中,数据可在服务eNB处得以接收,并且然后被拷贝并转发给所有协作CC/eNB。这近乎加倍了每参与涉及两个站点的CoMP联合传输的WTRU的回程负荷。
在频率重用1部署中由于来自邻近小区的干扰限制引起的小区边缘衰减的问题可通过以下来缓解:1)管理(manipulate)在系统中每个CC中小区边缘的位置;和/或2)允许WTRU从多个站点接收数据(例如数据可在载波1上从站点A和在载波2上从站点B接收)。以这种方式,对于在CC的全聚合中的每个CC,WTRU可被分配给提供最佳吞吐量(或其他测量)的站点,从而产生其中小区边缘的思想(notion)不像在传统蜂窝设置中那样应用的“模糊小区”概念。由于WTRU能够在所有CC上接收数据,1的频率重用可得以维持。WTRU可在每个可用CC上接收数据。WTRU数据的传输站点的位置可不共同位于系统中。
小区边缘可部分地通过来自任意站点的最大信号功率与在给定位置处和在任意CC中接收的其他信号(干扰)和噪声中的功率和的比来确定。接收的信号和干扰功率可部分地通过路径损耗、天线增益和从每个小区到WTRU位置的传输功率来确定。小区边缘位置的管理然后可使用若干不同的技术来执行。
在一个实施例中,WTRU可通过各个DL与多个站点建立连接。这些站点可包括节点B、eNB、与基站相关联的远程无线电头(RRH)或节点B或eNB的若干扇区传输天线的其中之一的至少一个。每个DL可包括在与其他DL CC的一个或多个相同或不同的频率上运行的至少一个DL CC。这些站点可为特定DL CC运行频率控制它们的传输功率,使得从这些站点的特定一个到它小区边缘的距离通过增加它在特定运行频率上的传输功率变得更大,从至少一个其他站点到其各自小区边缘的距离通过降低它在特定运行频率上的传输功率变得更小。因此,在维持1频率重用模式的同时产生了不同CC频率间的覆盖重叠。
为了解释这点,图4展示了在每个站点处两个DL CC 405和410的每一个的SINR。在每个站点415和420,一个CC以比另一个高的功率得以传输。这些CC 405和410的每一个可被认为是具有不同载波频率和潜在地不同覆盖区域的它自己的小区。不同的覆盖区域可由传播条件的不同引起。然而,也可改变某些系统参数以有意地改变DL覆盖范围,例如传输功率、HO阈值、扇区天线方向等。这创造了使用CC缓解DL小区边缘问题的机会。例如,可为不同的DL CC有意地调整覆盖区域,使得在系统中没有WTRU可发现它自己在它附着于的每个DL CC的小区边缘的点。因此,WTRU在两个载波频率中可以不位于小区边缘(例如当WTRU在一个载波中位于小区边缘时,它在另一个载波中仍然可具有满意的性能,并且当该WTRU位于接近两个eNB间的中间点时,载波SINR仍然可以比单个载波系统的SINR好)。
此外,扇区天线模式可被调整(例如波束宽度、侧射角(broadside angle)或其它波束模式成形),使得在不同角度的传输功率受控。现在除了有角分量(angular component)影响小区边缘的位置外,小区边缘位置因此可以与当总传输功率被调整时类似的方式通过天线模式而得以控制(即改变总功率可以相同的量改变所有出射角(departure angle)的功率密度,而改变天线模式可选择性地改变在不同出射角处的传输功率密度)。
例如,在具有两个载波的系统中,其中每个站点为每个载波频率使用3个扇区天线,具有120度每扇区的3个扇区模式可在每个载波频率中得以维持,但是一个扇区天线集合可相对于另一个旋转。如图5所示,椭圆505可指示在图4中CC 405的频率中的扇区,并且椭圆510可指示在图4中CC 410的频率中的扇区。以这种方式,在一个CC频率中扇区波束的中心可直接位于另一个CC频率中扇区小区边缘的顶端。如果WTRU能够连接到两个CC,它可有效地消除在系统的大部分中的感知小区边缘。
在聚合中CC之间,小区边缘位置可被配置为具有大间隔(即在一个CC中的小区边缘位置可地理地与在聚合中其他CC的至少一个或多个的小区边缘位置分开)。
例如,在支持具有多个CC的CA的蜂窝系统中,每个站点(eNB)可支持所有可用CC,从而不同的CC可使用不同的传输功率和天线模式,使得每个CC相应的覆盖范围也可以不同(即所有CC间的小区边缘可以不位于同一地方)。在仅有两个CC的简单场景中,可分配站点号{1,2,3,…}。对于CC1,功率使用模式可被定义,其中所有偶数编号的站点以功率P1传输,所有奇数编号的站点以功率P2传输。对于CC2,功率使用模式可被定义,其中所有偶数编号的站点以功率P3传输,所有奇数编号的站点以功率P4传输。天线使用模式也可被定义。对于CC1,天线使用模式可被定义,其中所有偶数编号的站点使用模式A1传输,所有奇数编号的站点使用模式A2传输。对于CC2,天线使用模式可被定义,其中所有偶数编号的站点使用模式A3传输,所有奇数编号的站点使用模式A4传输。在该示例中,对于偶数编号的站点,在CC1中指向北方的和在CC2中指向东方的天线增益可较大,而对于奇数编号的站点,在CC1中指向南方的和在CC2中指向西方的天线增益可较大。由特定WTRU使用的CC集合可源于不同的传输站点或小区。例如,如果在全聚合带宽中有N个CC,则对于N个CC的每一个,WTRU可被分配从具有最佳信号质量(例如该CC频率的信干比(SIR))的传输点接收数据。由于不同的CC可具有不同的功率使用模式和不同的天线使用模式,分配的CC可源于多个传输站点(例如CC1和CC2来自站点A,CC3来自站点B,和CC4来自站点C)。
以下定义了若干场景来帮助理解CC协作网络。这些部署场景不采用穷举方式,在此展现的场景仅是代表场景。本领域的技术人员可意识到并理解如何扩展这些场景。
将使用以下术语:DL载波频率dlF1、dlF2…dlFn;UL载波频率ulF1、ulF2…ulFn;DL协作CC DL-CCC1、DL-CCC2…DL-CCCn;UL CC UL-CC1、UL-CC2…UL-CCn;和站点S1、S2…Sn。
场景1:DL CCC;在dlF1上DL-CCC1来自站点S1(DL-CCC1-S1),并且DL-CCC2(降低功率)来自站点S2(DL-CCC2-S2);在dlF2上的DL-CCC3-S1(降低功率)和DL-CCC4-S2;和在ulF1上的UL CC,即UL-CC1-S1和UL-CC2-S2。
场景2:DL CCC;在dlF1上的DL-CCC1-S1和DL-CCC2-S2(降低功率);在dlF2上的DL-CCC3-S1(降低功率)和DL-CCC4-S2;和在ulF1上的UL CC,即来UL-CC1-S1和无来自于站点S2的UL载波。
场景3:DL CCC;在dlF1上的DL-CCC1-S1和无来自于站点2的DL载波;和在ulF1上UL CC,即来自S2的UL-CC1和无来自于S1的UL载波。
场景4:DL CCC;在dlF1上的DL-CCC1-S1和DL-CCC2-S2(降低功率);在相同DL载波频率dlF2上的DL-CCC3-S1(降低功率)和DL-CCC4-S2;在ulF1上的UL CC,即UL-CC1-S1和UL-CC2-S2。
场景5:DL CCC;在dlF1上的DL-CCC1-S1和DL-CCC2-S2(降低功率);在dlF2上的DL-CCC2-S1(降低功率)和DL-CCC2-S2;UL CC,即在ulF1上的UL-CC1-S1和在ulF2上的UL-CC2-S2。
场景6:DL CCC;在dlF1上的DL-CCC1-S1和无来自于站点2的DL载波;和在ulF1上的UL CC,即UL-CC1-S1和无来自于S2的ulF2UL-CC2。
为了有效地支持从多个站点在CC上数据的接收,除各个CC激活/去激活和CC管理以外,可实施CC特定切换(CSHO)机制。CSHO还可在特定小区已改变时实施。可替换地,各个CC激活或CC去激活可替代RRC重配置过程地得以使用。例如,当WTRU移动时,它将在不同的位置遇到CC特定小区边缘。仅分配给WTRU的CC子集的质量(例如SINR)将下降到该CC的传输站点应当被切换到另一个站点以维持期望接收质量的点。
为了网络有效地支持CSHO,可能需要各个CC移动测量配置/上报。例如,WTRU可被配置为在是CC协作网络中涉及的CC候选集合的一部分的所有CC(或CC的子集)中上报邻居小区/站点。这可借助显式修改监视邻居小区列表,或借助通过向黑名单列表增加不期望的小区来隐式处理由WTRU检测的小区,或配置在网络的特定CC上测量以确保在CC协作网络中选取CC来维持支持WTRU移动性的传输服务质量,来实现。以这种方式,网络可具有足够的信息来为可被使用的每个CC确定可被用于向特定WTRU传输数据的适当站点,并确定何时CSHO可发生。该场景基本上可不同于常规切换,因为除了那些被切换到新站点的WTRU(如果WTRU没有通过不同的CC已经具有到它的连接)或当所有从站点到WTRU的CC连接被终止外,WTRU保持与所有站点的持续联系。另外,WTRU总是与至少一个站点保持持续的连接(即切换可以是无缝的)。
在每个CC上执行的测量可被调度,或者触发建立,使得支持CSHO的测量开销可基于CC特定站点间切换在一个CC中有益和到另一个CC的CSHO可能无益的时间得以减少。因此,在每个CC上独立定义测量的方法可被定义,使得当实际需要测量以支持CSHO时可执行测量并用信号发送。例如,当在特定CC中的SINR降低到阈值以下(或确定该特定CC是CSHO的一个候选者)时,仅在该特定CC中支持CSHO的测量将被执行并上报给网络,在其他CC中的测量可不被触发,除非它们也是CSHO的候选者。在其中新站点未被加入的CSHO可能已经与是切换目标的站点相连接。
在CC协作网络中,替代如由CoMP联合传输描述那样将数据复制到多个站点,数据流可被分离,使得WTRU数据的完整拷贝不被发送给在CC协作传输中涉及的所有站点。例如,数据流可在到达任意站点前被划分,使得仅最终从特定站点传送的数据在该站点处出现。从站点A传输的数据不需要在除站点A以外的任意站点处出现。从回程瓶颈的观点,这潜在地产生数据流的最有效解决方案。
可替换地,WTRU数据的完整拷贝发送给特定站点(即锚定站点、驻留站点、主站点等),然后该特定站点可仅将该数据的一部分发送给将把数据传输给WTRU的剩余的站点。例如,完整的数据流被发送给站点A。从站点A,数据的一部分被发送给站点B。站点B将所有的这样的数据传输给WTRU,并且站点A仅传输以前未发送给站点B的数据部分。可将站点A选择为将传输最多数据的站点以最小化总回程负载。CoMP联合传输技术也可在站点B使用的载波上得以使用,因为两个站点均可具有该数据。
CC协作概念可以是CoMP的一个可能的低成本选择。然而,它们两者可一起部署并得益于某些配合。取决于CoMP的适用性,这样的技术可在一个或多个CC中得以应用。例如,如果WTRU使用不同的CC与两个站点相连接(CC1的站点1和CC2的站点2),并且如果站点1是主驻留站点,来自站点2的DL数据可从站点1得以分离。如果来自站点2在CC2上的信号是CoMP技术的候选者,可不增加回程负载地采用CoMP(例如在CoMP框架下来自站点1的CC2可被用于提高来自站点2的数据传输的可靠性)。如果CC协作在站点1和站点2之间发生,不需要再复制从站点2到站点1的数据,因为该数据从站点1原始地得以转发。如果CC协作在站点2和除站点1以外的一个或多个站点(例如站点3)间发生,则该数据可直接从站点1被转发给站点2和3,或者该数据可在CoMP框架下从站点2被转发给站点3。
虽然CC协作网络配置可独立于CoMP、CoMP集合选取(测量集合或协作集合等)地来部署,但是在驻留站点已具有完成的WTRU数据集合的情况下,决定可被CCC集合影响。对CoMP集合确定算法的附加输入可被定义,以允许CoMP集合决定使用CCC配置知识来进行。例如,CC1可被确定为CoMP候选者,并且站点2和3两者都是参与CoMP传输的符合要求的候选者。增加站点2或站点3到CoMP集合的选择通常可不考虑CCC配置,并且可选择两个站点的任意一个。然而,如果已知站点3具有可能是CoMP联合传输的一部分的WTRU数据的拷贝,它可被选取,而不是站点2。通过创建从CCC配置到CoMP集合确定算法的接口,可以作出更好的选择。
具有CCC特征的网络的配置可被执行,并且可通过在协作站点间交换某些信息来自适应地改变。通过交换如CC的数目和带宽、在CC上的传输功率等级、在CC中使用的天线模式、在每个CC上的系统负载等的信息,协作站点可尝试调整传输参数。在一个实施例中,传输参数可在从协作传输点收集所有可能的信息后在中央控制器中确定。该中央控制器可负责配置传输点集群的传输参数。可替换地,传输参数可通过使用在传输点间交换的信息由这些点自动地确定。在该情况下,在站点中使用的确定过程可经历若干迭代,直到在每个站点中已确定了稳定的参数集合。WTRU可能需要向服务传输点反馈信息(例如由邻居传输点在CC上产生的干扰等级、路径损耗和/或在每个CC上来自传输点的接收功率的等级等)。
作为一个示例,一些站点可采用3的重用因子(即仅在1~3CC的其中之一上传输);而一些站点可具有1的重用因子(即在所有3个CC上传输)。重用方案可以是动态的,使得当业务量轻时或者当有大量高QoS用户时,可采用较高阶的方案,以便当需求增加时,重用因子可被降低。该特征可在系统负载要求不高时通过关闭在一些CC上的功率来降低基站的功率消耗。作为另一个示例,一个传输站点可上报其WTRU在CC的至少一个中经历的过度干扰等级,并且可使邻近小区降低在该CC上的传输功率。
半静态的CC间干扰协作策略可需要以允许自适应更新和配置,并且可包括为每个CC扩展标准化相关窄带传输功率(RNTP)指示符、高干扰指示符(HII)和开销指示符(OI)。RNTP指示符可指示最大DL传输功率每物理资源块(PRB)。类似地,对于UL,HII和OI可分别通知邻近eNB UL使用计划和干扰加噪声测量。CCC可被动态地重提供和/或增加/移除以基于这些或其他测量和指示符覆盖空洞或降低干扰。
在传输站点间交换的其他消息可包括测量(例如活动WTRU的数目等),允许自适应更新CC间负载均衡和出于减少干扰的目的开关那些业务量不需要的CC(特别是如果一些CC在家用eNB中使用)。移动健壮性提高可通过跟踪无线电链路失败(RLF)和HO的数目、功率限制或优选PRB等来使能。
可影响性能的另一个因数是随机接入信道(RACH)配置,其可影响RACH碰撞概率,并且因此使得这是呼叫建立延迟、数据恢复延迟和切换延迟中的重要因素。这还可影响呼叫建立成功率和切换成功率。在CCC范围内对WTRU的UL CC分配对DL CCC可不相同,并且自适应CCC配置和UL关联可能需要考虑RACH负载、UL干扰和对在每个小区中RACH性能/使用的影响。
在模糊小区环境下,为了在不同CC和站点间创建具有不均匀功率的小区部署,DL EPRE每CC和每站点可根据周围环境改变。为了导出DL干扰信号EPRE和PDSCH EPRE,WTRU可确定DL参考信号功率以及ρA和ρB。结果,为了支持模糊小区,需要网络每CC每站点地提供这三个参数。
在模糊小区WTRU为DL数据传输建立到多个eNB的连接前,该WTRU可在RRC连接建立时从DL-SCH的SIB2、和在连接模式中从携带在RRC重配置消息中的移动控制信息IE接收功率控制信息。在WTRU建立多个eNB连接期间和之后,它可继续依赖于作为RRC重配置消息的一部分传输的移动控制信息来获得多个eNB和CC功率控制信息。
与关于一个eNB的关联小区信息一起,DL功率控制参数可通过eNB的RRC重配置消息来传输,或者它可通过X2信令被转发给另一个eNB,然后用信号发送给WTRU。在后一种情况,该配置信息可指定WTRU在任意给定时间可连接到的站点的最大数目。
为了提高系统效率和可操作性,可实施跨载波调度模式,从而PDCCH可位于前n个OFDM符号中,其中n小于或等于四(4),并且其中在与控制信令结束相同的OFDM符号处最早的数据传输开始。这可使能对宏睡眠的支持,以及减少缓存和延迟。物理控制格式指示符信道(PCFICH)可被eNB用来通知WTRU关于在子帧中用于PDCCH的OFDM符号数(1,2,3或4)。该信道可包括32比特,其可在调制和映射之前被小区特定扰码。
现在将在模糊小区的环境中呈现锚定载波的概念。锚定载波可每站点地得以定义。如果WTRU与多于一个站点相连接,该WTRU在任意给定时刻可具有定义的多个锚定载波。锚定载波的定义可附加于主CC(PCC)。锚定载波的其中之一可以是WTRU的PCC。在物理UL控制信道(PUCCH)上的所有UL控制信道反馈可仅为该站点的UL锚定载波来定义。
在模糊小区配置中,锚定载波可代表在该站点的PUCCH上携带所有控制信道反馈的UL CC。来自该站点的所有其他辅小区可仅支持共享数据信道或物理UL共享信道(PUSCH)。因此,锚定载波定义和PCC之间的差别可以是在可以有和WTRU可连接到的站点一样多的锚定载波的情况下仅有一个PCC。并不总是要求每站点地定义锚定载波,特别是在没有为该站点定义UL CCC的场景中。对于定义了PCC的站点,锚定载波可以是与PCC相同的CCC。
在模糊环境的一个实施例中,运行在跨载波调度模式中的WTRU可通过在该站点的锚定载波上的PCFICH读取控制格式标识符(CFI)。并且,为了为跨调度的CCC指示PDSCH接收的开始位置,RRC信令可被用于为源于该站点的跨调度CCC配置CFI。WTRU可从在锚定载波中传输的专用RRC信令读取CFI,并在相应的跨调度CCC中确定PDSCH接收的开始位置。
在模糊环境的另一个实施例中,运行在跨载波调度模式中的WTRU可通过在主CC(PCC)上的PCFICH来读取CFI。来自一个或多个eNB的所有CCC的跨调度信息可被发送给PCC被定义的eNB。为了为所有跨调度的CCC(包括那些不源于该eNB的CCC)指示PDSCH接收的开始位置,RRC信令可被用来为所有跨调度的CCC配置CFI。WTRU可从可在锚定载波中传输的专用RRC信令读取CFI,并在相应的跨调度CCC中确定PDSCH接收的开始位置。
由于所有的CC可源于相同的eNB,在选择1b中仅引入CI字段可足够指示许可是用于哪个CC的。在模糊小区中,WTRU数据的一些可源于一个eNB,而其他数据可源于其他eNB。由于WTRU可知道对于特定的CC它连接到哪个eNB,并且在非CoMP模式中该WTRU不能同时与多于一个eNB相连接(即使在CoMP模式中,对于一个CoMP集合可能仅有一个许可),在模糊小区中CI字段通过仅指示许可可能是用于哪个CC的是足够的,但是与PCC相反,CI字段可能不得不从WTRU的每个锚定载波传输。
这种类型的跨eNB许可传输可包括通过X2信令从一个eNB到另一个eNB的准入许可,并且可进一步包括通过该eNB的PDCCH信道的传输。在一些部署中,从一个eNB到另一个eNB的许可的传输由于在X2接口上遭受的延迟可能不发生。因此,DL许可可通过PDCCH信道从与在相应锚定载波上的相应数据信道相同的eNB得以传输。当在模糊小区环境中实现选择1b时,如果由于较大的X2延迟,跨eNB许可传输被禁止的话,在使用单独编码的给定载波上的PDCCH可被用于调度来自相同eNB锚定载波的多个载波上的资源。
总的来说,有模糊小区能力的WTRU可具有至少一个PDCCH每eNB,从其它可接收数据,并且实际的配置可取决于CC类型和系统建立。例如,如果WTRU使用CC1和CC2与eNB1相连接,使用CC3和CC4与eNB2相连接,并且来自eNB1的锚定载波是CC1,以及来自eNB2的锚定载波是CC3,则可使用以下用于DL许可的配置。
如果所有CC都是向后兼容的,WTRU可被配置为使用选择1a,其中每个CC包括它自己用于许可传输的PDCCH。
如果所有CC都是非兼容的,WTRU可被配置为使用选择1b,其中一个在来自eNB1的其锚定载波CC1上的PDCCH(使用单独编码)携带用于CC1和CC2的许可,并且在其锚定载波CC3上来自eNB 2的一个PDCCH携带用于CC3和CC4的许可。
可选地,可使用混合方案:取决于CC类型,对eNB1使用选择1a,并且对eNB2使用选择1b等,反之亦然。
在另一个实施例中,如果不同eNB间的X2接口延迟非常小,来自一个eNB的许可诸如可通过X2接口被转发给另一个eNB,并且然后可通过该eNB的PDCCH信道通过使用CI字段使用选择1b的PCC来传输。这除了更好的干扰管理机会外,还在网络中提供更有效的调度。为了实现低X2接口延迟,新的的GPRS隧道协议(GTP)隧道可在出于该目的的X2接口上创建。用于用户面的X2接口可使用GTP,而用于控制面的X2接口可使用流控制传输协议(SCTP)。在一些实现中,SCTP可能比GTP慢,尽管SCTP可以是在独立流中传输数据的面向连接的协议(与TCP相比)。在这样的场景中使用X2GTP隧道可能是有益的。任意专有机制也可被用来降低在eNB-eNB接口上的延迟。另外,由于WTRU可知道特定的CC与哪个eNB相连接,在许可传输中指定站点信息不是必须的。
WTRU可为在每个非DRX子帧中的控制信息监视来自相同站点的PDCCH候选集合,其中监视可意味着尝试根据所有监视的DCI格式解码在该集合中的每个PDCCH。在模糊小区环境中,可需要WTRU为在每个非DRX子帧中的控制信息监视多个PDCCH候选集合(即WTRU将从其接收数据的每个站点一个集合)。DL PDCCH CC监视集合可在多个站点间被扩展,或者WTRU可维护两个PDCCH CC监视集合。
对于WTRU特定搜索空间,取决于传输模式,WTRU可监视DCI 0/1A和可通过RRC信令半静态地配置的DCI。对于可与多个站点相连接的模糊小区WTRU,在来自一个站点的WTRU特定搜索空间中的DCI格式可通过来自该站点的RRC信令直接地得以信号发送,或该信息可通过X2信令初始地被转发给主服务站点,然后通过该主服务站点的RRC信息来传输。
在UL信令中CCC概念的部署可发生,因为在UL中没有等同的CCC概念。特别地,按照接收质量使用的最佳UL CC(或获取特定UL质量所需的功率)可不受CCC配置的影响。因此,可从WTRU最佳接收UL控制消息(ACK/NACK、CQI等)的站点可不同于从其WTRU接收相应DL数据的站点。对于ACK/NACK信号,例如,可使用适合于该站点的UL功率控制将ACK/NACK信号发送给具有最佳路径损耗(或长期路径损耗)的站点。接收站点然后可将该ACK/NACK转发给传输DL数据的站点,使得重传可被调度。可选地,UL Tx功率可被调整,使得UL ACK/NACK可由提供DL数据的相同站点监视。
在WTRU使用到每个站点的一个或多个UL CC与多个eNB(或站点)相连接的场景中,与eNB相关联的相应UL锚定载波可被用于向每个站点发送UL控制信息(UCI)。在另一个实施例中,所有UCI可使用PCC被发送,然后用于每个eNB的相关控制信息可使用X2接口从服务UL PCC的eNB被转发。UL控制信息可基于在X2接口上遭受的延迟在X2接口上转发,并且可特定于X2接口实现。
在X2接口延迟是可忍受的情况下,可为WTRU分配仅到一个站点的UL CC。在这样的场景中,所有UCI可在该UL CC上得以发送,并且可使用X2接口被转发给另一个站点。另外,与SCTP相反,取决于X2接口的实现,可能期望使用通过X2接口的GTP,或者反之亦然。
类似的方案可应用于CQI类型信号。可替换地,参与CCC的站点间的CQI上报调度可被协调,使得从WTRU到多个站点的CQI传输可在相同的无线电资源上发生。另外,用于多个站点的CQI信息(即多个DL CC)可编码为由两个站点监视的单一消息。因此,两个站点可具有增加的SINR,因为CQI报告的小区间干扰可被减少,并且两个站点可监视来自单一WTRU的相同消息,而不是使多个UL消息(可能来自于不同的WTRU)在相同无线电资源中被传输给多个站点。由于WTRU可不向每个站点发送单独的消息,这些单独的消息可不互相干扰。另外,由于两个站点可知道互相的CQI报告,可不需要在这些站点间使用回程的CQI消息任意交换(例如以帮助管理数据流分离)。
当PUCCH和PUSCH的同时配置未实现时,UCI可被捎带发送(piggybacked)。在一个实施例中,如果WTRU具有在锚定载波上配置的PUSCH传输,UCI可在每个锚定载波上得以传输。在另一个实施例中,如果X2接口延迟是可接收的,所有UCI可在UL PCC上发送。在WTRU在锚定载波或PCC上不可用的、在辅小区上的PUSCH传输的情况下,WTRU可在它们相应的辅CC(SCC)上向每个站点传输UCI。
UL载波和DL载波间的配对或关联可由网络作为广播信息的一部分或专用RRC信令一部分来提供。如果没有相应的UL载波频率信息,这样的信息可从缺省Tx信道(载波中心频率)到接收(Rx)信道(载波中心频率)间隔(separation)导出。
与UL信令、UL功率控制和UL许可相关的一些方面通过使用不同的场景在下文得以解释,由此DL载波频率是dlF1、dlF2…dlFn,UL载波频率是ulF1、ulF2…ulFn,DL CCC是dlCCC1、dlCCC2…dlCCCn,UL CC是ulCC1、ulCC2…ulCCn,并且站点是S1、S2…Sn。
如果在RRC信令中未特别指出,可等同于DL载波频率和UL频率配对的DL CC和UL CC的缺省配对可基于双工间距(duplex distance)(即用于每个可操作频带的Tx-Rx频率间隔)。
网络可具有根据不同的规则特别地用信号发送DL CC和UL CC配对的能力,从而DL CC和UL CC之间的不同不是双工间距。由于双工滤波器可使用双工间距的规范来建立,一对的DL和UL CC间的频率间距不可引起滤波性能降低。
DL CC和UL CC的配对可指示操作范围的DL和UL关联。例如,dlCCC1和ulCC1的配对可意味着ulCC1的UL许可可在dlCCC1中传输,与在dlCCC1上传输的混合自动重传请求(HARQ)相关联的ACK/NACK可在ulCC1上携带等。
图6-12展示了可与两个不同站点(eNB)通信的WTRU的各种操作场景。与图6关联的以下展示的细节可应用于所有其他场景,除了在各个场景的每一个中明确地提及了替换细节。
图6展示了包括WTRU 605和两个站点(eNB)S1和S2的无线通信系统600。WTRU 605可通过DL 610(在dlF1上的dlCCC1)和通过UL 615(在ulF1上的ulCC1)与站点S1相连接。相同的WTRU 605可通过DL 620(在dlF2上的dlCCC2)和通过UL 625(在ulF2上的ulCC2)与站点S2相连接。X2接口630可允许站点S1和S2互相通信。
在图6所示的场景中,DL 610可携带pCell,UL 615可以是主UL CC,其中UCI可通过PUCCH单独地被传输。在一个实施例中,DL 620可被配置为sCell,并且UL 625可仅携带PUSCH,其中UCI在PUSCH中附带地传输。
在该UCI捎带传输场景中,当同时未配置PUCCH和PUSCH时,UCI(例如ACK/NACK和信道状态信息(CSI))可在根据以下规则选取的单一UL载波中得以传输。当WTRU 605在主小区上具有PUSCH传输时,UCI可通过该主小区得以传输。当WTRU 605在一个或多个辅小区上具有、但在主小区上没有PUSCH传输时,UCI可通过一个辅小区得以传输。
在一个可替换实施例中,用于DL 620的UCI可通过X2接口630来发送。是在sCell PUSCH上捎带传输地发送UCI,还是通过X2接口630来发送它,可依赖于实现,并且可受若干因素的影响,例如在X2接口630上的延迟、跨载波调度是否可在用于sCell的pCell上执行以利用较好的小区间干扰管理等。
另一个选择可以是采用向每个站点传输PUCCH的锚定载波。UL 615可以是用于站点S1的锚定载波,并且UL 625可以是用于站点S2的锚定载波。因此,发往站点S1和S2的UCI可在其各自的锚定载波上得以发送。
PUSCH传输功率可如下地得以设置:
其中PMAX是取决于WTRU类型的最大WTRU功率,M是分配的物理资源块(PRB)的数目,PL是在WTRU 605处基于RSRP测量和用信号发送的RS eNB传输功率导出的WTRU路径损耗,ΔMSC是由eNB设置的依赖调制和编码方案(MCS)的功率偏移,P0_PUSCH是WTRU特定参数(部分广播并且部分使用RRC信号发送),α是小区特定参数(在广播信道(BCH)上广播),Δi是从eNB(S1、S2)信号发送给WTRU 605的闭环功率控制(PC)命令,并且函数f()指示闭环命令是相对增量还是绝对值。f()通过高层信号发送给WTRU 605。
参数PL是在WTRU 605中计算的路径损耗估计,PL=参考信号功率-经上层滤波的RSRP。当多个UL CC被用于UL传输,对于每个UL CC的路径损耗估计可被使用。在一个实施例中,在DL CC的其中之一(例如可被定义为锚的CC)上的路径损耗PL0可得以估计。对于给定的UL CC k,路径损耗估计可计算为:
PL(k)=PL0+PL_偏移(k), 等式(2)
其中PL_偏移(k)可由eNB用信号发送。偏移值可被用来偏移由不同UL CC间频率间隔引起的路径损耗差异。在若干或所有DL CC上估计的路径损耗的线性组合可被用作PL0。
UL功率控制机制可取决于WTRU 605的功率放大器(PA)配置、UL CC的数目和是否有用于所有UL CC的单一PA、或者可能地一个CC一个PA、或者若干CC一个PA、DL CC和/或到UL CC的传输站点的关联和UL功率控制的开环成分的确定、来自网络管理UL功率控制的闭环成分的信令、和用于数据和控制传输的功率控制机制的不同。
到站点的UL CC的关联可以是使得所有UL CC可以与一个站点关联或不关联。在另一个其中站点可协作的可能方法中,UL CC可与“虚拟”站点相关联。
通过使用模糊小区概念,在不同DL CC上的传输可在物理上分开的站点上生成。从这些站点(S1、S2)到WTRU 605的路径损耗可显著地不同。因此,可为传输站点的每一个估计单独的路径损耗。对于给定传输站点的路径损耗可通过使用由该站点用于传输的DL CC的其中之一(例如可能已被定义为该传输站点的锚定载波的那个)来估计。可替换地,在一些或所有DL CC上估计的路径损耗的线性组合可由该站点使用。
对于特定UL CC在UL功率控制中使用的路径损耗估计可取决于UL CC的配置。根据一个实施例,PL(k)可被用于UL CC的功率控制,并且可通过与该UL CC相关联的站点的路径损耗估计来确定。特别地:
PL(k)=PL0(i)+PL_偏移(k,i), 等式(3)
其中i表示与第k个UL CC相关联的站点。UL CC到不同传输站点的关联可被用来调整UL干扰和/或用于负载均衡。
在模糊小区概念中,单独的PDCCH可从传输站点传输。在由特定传输站点用于传输的DL CC中,单独的PDCCH每DL CC可被发送以调度在该载波上的传输资源。可替换地,在一个DL CC上传输的PDCCH可通过使用载波指示字段来调度在另一个DL CC上的资源。
类似地,分配用于在特定UL CC上的传输的资源的UL许可可由与该UL CC相关联的传输站点传输。可能有UL CC到由该站用于传输的DL CC的其中之一的关联。该DL CC可被用来传输UL准入。传输功率控制(TPC)命令也可被携带在与UL许可相同的分量载波中。由UL传输引起的ACK/NACK也可在被携带在该DL CC上。
在可替换实施例中,用于UL CC的UL准入可由与UL CC相关联的站点不同的站点来传输。在该情况下,UL许可可包括UL CC(和传输站点)指示字段以向WTRU 605指示该资源分配信息可用于哪个UL载波。TPC命令还可类似地得以携带。在该情况下,传输站可能需要交换信息,例如CSI参数(包括CQI/预编码矩阵指示符(PMI)/秩指示符(RI)等)、功率控制参数(例如TPC)等,以便可完成调度决策。
可被用于调度决策、调度请求等的UL控制数据可包括由DL传输引起的ACK/NACK、包括CQI/PMI/RI的信道状态信息(CSI)、信道量化信息等。UL控制数据可被携带在UL控制信道(PUCCH)或PUSCH中。
对于PUCCH传输,PUCCH可被映射到一个UL CC。该UL CC可被选取,使得到接收站点的路径损耗在所有可能的站点/载波间是最小的。在该情况下,PUCCH功率控制可通过使用用于该站点的参数(例如路径损耗等)来调整。PUCCH信息可被映射为若干UL CC,其中每个UL CC可与不同的传输站点相关联。在一个UL CC中的PUCCH携带用于相应传输站点的控制数据。在特定UL CC上PUCCH功率可被调整,使得PUCCH在相应的传输站点处可靠地得以接收。
此外,与CA相关联的UL功率控制可使用特定于DL 610和620的各种参数来实现,DL 610和620的每一个具有定义的最大功率。总UL功率也可通过与WTRU类别相关的最大功率来限制。对于模糊小区概念,由UL功率控制使用的路径损耗可基于来自网络的配置、根据测量DL 610和620的哪个、是否应用偏移每DL等来导出。
以下UL功率和许可相关的方面可应用于模糊小区概念。在UL许可中的TPC可应用于该许可应用于的UL CC(即在来自DL 610的UL许可中发送的TPC可应用于在站点S1中的UL 615)。通过基于CIF的跨载波调度,在配置具有CIF的UL许可中的TPC字段可控制在不与在其中该许可得以传输的DL CC相链接的UL CC中PUSCH和SRS的传输功率。因此,通过在该场景中的跨载波调度,如果需要,DL 610可发送TPC以调整UL 625的UL功率。然而,考虑到站点间配置,任意这样的联合调度努力可能需要通过X2接口630的数据交换。该益处可尽可能多地从DL 620上的信令减少开销,并且有益于将DL 620用于数据使用。在DL 620是扩展CC、其中没有PDCCH的情况下,跨载波UL功率控制可变得必须。
在DL许可中的TPC可应用于可为其传输ACK/NACK的UL CC(即在来自于DL 610的DL许可中发送的TPC命令可应用于在站点S1中的UL 615)。
在DCI格式3/3A中的TPC可使用在RRC信令中的TPC索引和TPC-PUSCH无线电网络临时标识符(RNTI)的组合被应用于UL CC。该配置可使用DCI 3/3A为跨载波UL功率控制TPC传输扩展。功率余量报告(PHR)可包括用于PUCCH/PUSCH的CC特定报告。由于类型2的PHR仅可对pCell有效,在该场景中,假设UL 615是主小区(pCell)UL,并且UL 625是辅小区(sCell)UL,类型1PHR可被用于UL 615,并且类型2PHR可被用于UL 625。因此,可能有WTRU 605同时传输类型1PHR和类型2PHR的情况。
最大功率缩放(scaling)可每信道地根据以PUCCH功率、接着包括UCI的PUSCH和然后PUSCH的优先级来产生。在该场景下,可引入与站点配置相关的新的优先级。例如,替代应用基于信道的优先级,与一个站点相连接的UL可被缩小,无论携带什么信道。在该场景中,替代经历基带中的缩放计算,这可以是在一个频率上简单的射频(RF)衰减。定时提前可基于在站点S1处UL 615的接收和在站点S2处UL 625的接收从两个站点发送。
图7展示了包括WTRU 705和两个站点(eNB)S1和S2的无线通信系统700。WTRU 705可通过DL 710(在dlF1上的dlCCC1)和通过UL 715(在ulF1上的ulCC1)与站点S1相连接。相同的WTRU 705可通过DL 720(在dlF1上的dlCCC2)和通过UL 725(在ulF2上的ulCC2)与站点S2相连接。X2接口730可允许站点S1和S2互相通信。
在图7所示的场景中,dlF1和ulF2之间的差可小于双工间距。在所有场景中,模糊小区配置可实现基于关于每个站点上报的、通过X2接口730交换和在通用调度器处集中的CSI进行属于不同站点的载波的资源调度的通用调度器。在该场景中,由于DL 710和720两者都在相同的频率处,如果两者都携带PDCCH,尽管有以比特级别扰码的物理小区标识符(PCI)提供的正交性,在DL 170和720上的PDCCH盲解码性能可被降级。并且,通用调度器可确定用于在DL 710上的用于数据传输的RB可不在DL 720上调度以避免干扰。不像在系统700中,DL 610和620可在图6的系统600中在两个不同的频率上运行。除了该限制外,图7的场景在它的UL方面可与图6的场景类似。
图8展示了包括WTRU 805和两个站点(eNB)S1和S2的无线通信系统800。WTRU 805可通过DL 810(在dlF1上的dlCCC1)和通过UL 815(在ulF1上的ulCC1)与站点S1相连接。相同的WTRU 805可通过DL 820(在dlF2上的dlCCC2)与站点S2相连接,并且没有关联的UL CC。X2接口825可允许站点S1和S2互相通信。
相应于DL 820的所有反馈和HARQ信息可复用在UL 815上,被传输给站点S1,并随后通过X2接口820被转发给站点S2。功率控制和定时提前可由站点S1通过DL 810调整。由X接口信息转发引入的延迟可不影响HARQ/CSI时间线,因为通用调度器知道在哪个子帧站点S2可在DL 820中传输特定的传输块(TB),并指令站点S1期望在随后是第四个子帧的子帧中被关联的ACK/NACK。因此,在DL 820上的HARQ传输可在站点S2处开始,并且可在站点S1处终止。在NACK的情况下,站点S1可通知站点S2关于在足够的时间中的重传,使得WTRU 805精确地在八个子帧后接收重传。
将与DL 810和820两者关联的ACK/NACK复用在UL 815上可要求从站点S1到S2的附加信令,以便在X2接口825上DL 820的适当操作。WTRU 805可从DL 810接收用于UL 815的UL许可。通用调度器(如驻留在图8中的站点S1处)可容易地具有与站点S1和S2两者相关联的CSI,并且可执行通用池调度(common pool scheduling)和使用用于DL资源调度的CIF在PDCCH中应用跨载波调度。
图9展示了包括WTRU 905和两个站点(eNB)S1和S2的无线通信系统900。WTRU 905可通过DL 910(dlF1上的dlCCC1)和通过UL 915(在ulF1上的ulCC1)与站点S1相连接。相同的WTRU 905可通过DL 920(在dlF1上的dlCCC2)与站点S2相连接,并且可没有关联的UL CC。X2接口925可允许站点S1和S2互相通信。该场景在UL配置方面可与图8的系统800类似,并且在DL配置方面可与图7的系统700类似。
图10展示了包括WTRU 1005和两个站点(eNB)S1和S2的无线通信系统1000。WTRU 1005可通过DL 1010(在dlF1上的dlCCC1)和通过UL 1015(在ulF1上的ulCC1)与站点S1相连接。相同的WTRU 1005可通过DL 1020(在dlF2上的dlCCC2)和UL 1015与站点S2相连接。X2接口1025可允许站点S1和S2互相通信。
相应于DL 1020的所有反馈和HARQ信息可被复用在UL 1015上。使用通过X2接口1025由站点S1提供给S2的UL调度信息,站点S2可相应地解调和解码UL 1015。站点S2可具有如站点S1做的那样非周期性地触发对UL信道估计的探测参考信号(SRS)的能力,并且还可具有单独调度来自站点S1的CSI信息的能力。通用调度器可能需要协调站点S1和S2之间的UL资源分配。
此外,两个功率控制和定时提前机制集合可在用于一个WTRU的两个站点处采用,该信息可有选择地或聚集地(collectively)得以估计和调整(reconcile)。例如,在站点S1经历来自WTRU 1005的符合条件的UL SINR期间,可为站点S1调度在UL 1015上的更多RB。这可有选择地在覆盖(mat equate to)应用于UL 1015的时分复用(TDM)的类型的不同期间被传输给站点S1或S2。
另外,在功率控制的情况下,典型地在一个站点(eNB)处的UL SINR可被考虑,而在模糊配置中,通用调度器可找寻在站点S1处的UL SINR和在站点S2处的SINR之间的平衡类型,并且可相应地生成一个TPC比特通用集合。
由于不同的传播路径,UL 1015的子帧可在不同的时刻依次地到达站点S1和S2,可导致两个不同的定时提前值TA1和TA2。取决于来自S1的TA1和来自S2的TA2之间的差,选择和聚集(collective)方法可得以应用。UL 1015的使用可被优化以同时或二选一地(alternatively)到达站点S1和S2。
图11展示了包括WTRU 1105和两个站点(eNB)S1和S2的无线通信系统1100。WTRU 1105可通过DL 1010(在dlF1上的dlCCC1)和通过UL 1115(ulF1上的ulCC1)与站点S1相连接。相同的WTRU 1105可通过DL 1120(在dlF1上的dlCCC2)和UL 1115与站点S2相连接。X2接口1125可允许站点S1和S2互相通信。该场景在UL配置方面可与图10的系统1000类似,并且在DL配置方面可与图7的系统700类似。
图12展示了包括WTRU 1205和两个站点(eNB)S1和S2的无线通信系统1200。WTRU 1205可通过DL 1210(在dlF1上的dlCCC1)与站点S1相连接,并且可没有关联的UL。相同的WTRU 1205可通过UL 1215(在ulF1上的ulCC2)与站点S2相连接,并且可没有关联的DL。X2接口1220可允许站点S1和S2互相通信。
与反馈、CSI、功率控制和定时提前相关的所有信息可通过X2接口1220在站点S1和S2之间交换。在该场景中,UL功率控制可仅被用于估计站点S1和WTRU 1205之间的路径损耗,而TPC比特可基于在站点S2处经历的UL SINR来生成。该不匹配的影响可通过对在站点S1处估计的路径损耗应用偏移以近似在站点S2处的路径损耗来消除。
在无线通信系统中,当来自相同子帧的不同WTRU的信号以粗略地对齐模式(aligned fashion)达到一个小区中的eNB时,基于OFDM的UL传输的正交性可得以维持。非对齐(misalignment)超过循环调整(cyclic fix)可引起干扰。UL无线电帧号的传输可在关联DL无线电帧开始之前开始(NTA+NTA偏移)×Ts秒,其中对于帧结构类型1,0≤NTA≤20512,且NTA偏移=0。
定时提前可被认为是应用于关联DL和UL载波对的机制。专用定时提前可应用于在每个CC上,或者通用定时提前对于所有CC来说可以是足够的。
模糊小区场景进一步意味着由一个WTRU使用的关联DL和UL载波对可与两个不同的站点相连接。同样地,一个WTRU可具有与两个不同站点相连接的两个UL载波。因此,WTRU可能需要管理定时提前集合,每一个特定于CC和站点两者(二维索引)。一个基本规则可以是WTRU为每个CC和站点维护单独的TA。
然而,如果两个UL CC与相同的站点相连接,用于两个CC的一个跟踪区域(TA)可以是足够的。与相同站点相连接的所有CC可共享一个TA命令。这可减少在CC间HO的情况期间RACH获取TA的努力。
由模糊小区打破两个不同站点间DL和UL载波的配对可引起各种问题。第一个问题可能是定时提前可由一个站点基于接收的在该特定小区中的UL数据/控制/参考信号的定时测量来确定。在特定小区中的所有WTRU可参考在该特定小区中DL载波的帧定时来计时UL的传输。如果WTRU在来自于一个站点的一个载波上使用DL帧定时,但是应用从另一个站点接收的定时提前命令,WTRU DL帧定时和UL帧定时在HARQ定时方面将不对齐。
例如,WTRU可将CCC1-DL用于DL数据(PDSCH)和来自站点S1的DL(即关联的UL CC1-UL不活动),并且将CCC2-DL用于DL控制(PDCCH)和来自站点S2的关联UL,CC2-UL。CC1-DL的参考DL帧定时可以是t1并且CC2-DL的参考DL帧定时可以是t2。由于数据源于CC1-DL,该特定WTRU的HARQ定时可参照t1来计时。同时,在站点2中的所有其他WTRU可相对于DL帧定时t2计时UL传输,并且站点2可使用所有这些UL传输以生成通用定时提前。间接基于t2将该定时提前应用在其HARQ定时参考t1的该特定WTRU上将破坏在子帧N中DL数据和在子帧N+4中UL ACK/NACK之间的定时关系。定时提前命令可指示相对于当前UL定时的UL定时的改变为16×Ts的倍数。如果t1和t2之间的差较大,定时提前改变可打破最大0.67ms的限制,结果在该WTRU处的UL ACK/NACK处理在关联UL传输到期(due)时可能未完成。如果WTRU具有对该异常的保护,并将UL定时拉入该限制内,站点S2可发现该WTRU UL与其他WTRU不对齐。
另外,对不同站点DL和UL载波的关联对的间隔可涉及HARQ定时,即使没有定时提前影响。如果两个站点是同步的(即t1和t2彼此很接近),该问题可得以缓和。然而,由于UL ACK/NACK将通过X2接口从站点S2转发给站点S1,可考虑产生的延迟。由于X2接口可被实现为TCP/IP网络,延迟可能大到不能补偿。一个解决方案可以是在站点间部署RF放大和转发链路以及时地转发UL ACK/NACK。ACK/NACK可通过可在不同频带中的无线电链路直接从站点S2转发给S1处理。这样的无线电链路也可便于在模糊小区场景中站点间的其他时间敏感信号传输。
用于以上场景的一个可替换方法是站点S1在站点S2直接监听CC2-UL的同时直接监听CC2-UL。用于TA的相应解决方案可以是在相应于来自不同站点的多个DL CC的一个UL CC中的ACK/NACK复用。由于每个DL CC可具有传输回相同站点的UL ACK/NACK,HARQ定时可不是一个问题。假设在该情况下定时提前以每站点为单位,调整在一个UL载波上的两个定时提前是困难的,除非来自这两个站点的两个CC是同步的。使用可用的同步,来自两个站点的定时提前命令可根据从用于一个UL CC的多个站点接收的所有TA间最小的、可应用在该UL CC上的TA来估计和应用。对于来自其他TA源于的站点的DL CC,在UL定时中没有额外的提升发生。定时不对齐可由两个站点间的定时差引起,但是考虑到两个站点是同步的,该不对齐将不显著。
在此提供用于模糊小区概念的一些系统级别仿真结果。特别地,已作出为每个CC找到具有适当功率简档(和天线模式)的符合条件的基站(BS)传输方案的尝试,使得小区边缘用户性能可通过采用模糊小区概念而改善。
为了减少优化的参数数目,仅传输功率等级可得以调整。假设基站被划分为相同形状的多个集群,其中每一个由N个小区组成。例如,如果有F个CC可用,可发现用于在集群中这F个CC的功率简档,并且相同的的功率简档可被重用于所有其他集群。对于一个集群,可有可不均匀分布的K个测试位置集合。对于第k个位置,假设WTRU与特定的基站(BS)相连接,CC f的载波干扰比(C/I)可作为路径损耗和功率简档{p(n,f)}的函数来计算,其中n=1,…,N并且f=1,…,F。根据模糊小区概念,对于第f个CC,WTRU可与具有可由SIR(k,f)表示的最大C/I的BS相连接。对于给定的功率简档,{SIR(k,f)}可被确定,其中k=1,…,K并且f=1,…,F,从其不同的成本函数可得以定义。
用于第k个位置的一个成本函数可以是在f上C(k)=-max{sir(n,f)},并且以下问题可如下得以解决:
{p_opt(n,f)}=arg min max_k C(k),约束条件:功率限制 等式(4)
这可等同于最大最差位置的最佳C/I比。对于功率限制,可考虑总功率限制sum_{n,f}p(n,f)=P_total=N×F×p_eq,其中p_eq是用于每个CC的来自每个基站的传输功率,假设在空间和频率上的均匀功率简档(uniform power profile)。该限制出于公平比较目的可基于非模糊小区场景(即均匀功率分配情况)的性能。同样地,对于每个功率p(n,f),通过假设每个CC在BS处具有它自身的功率放大器,可有下限P_lb和上线P_ub。可考虑不同的功率限制集合。
仅考虑最差位置的性能可能是不足够的,由于小区边缘用户性能典型地由累积分布函数(CDF)中5%百分位(tile)的吞吐量表征。同样地,WTRU可要求多过于一个CC,其中CC1与站点A相连接,CC2与站点B相连接,如在前述模糊小区解决方案中说明的那样。因此,速率加性高斯白噪声(AWGN)可以是:
r(k,f)=W(f)×log2(1+SIR(k,f)), 等式(5)
其中W(f)是CC f的带宽。然后,假设WTRU将使用V个最佳CC,在第k个位置的和速率可被设置为R(k)=sum_v r(k,v),其中v=1,…,V,其中r(k,v)是F个CC间第v个最佳C/I。对于每个功率简档,可为每个位置计算C/I,从其可获得总速率R(k)的CC,然后可获得相应的传输功率(TP)CDF。根据CDF,5%百分位值可由R5表示,其是{p(n,f)}的函数,并且成本函数可被选择为C=-R5({p(n,f}),并且以下问题得以解决:
{p_opt(n,f)}=arg min–R5,约束条件:功率限制 等式(6)
可改善用户小区边缘性能的功率简档可对非小区边缘用户引起性能恶化。除了功率限制之外,也可增加其他限制以确保非小区边缘用户的性能损耗可在一定范围内。对于每个TP CDF、R50、R80和R90可分别被表示为50%百分位、80%百分位和90%百分位TP值。另外,R50_eq、R80_eq和R90_eq可以是具有相等功率设置:{p(n,f)=p_eq}的相应TP值。以下速率限制可被设置:R50>=(1-a)×R50_eq、R80>=(1-a)×R80_eq并且R90>=(1-a)×R9_eq,其中“a”表示可忍受的百分比形式的TP损耗。然后在等式(6)中的问题可变为:
{p_opt(n,f)}=arg min–R5,约束条件:功率和速率限制 等式(7)
在等式(6)和(7)中,成本函数可依赖于等式(5),其假设带宽对每个CC来说是固定的,并且系统负载是不相关的(即使用相同CC连接到相同BS的用户数目),这可不影响整个场景,因为在非均匀功率分配的情况下,在特定CC上具有不同功率的BS可具有不同的覆盖范围,因此该特定CC可具有不同数目的用户。结果,当与相等功率情况相比时可用于每个用户的带宽也可改变。考虑到该因素,为了简单起见,标准化速率可被定义为:
r_norm(k,f)=W(f)/S(k,f)×log2(1+sir(k,f)), 等式(8)
其中S(k,f)是将连接到与第k个WTRU使用CC f连接到的BS相同的BS的位置的总数。根据r_norm,等式(7)可变成:
{p_opt(n,f)}=arg min–R5_norm,条件约束:功率和速率限制 等式(9)
其中R5_norm是使用标准化速率r_norm的5%百分位TP。类似地,速率限制也可相应地改变。
以上优化问题可以是非线性和非凸的。结果,可依赖于MATLAB的遗传算法(GA)工具箱来确定局部最优。可向一些数字结果提供每站点有3个扇区(具有120度方向天线)并且每个集群包括一个站点(3个小区)的假设。
图13展示了基站的地理布局,从而在中心的集群表示可被用来计算CDF的K=3000个位置,并且在3个小区交集处的小圆圈表示BS塔。在每个小区可有3个CC可用,并且由于在集群中可有3个小区,共有九(9)个可被调整的功率参数(3个每CC)。为了进一步减少参数维度,可在这9个参数上强加另一个限制,假设CC的功率简档通过移位可被重用。例如,如果CC1的功率简档是[p1,p2,p3],则对于CC2,可是[p2,p3,p1],并且对于CC3,可是[p3,p1,p2]。该增加的限制可以不是强制的,但是它可帮助GA算法更快地收敛(coverage)于符合条件的本地最优方案。对于以下示例,p_eq=46dBm,并且可假设没有阴影。
通过假设p_lb=16dBm和p_ub=55dBm,第一个结果根据等式(4)得出。与相等功率情况的1.56dB相比,在最差位置的最佳C/I是4.673dB的情况下,优化的功率简档可以是以dBm为单位的[50.768,16,16]。通过采用非均匀功率分布可获得多于3dB的增益。根据V=3的假设(即WTRU可使用所有3个CC)来解等式(6)和(7),基本上提供相同的功率简档集合,并且BS可尝试模拟频率重用因子3的情况。
图14展示了在以dBm为单位的功率简档[50.76,16,16]的情况下CC1的优化载波干扰比(C/I)图。如图14所示,每个不同的CC可通过加大在一个扇区中的功率并最小化在另两个扇区中的功率来尝试覆盖不同的区域。
图15是在相等功率和不相等功率情况下等式(7)的非标准化和速率CDF的图示,假设W(f)=1。图15展示了小区边缘用户性能当与相等功率情况相比时通过不相等功率分配可得到显著地改善。同样绘制的是具有降低上限(P_ub=P_eq+3dB)的结果,其展示了每CC功率放大器的功率限制可对该例的性能增益具有显著的影响。
图16是假设每个WTRU使用3个CC的标准化和速率CDF的图示。图16展示了通过将标准化TP用作度量并且W(f)=20MHz根据等式(9)的结果。“重用3”曲线可代表具有采用等式(7)优化的功率简档的标准化TP CDF,其中非标准化TP可被用来计算成本。在该场景中,直观地、显著地提高一个小区的功率将产生较大的覆盖范围,因此可有更多的用户共享有限的带宽,可显著地降低非小区边缘用户性能的情况,如在图16的“模糊小区”线中所示,其中标准化TP CDF具有使用非标准化TP的等式(7)优化的功率简档地得以展示。
使用等式(9),可获得功率简档[38,47,48]dBm,其CDF也在图16中示出。图16通过考虑标准化和速率来展示这,当与相等功率情况相比时,等式(9)的解可提供大于15%的小区边缘用户性能改善。同时,非小区边缘用户的性能损耗可保持在控制下。
理论上,只要使用给定的功率简档可获得CDF,等式(9)可被用来管理任意类型的调度器,替代简单的相等带宽共享。同样地,以上框架还可通过允许天线模式改变来扩展到该情况。
蜂窝系统固有地易受到错误的影响,因为基础不安全的空中物理介质的本性。对用户在蜂窝系统中移动性的支持可进一步增加可能错误场景的数目。
根据另一个实施例,错误处理可在CC协作网络中进行。在此描述了一种当与主通信站点(eNB)有通信错误时使用多个站点(eNB)使能CA工作数据流的保持的概念。还将描述当使用包括多个站点的CC协作网络时,处理各个CC错误的各种CC协作网络相关RAN过程。
RLF是将WTRU从不可恢复物理通信错误条件恢复以重新获得系统接入的过程。考虑在假设的传输配置情况下的PCFICH错误,可测量无线电链路质量作为假定PDCCH错误率。WTRU可每帧或者如果应用DRX配置的话在DRX活动时间期间,对照质量阈值Qin和Qout监视用于DL无线电质量的子载波参考信号。物理层然后在超过质量阈值时可向RRC提供保持同步(in-sync)和失去同步(out-sync)指示。一旦接收到连续的失去同步指示且在后来的持续时间内没有接收到连续的保持同步指示,RLF可由WTRU RRC宣告。WTRU可暂停当前的数据业务流,然后进行小区重选。一旦小区重选成功,如果接入层(access stratum,AS)安全激活,WTRU可发起RRC连接重建过程以恢复数据业务传输。如果AS安全未激活,WTRU可进行RRC连接释放(释放所有与建立的RB相关的资源),然后WTRU可进入RRC_IDLE模式。
在CA中,WTRU可被配置为在多个CC接收。CA可支持其中在不同CC上的小区可具有不同的覆盖区域,同时仍然源于相同的eNB的部署。因此,在为PDCCH接收配置的DL成员的子集上的PDCCH接收可能失败,而其他CC仍然可具有可操作的PDCCH接收。这可将可能的失败场景扩展到一个或多个CC和所有CC失败。RLF过程仅为所有CC失败的场景宣告。在部分CC失败的情况下(即部分RLF),eNB可考虑显式信令或隐式eNB检测以移除失败的CC链路,而不使用RRC连接重建立过程。在部分RLF的情况下,仅与受影响的载波相关联的业务信道可被重置/重定向,而其他载波可继续“按现状”运行。
服务eNB可以半永久调度(SPS)(即RRC连接消息配置)或WTRU可能不得不通过PUCCH信道请求eNB UL资源的形式,通过PDCCH使用活动连接为WTRU分配UL无线电资源。在WTRU侧的隐式RLF可应用于通过层2(L2)/层3(L3)协议检测UL通信的损耗。取决于用来进行UL无线电资源分配的方法,不同的机制可被实施用于检测。
在通过PUCCH请求或RACH的UL分配情况下,当PUCCH信道失败时(即到达了最大调度请求重试次数),MAC可恢复以发起RACH过程,如果RACH过程也失败,则可通知RRC发起RRC连接重建立过程(RLF上报)。
在SPS配置分配的情况下,WTRU可在接收到传输后,监视由eNB在PDCCH上提供的HARQ ACK/NACK。如果eNB停止在分配的SPS信道上接收UL数据达到八(8)个传输,eNB可将该情况解释为隐式WTRU释放,并且重配置(释放)资源。如果DL PDCCH在该情况下也被丢失,其他的RRC配置、UL许可或UL ACK/NACK都是不可能的,这可导致HARQ失败,引起UL无线电链路控制(RLC)传输失败(由于失败的SPS配置信道的释放可能没有被WTRU接收用于去激活)。一旦到达最大RLC重传次数,可通知WTRU RRC发起RRC连接重建立过程(RLF上报)。
如在以上两个示例中所示,在WTRU上的隐式无线电链路失败检测由WTRU MAC和RLC机制覆盖在L2/L3协议下。MAC机制可基于RACH传输失败。WTRU可根据活动CC的SIB2被授权随机接入(RA)重试最大次数(preambleTransMax),或者在切换情况下,可被包括在RRC连接重配置消息的移动控制信息IE中。可替换地,当到达最大RA重试时RRC可由MAC通知,或者MAC可在由于引入CA最大RA重试到达时用信号通知RRC(即当尝试了CC或尝试了所有可用CC时用信号通知)。
RLC机制仅可基于RLC传输失败应用于确认模式(AM)信道。作为在RRC连接建立/重配置/重建立消息中的无线电资源配置的一部分,可向WTRU提供最大重试次数(maxRetxThreshold)。在信令无线电承载(SRB)或数据无线电承载(DRB)已超过最大传输阈值时WTRU RRC可由RLC通知。
RLF过程可引起数据业务的临时暂停,或者在更差情况的场景中,丢弃呼叫。该行为对使用CA的WTRU来说是不期望的,对于它来说,在另一个CC上的普通数据业务可能未受在服务CC上RLF的影响。
图17展示了由在CC协作网络中的移动引起的示例无线电链路失败。WTRU可能期望使用在不同站点上的CC向具有两个eNB(eNB1和eNB2)的网络用信号发送RLF情况。如图17所示,WTRU可被初始地配置为使用CA从均来自eNB1的2个CC(CC A和CC B)接收高数据吞吐量(1705)。专用控制信道(DCCH)可在CC A上得以建立,其是特定小区。当WTRU从eNB 1向eNB 2移动时,WTRU可离开CC B的eNB 1覆盖范围(1710)。部分切换可将在CC B上的WTRU接收路径重连接到eNB 2,以重新获得期望的数据吞吐量。DCCH可保持在CC A上。WTRU然后可移动到产生导致在CC A链路上的RLF的阴影的高层建筑后(1715)。虽然WTRU可继续从eNB 2接收在CC B上的符合条件的数据流,但是DCCH和在CC A上的数据路径都丢失了。RLF过程可触发RRC连接的重建立,因此中断在两个CC上的数据传输。然而,如图17所示,由WTRU检测的部分RLF的上报可由丢失到eNB 1的同步或由停止与eNB 1的通信的一些其他措施引起,可仍然在CC B上被发送给eNB 2。取决于在检测时的RRC连接配置,不使用特定小区的部分RLF上报使用不同的eNB处理过程。
在一个配置中,CC B可以是“特定小区”,CC A可以是CC协作网络的一部分。这是RRC连接切换(在步骤1710期间,或在步骤1715中WTRU进入阴影位置之前)可引起EPS承载被转发给eNB 2的场景。WTRU上下文和信令可在eNB 2中处理。因此,可进行到特定小区(在eNB 2上)的部分RLF(CC B失败)通知的信令和恢复处理(例如CC B释放或重路由)。
在另一个配置中,CC A可以是“特定小区”,CC B是CC配置网络的一部分。在该场景中,仅在步骤1710期间CC B可被重配置到eNB 2上。作出决策/命令以控制WTRU行为的责任可保持使用eNB 1。当在eNB 2上接收到部分RLF通知的信令时,可能需要被转发给eNB 1用于其他WTRU配置。如果该上报没有被发送给eNB 1,或者在eNB1隐式检测到RLF后转发,如果通过CC A的通信不能被恢复,eNB 1可丢弃活动的呼叫。
根据一个实施例,描述了到服务eNB的在CC协作网络的各个活动CC上的RLF的WTRU通知。在该实施例中,WTRU可在多站点CA配置中显式地用信号发送部分RLF给eNB。
当在非服务eNB上的锚定CC失败时,WTRU可使用与服务eNB相关联的PDCCH或PUSCH显式地向服务eNB用信号发送部分RLF情况。
当在服务eNB上的锚定CC失败时,WTRU可在另一个可用CC上显式地用信号发送部分RLF情况。到eNB 1的部分RLF的上报与隐式eNB 1RLF检测相比可能是有益的,因为这可使能可允许eNB 1发起无缝切换并使用X2数据隧道以最小化在转换期间数据分组丢失的机制。
部分RLF的直接通知可通过X2接口由协作eNB向服务eNB用信号发送。然而,在协作eNB不能通过X2接口通信的情况下,可实现通过S1-移动管理实体(MME)接口的通信。
图18展示了包括两个WTRU 1805和1810以及三个eNB 1815、1820和1825的eNB接入层(AS)协议架构1800。eNB 1815、1820和1825的每一可包括RRC 1830、L2实体1835、物理(PHY)层实体1840和用于CC中心资源管理的无线电资源管理(RRM)单元1845。该架构可维持一对一的对等RRC实体关系,并且可确保对于RRC信令仅有一个终结点。RRM单元1845可通过节点间X2应用协议(X2AP)接口1850互相通信。基于GPRS隧道协议1855的X2接口用户面协议可被用于eNB 1815和1825中L2实体1835间的带内数据业务信令。
RRM单元1845可以是在eNB上、可负责管理接入层(AS)无线电资源的功能实体。在eNB 1815、1820和1825的每一个上可有一个主RRM 1845,可负责eNB特定回程或空口资源的的分配。在eNB 1815、1820和1825上的各个CC可作为主RRM单元的一部分来管理(主RRM单元可从监视专用CC的子模块获取输入)。
RRC 1830可以是负责跟踪(请求和返回)、分配给专用WTRU的资源的功能实体,和负责将AS分配信号发送给单个WTRU的处理信令协议。RRC 1830可与RRM单元1845协商以获得以请求的服务质量(QoS)提供用户服务所需的资源。当WTRU是活动的时,在任意时间仅有一个RRC每WTRU处于连接状态。在多个站点被用作CC协作网络的一部分的场景中,可有RRC驻留的专用“服务eNB”。
eNB间X2AP接口1850可以是用于协作活动集合中eNB 1815、1820和1825的信令接口。
图18的eNB接入层(AS)协议架构可包括具有活动连接以从三个eNB 1815、1820和1825接收连接服务的两个WTRU 1805和1810。WTRU 1805可仅与eNB 1820通信。WTRU 1810可使用RRC连接与eNB 1815(服务eNB)和eNB 1825(协作eNB)通信,其中RRC连接可在eNB 1815处建立或重配置以包括用于数据分离的CCC。eNB 1815可与邻近eNB 1820和1825交换系统信息配置和无线电环境信息,它们一起可形成WTRU(1805、1810)的候选“协作活动集合”。eNB 1815可为WTRU 1810维持RRC上下文以便于移动管理和数据路由。eNB 1825可维护部分RRC上下文以便于用于该WTRU 1810的数据转发和控制信令。WTRU 1810可在作为候选者的eNB 1820上进行测量以加入协作传输。eNB 1820可不维持WTRU 1810RRC,直到来自eNB 1820的协作传输可由服务eNB 1815激活。
在WTRU可检测CC失败的场景中,部分RLF报告可由WTRU 1810发送给协作eNB 1825的CC。以下实施例是可替换的WTRU上报机制,可根据“基于RRC”或“基于非RRC”上报来分类和在下文描述。
如果用信号发送RRC消息,与SRB关联的UL路径(或DCCH逻辑信道)可在协作eNB上存在。这可以是或不是具有协作eNB 1825的情况。例如,使用仅用于DL数据传输的协作CC的WTRU可能不需要建立UL传输信道。可基于该方法上报的RLF检测的类型是WTRU显式/隐式RLF检测。
对于“基于非RRC的部分RLF上报”,如果采用基于非RRC的信令方法,为了协作eNB 1825提供该指示给服务eNB 1815,可能需要对现有X2接口修改,用于协作eNB 1825向服务eNB提供该指示。可基于该方法上报的RLF检测的类型可基于由MAC通过使用MAC控制元素(CE)或修改物理控制信道头(例如PUCCH头)的WTRU隐式UL RLF检测,用于信息插入和eNB RLF检测。一旦成功的接收到部分RLF指示,协作eNB 1825可将部分RLF报告转发给服务eNB 1815用于资源重分配。
相应于各种可能WTRU上报机制的一个可替换eNB转发方案可包括在由协作eNB 1825接收到RLF指示后,使用通过建立X2接口或通用控制信道(CCCH)或专用控制信道(DCCH)的按需eNB间信令配置。由于仅一个具有活动数据路径的CC被用于用信号发送RLF,协作eNB 1825可知道WTRU上下文,并且因此可识别将转发到的服务eNB的位置。新的X2消息可被创建以转发作为经封装数据或显式指示的RLF信号。可替换地,可修改X2数据面接口以允许在隧道协议帧头中的特殊配置指示用于WTRU 1810的CCCH/DCCH消息被发送。
相应于各种可能WTRU上报机制的另一个可替换eNB转发方案可包括使用预配置的CCCH/DCCH路径到所有协作eNB,并配置与DRB和在协作eNB 1825上的SRB相关联的传输信道。
通常eNB间通信可参考以下两种类型来描述:可用于通信eNB/BS系统相关信息的定义的X2AP消息,和可用于带内数据业务信令的X2数据传输。取决于协作eNB 1825可从WTRU接收部分RLF上报的上报方法(RRC或非RRC),通信的其中之一或两种类型是可能的(有修改),以提供以下路由过程。
按需通过X2接口配置CCCH/DCCH逻辑信道是可能的。然而,这可能需要在两个相关eNB间的X2AP交换以建立新的隧道路径。这可引起建立动态逻辑信道可不想呈现的延迟。
可替换地,通过X2接口的显式信令可得以执行,由于协作eNB 1825可知道WTRU上下文(在数据分离上建立)和关联的服务eNB 1815。两个可能的方法可包括创建新的X2AP消息以提供特定的WTRU信息。在一个方法中,该新的WTRU特定X2AP消息可被用来转发RRC消息(在DCCH或CCCH上接收)给服务eNB 1815以传输给它的RRC 1830用于进一步处理。在另一个方法中,X2隧道协议数据头可被修改以通过X2接口提供显式带内信令,因为协作eNB 1825已经在处理在X2隧道上的WTRU特定数据流量。在X2隧道上期望一些开销,因为多个DRB被绑定在该隧道上。因此,X2隧道开销可通过增加区分载荷是DRB或SRB的参数比特来修改(不必区分SRB 0,1或2,因为RRC 1830可以能够将该信息作为抽象语法表示法1(ASN.1)的一部分来解码)。
在可替换的实施例中,X2隧道开销可通过增加识别转发目的信道ID(取决于数据分离模式:分组数据覆盖协议(PDCP)-分离(RB ID)、RLC-分离(逻辑信道ID)和MAC-分离(传输信道ID))的比特字段来修改。在该方法中,可能没有新的字段加入数据业务路由处理已经需要的。
在另一替换可选实施例中,RLF失败的通知可通过增加新的MAC控制元素来进行。取决于用来分离数据的方法,和其他隐式DL RLF检测一起在eNB上进行的MAC CE上报可由协作eNB 1825检测。
当进行分组数据覆盖协议(PDCP)/RLC级别的分离时,隐式检测(RLC或PHY同步失败)和MAC CE上报可在协作eNB 1825上终止。然而,RLF指示可被转发给在服务eNB 1815上的RRC 1830。
在一个实施例中,新的X2AP消息可被创建用于提供特定的WTRU状态。在新的X2AP消息中提供的信息可包括失败了的无线电链路和该决定是如何获得的(即隐式检测(DL RLC不可恢复错误或PHY同步失败)或来自WTRU上报的部分RLF的MAC CE指示)。特殊的帧格式可增加到X2隧道协议以提供在新X2AP消息中提供的信息。
在另一个实施例中,可进行MAC级别的分离,从而隐式检测(PHY同步失败)和MAC CE上报可在协作eNB 1825上终止。类似于PDCP/RLC级别分离的方案可应用,除了隐式RLC检测可在服务eNB 1815上发生之外,并且因此可能不需要在可能的数据字段中。
为了RLF信令增强,在RRC连接重配置期间从服务eNB 1815到协作eNB 1825的用于SRB的附加配置可得以实现(当数据分离路径得以配置时)。活动的RRC连接可安全地激活,并且所有RRC消息可由PDCP完整性保护和加密。因此,无论提议的数据分离模型是什么(PDCP、PLC或MAC),在可与数据业务捆绑的通过X2接口的逻辑控制(CCCH/DCCH)信道建立足以为协作eNB 1825向服务eNB 1815转发RRC消息(显式部分RLF指示)提供必要的路由路径。
通过X2接口1850向服务eNB 1815上报RLF的一个假设可以是该机制可在RLF的隐式检测导致丢弃呼叫前触发服务eNB 1815发起RLF恢复,假设通过CC A接口的RLF可表示与eNB 1的通信可能完全丢失。因此,如果WTRU在RF阴影区域中保持静止,服务eNB 1的仅可能处理是进行到eNB 2的切换。然而,当X2接口不可用时(例如HeNB可能不支持X2接口),S1-MME接口可以是可被修改以支持该上报的可替换接口。
在另一个实施例中,S1-MME接口(未示出)可被修改以支持使协作eNB 1825能够上报RLF的过程和MME发起切换的过程。这两个过程可被合并到并改进为由协作eNB 1825通过S1-MME接口发起的一个“目标小区请求切换”过程。该机制可使用在协作eNB 1825上的RRM 1845来访问足够的WTRU数据路由上下文和空中接口(OTA)资源使用,以作出切换是作为部分RLF结果的最符合逻辑的恢复过程的智能决策。与S1-MME的RRC通信可从协作eNB 1825(按需或预配置的)发起。一些智能可建立在系统架构1800或信令协议中以确保在给定的时间对于WTRU仅有一个由协作eNB 1825发起的“目标小区请求切换”过程可存在。
实施例
1.一种增强无线发射/接收单元(WTRU)的小区边缘性能的方法,该方法包括:
WTRU通过各个下行链路(DL)与多个站点建立连接,每个DL包括至少一个运行在与其他DL成员载波(CC)的一个或多个相同或不同的频率上的DL CC;和
站点管理该站点用于特定DL CC运行频率的传输功率。
2.根据实施例1所述的方法,其中从特定的一个站点到该特定的一个站点小区边缘的距离通过增加该特定的一个站点在所述特定DL CC运行频率上的传输功率而变得更大,并且从至少一个其他站点到该至少一个其他站点各自小区边缘的距离通过降低该至少一个其他站点在所述特定DL CC运行频率上的传输功率而变得更小。
3.根据实施例1-2中任一项实施例所述的方法,其中不同CC频率之间的覆盖重叠在维持频率重用模式为1的同时得以创建。
4.根据实施例1-3中任一项实施例所述的方法,进一步包括:
WTRU通过各个上行链路(UL)与站点建立附加连接,每个UL包括至少一个运行在与其他UL CC的一个或更多个相同或不同的频率上的UL CC。
5.根据实施例4所述的方法,进一步包括:
WTRU通过下列中的至少一者传输UL控制信息(UCI):UL CC或在站点的两个之间连接的X2接口。
6.根据实施例1-5中任一项实施例所述的方法,其中WTRU被配置为从任意站点或同时从两个或更多个站点接收数据。
7.根据实施例1-6中任一项实施例所述的方法,其中站点包括下列中的至少一者:节点B、演进型节点B(eNB)、与基站相关联的远程无线电头(RRH)或节点B或eNB的若干扇区传输天线的其中之一。
8.根据实施例1-7中任一项实施例所述的方法,其中在重用集合中为每个CC定义功率使用模式。
9.根据实施例1-8中任一项实施例所述的方法,其中在重用集合中为每个CC定义天线模式。
10.根据实施例1-10中任一项实施例所述的方法,其中除了切换过程之外,各个CC激活或CC去激活被用来有效地支持CC特定切换以维持期望的接收质量。
11.根据实施例1-10中任一项实施例所述的方法,进一步包括:
WTRU检测CC失败;和
WTRU向协作站点的CC发送部分无线电链路失败(RLF)报告。
12.根据实施例11所述的方法,进一步包括:
在协作站点和服务站点之间建立X2接口、通用控制信道(CCCH)或专用控制信道(DCCH)以从协作站点将部分RLF指示转发给服务站点。
13.一种与被配置为管理其用于特定下行链路(DL)分量载波(CC)运行频率的多个站点通信的无线发射/接收单元(WTRU),该WTRU被配置为通过各个DL与站点建立连接,每个DL包括至少一个运行在与其他DL CC的一个或多个相同或不同的频率上的DL CC。
14.根据实施例13所述的WTRU,其中从特定的一个站点到该特定的一个站点小区边缘的距离通过增加该特定的一个站点在所述特定DL CC运行频率上的传输功率而变得更大,并且从至少一个其他站点到该至少一个其他站点各自小区边缘的距离通过降低该至少一个其他站点在所述特定DL CC运行频率上的传输功率而变得更小。
15.根据实施例13-14中任一项实施例所述的WTRU,其中WTRU被进一步配置为通过各个上行链路(UL)与站点建立附加连接,每个UL包括至少一个运行在与其他UL CC的一个或多个相同或不同的频率上的UL CC。
16.根据实施例13-15中任一项实施例所述的WTRU,其中WTRU被进一步配置为通过下列中的至少一者传输UL控制信息(UCI):UL CC或在站点的两个之间连接的X2接口。
17.根据实施例13-16中任一项实施例所述的WTRU,其中WTRU被配置为从任意站点或同时从两个或更多个站点接收数据。
18.根据实施例13-17中任一项实施例所述的WTRU,其中WTRU被进一步配置为在WTRU检测到CC失败的情况下,向协作站点的CC发送部分无线电链路失败(RLF)报告。
19.一种无线通信网络,包括:
多个站点,被配置为管理所述站点用于特定下行链路(DL)分量载波(CC)运行频率的传输功率;和
无线发射/接收单元(WTRU),被配置为通过各个DL与站点建立连接,每个DL包括至少一个运行在与其他DL CC的一个或多个相同或不同的频率上的DL CC。
20.根据实施例19所述的网络,其中从特定的一个站点到该特定的一个站点小区边缘的距离通过增加该特定的一个站点在所述特定DL CC运行频率上的传输功率而变得更大,并且从至少一个其他站点到该至少一个其他站点各自小区边缘的距离通过降低该至少一个其他站点在所述特定DL CC运行频率上的传输功率变得更小。
21.根据实施例20所述的网络,其中不同CC频率之间的覆盖重叠在维持频率重用模式为1的同时得以创建。
22.根据实施例20-21中任一项实施例所述的网络,其中站点包括下列中的至少一者:节点B、演进型节点B(eNB)、与基站相关联的远程无线电头(RRH)或节点B或eNB的若干扇区传输天线的其中之一。
23.根据实施例20-22中任一项实施例所述的网络,其中站点包括下列中的至少一者:节点B、演进型节点B(eNB)、与基站相关联的远程无线电头(RRH)或节点B或eNB的若干扇区传输天线的其中之一。
尽管以上以特定的组合描述了特征和元素,但是本领域普通技术人员将理解,每个特征或元素可以单独地或与其它的特征和元素任意组合地使用。此外,在此描述的方法可在包括在由计算机或处理器执行的计算机可读介质中的计算机程序、软件或固件中实现。计算机可读介质的示例包括电子信号(通过有线或无线连接传送)和计算机可读存储介质。计算机可读存储介质的示例包括但不限制为只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储器设备、诸如内部硬盘和可移除磁盘的磁性介质、磁光介质和诸如CD-ROM盘和数字通用盘(DVD)的光介质。与软件相关联的处理器可用来实现在WTRU、UE、终端、基站、RNC或任何主计算机中使用的射频收发信机。