本发明涉及人机交互领域,尤其涉及一种路由器发射功率的调节方法及装置。
背景技术:
路由器(Router),是连接因特网中各局域网、广域网的设备,它会根据信道的情况自动选择和设定路由,以最佳路径,按前后顺序发送信号。路由器是互联网络的枢纽,"交通警察"。目前路由器已经广泛应用于各行各业,各种不同档次的产品已成为实现各种骨干网内部连接、骨干网间互联和骨干网与互联网互联互通业务的主力军。无线路由器相较于传统路由器由于增加了无线接入的方式,能让用户更为便捷的上网而迅速普及开来。
而无线路由器中一个重要的问题就是无线信号的发射功率,发射功率强,无线信号的传输距离,穿透能力都会相应的增强;但是较大的发射功率一会由于辐射的问题影响用户的健康,另一方面不同场合用户的需求的无线信号传输距离和穿透能力不同,过大的功率会带来不必要的浪费。因此,目前无线路由器厂家一般会在路由器的设置中加入无线发射功率调节的选项来给用户自主选择。
目前无线路由器的配置方法主要分为网页配置和手机端APP配置两种方式,其本质上都是一种基于文本的配置方式,用户通过选择数据来配置路由器发射功率,缺少了对发射功率调节的直观认知。
另一方面,目前的无线路由器无线发射功率的配置方式,无论是网页还是手机端APP配置都较为繁琐,用户需要通过菜单选择逐层打开才能够实现。操作上缺乏便捷性。
技术实现要素:
本发明提供一种路由器发射功率的调节方法及装置,通过使用增强现实技术来给用户提供一个直观、方便的无线路由器发射功率配置方式。
增强现实技术(Augmented Reality,简称AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。这种技术由1990年提出。随着随身电子产品CPU运算能力的提升,预期增强现实的用途将会越来越广。
本发明一种路由器发射功率的调节方法,包括步骤:
S100采集实际场景,捕获所述路由器图像;
S200获取所述路由器的位置参数,建立三维空间模型;
S300获取所述路由器的当前发射功率信息,基于所述三维空间模块,将所述发射功率信息及调节控件叠加显示在所述路由器图像上;
S400监测用户的操作行为,当监测到用户对所述发射功率进行调节操作时,将所述调节操作信息反馈至路由器进行发射功率的调节。
本方案,通过采集包含路由器的实际场景,然后识别得到路由器位置,然后通过在路由器图像上叠加显示无线发射功率信息和无线发射功率调节控件来给用户提供直观、方便的无线路由器发射功率调节方法。
进一步的,所述步骤S300还包括步骤:
S310识别所述路由器的身份信息,建立通信连接;
S320获取所述路由器的当前发射功率;
S330基于所述三维空间模型,将获取的所述路由器的当前发射功率叠加显示到所述路由器图像上;
S340添加调节所述发射功率的显示控件,并将所述显示控件叠加在所述路由器图像上。
进一步的,所述步骤S310中所述路由器的身份信息指所述路由器的二维码或条形码。
通过二维码或条形码识别路由器身份,建立通信连接,快速而准确。
进一步的,所述步骤S330包括步骤:
S331基于所述三维空间模型,根据获取的所述路由器的发射功率的大小,以颜色渐变的形式、和/或亮度渐变的形式叠加显示在所述路由器图像上;或
S332基于所述三维空间模块,根据获取的所述路由器的发射功率的大小,以不同颜色、和/或不同形状的图像叠加显示在所述路由器图像上。
通过不同的方式显示发射功率,显示形式的多样性,使得用户操作起来更加具有趣味性。
进一步的,所述步骤S340中所述显示控件为旋钮、开关、滑块、或滑动变阻器。
根据显示控件的多样性,使得呈现的形式也多种多样。
进一步的,所述步骤S320包括步骤:
S321与所述路由器进行通信测试获得所述路由器的第一发射功率;
S322接收所述路由器发送的所述路由器的第二发射功率;
S323比较所述第一发射功率和第二发射功率是否在预设的误差允许范围之内,若是,则进入步骤S324;否则,进入步骤S325;
S324按照预设规则将所述第一发射功率或第二发射功率作为所述路由器的当前发射功率;
S325校准所述路由器的第一发射功率,并将校准后的所述路由器的第一发射功率作为所述路由器的当前发射功率。
加入比较和校准的步骤,可避免路由器发射功率不准而导致调节出错的情况。
进一步的,还包括步骤:
S450所述路由器根据所述调节操作信息进行发送功率的调节,在所述路由器图像上以数字形式实时叠加显示当前调节的发射功率大小,和/或以数字形式叠加显示用户操作的目标发射功率大小。
调控过程实时可见,发射功率变化信息也同样通过数字形式可见,用户体验感强。
另一方面,本发明还提供了一种路由器的发射功率调节装置,可采用上述路由器的发射功率的调节方法,本发明的调节装置包括采集模块、获取模块、显示模块、交互模块,所述获取模块分别与所述采集模块、显示模块相连,所述交互模块与所述显示模块相连,其中:
所述采集模块采集实际场景,并从所述采集的实际场景中捕获所述路由器图像;
所述获取模块获取所述路由器的位置参数,建立三维空间模型;
所述获取模块获取所述路由器的当前功率信息,基于所述三维空间模块,通过所述显示模块将所述功率信息及调节控件叠加显示在所述路由器图像上;
所述交互模块在所述显示模块上监测用户的操作行为,当监测到用户对所述发射功率进行调节操作时,将所述调节操作信息反馈至路由器进行发射功率的调节。
进一步的,所述获取模块包括识别单元、通信单元、发射功率获取单元、位置模型获取单元,所述识别单元、发射功率获取单元及所述位置模型获取单元分别与所述通信单元相连;其中:
所述识别单元识别所述路由器的身份信息,所述通信单元建立与所述路由器的通信连接;
所述发射功率获取单元通过所述通信单元获取所述路由器当前发射功率;
所述显示模块根据所述位置模型获取单元获取的所述三维空间模块,将所述路由器当前发射功率叠加显示到所述路由器图像上;
所述显示模块添加调节所述发射功率的显示控件,并将所述显示控件叠加在所述路由器图像上。
进一步的,所述路由器的身份信息指所述路由器的二维码、条形码、或MAC地址;
所述调节所述发射功率的显示控件为旋钮、开关、滑块、或滑动变阻器;
所述显示模块基于所述位置模型获取模块获取的所述三维空间模型,根据获取的所述路由器的发射功率的大小,以颜色渐变的形式、和/或亮度渐变的形式叠加显示在所述路由器图像上;或
所述显示模块基于所述位置获取模块获取的所述三维空间模块,根据获取的所述路由器的发射功率的大小,以不同颜色、和/或不同形状的图像叠加显示在所述路由器图像上。
本发明有益效果如下:
首先,本发明创造了一种路由器发射功率调节的新方式,在路由器的发射功率调节上提供了交互式且拟真体验,其中,“真实世界”(实际路由器场景)与虚拟世界的元素交互(发射功率、调节的控件),让用户操作感和体验感增强,趣味性增强。
其次,本发明通过改变传统的网页和手机端APP的文本/表单来显示或设置无线路由器发射功率,使用基于增强显示技术来在实际场景中的路由器图像上叠加显示无线发射功率的情况、及调节发射功率的显示控件,来提供给用户更为方便、直观的信息及设置方法。
最后,本发明中的虚拟元素的显示形式,即发射功率和显示控件的呈现形式多种多样,用户可根据喜好或需求自行设置,自主选择性强,且,叠加显示后的画面在视觉上可给予用户美的享受。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种路由器发射功率的调节方法实施例一流程图;
图2为本发明一种路由器发射功率的调节方法另一实施例流程图;
图3为本发明发射功率以颜色渐变形式增强显示示意图;
图4为本发明一种路由器发射功率的调节方法另一实施例流程图;
图5为本发明一种路由器发射功率的调节方法另一实施例中整体示意图;
图6为本发明一种路由器发射功率的调节方法另一实施例流程图;
图7a为用户通过手持终端采集无线路由器图像场景示意图;
图7b为路由器发射功率调节旋钮叠加显示效果示意图;
图7c为用户调整路由器发射功率操作示意图;
图8为本发明一种路由器发射功率的调节装置实施例框图。
附图标记:
001-无线路由器,002-用户手持终端,003-用户。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明一种路由器发射功率的调节方法的实施例一,如图1所示,包括步骤:
S100采集实际场景,捕获所述路由器图像;
S200获取所述路由器的位置参数,建立三维空间模型;
S300获取所述路由器的当前发射功率信息,基于所述三维空间模块,将所述发射功率信息及调节控件叠加显示在所述路由器图像上;
S400监测用户的操作行为,当监测到用户对所述发射功率进行调节操作时,将所述调节操作信息反馈至路由器进行发射功率的调节。
本发明主要针对的是路由器的发射功率配置,提出一种新的用户交互方法,通过使用增强现实技术来给用户提供一个直观、方便的无线路由器发射功率配置方式。用户通过手机端或其他终端的增强现实应用,通过摄像头采集实际路由器场景,然后识别得到路由器位置,然后通过在路由器图像上叠加显示无线发射功率信息和无线发射功率调节控件来给用户提供直观、方便的无线路由器发射功率调节方法。
较佳的,所述步骤S200中获取路由器的位置参数,建立路由器在3维空间中模型。这些位置参数包括路由器位置的角度(如以路由器中心为原点,按路由器正对摆放时角度为基础,得到当前路由器的旋转角度);路由器的距离(通过单目视觉测距或者双目视觉测距算法来确定路由器到手持终端的距离);路由器上可动部件的位置(如无线路由器的可动天线部分)等等。
较佳的,还包括步骤:
S500判断是否继续锁定了所述路由器的图像,若是,则对捕获的结果进行调整,再进入步骤S200;否则进入步骤S100。
本发明基于增强现实来对路由器的发射功率进行调节,增强现实,即AR,应用的工作流程如下:终端通过摄像头拍摄图像帧;对图像帧进行识别,确定AR目标物体;对图像帧中的AR目标物体进行跟踪,确定AR目标物体的位置;获取与所述AR目标物体相关联的AR虚拟信息,对图像帧进行渲染,将所述AR虚拟信息叠加在AR目标物体上进行显示,在终端屏幕上同时显示AR目标物体和AR虚拟内容以供用户进行交互。操作中,为了向用户提供最佳体验,AR应用需要对摄像头拍摄的每一帧图像都进行处理(包括识别、跟踪、及渲染等处理),可以设定固定的处理间隔,按照所述处理间隔周期性的对摄像头拍摄的图像帧进行处理。由于光线、用户剧烈移动或者路由器摆动等因素,则可能会丢失捕获的图像,当丢失捕获的图像时则判定失锁,则需要对路由器图像重新进行捕获,如果路由器图像没有失锁,即仍然锁定(捕获)了路由器图像,则需要对捕获的结果进行调整,因为在操作过程中用户手持设备和路由器之间仍然会有一些小的移动,需要进行相应的调整来继续锁定无线路由器图像。
本发明方法的另一实施例,如图2所示,包括步骤:
S100采集实际场景,捕获所述路由器图像;
S200获取所述路由器的位置参数,建立三维空间模型;
S310识别所述路由器的身份信息,建立通信连接;
S320获取所述路由器的当前发射功率;
S330基于所述三维空间模型,将获取的所述路由器的当前发射功率叠加显示到所述路由器图像上;
S340添加调节所述发射功率的显示控件,并将所述显示控件叠加在所述路由器图像上;
S400监测用户的操作行为,当监测到用户对所述发射功率进行调节操作时,将所述调节操作信息反馈至路由器进行发射功率的调节。
识别路由器的身份信息,建立通信连接,我们可选择连接该路由器的wifi,从而建立通信连接,此外,具体的,可以通过终端扫描该路由器上的二维码或条形码,所述二维码或条形码包含路由器相关信息,扫码过后则可建立连接关系。
较佳的,在上述实施例基础上,所述步骤S330包括步骤:
S331基于所述三维空间模型,根据获取的所述路由器的发射功率的大小,以颜色渐变的形式、和/或亮度渐变的形式叠加显示在所述路由器图像上;或
S332基于所述三维空间模块,根据获取的所述路由器的发射功率的大小,以不同颜色、和/或不同形状的图像叠加显示在所述路由器图像上。
路由器的发射功率的显示可以多种多样,比如,我们通过在路由器的天线上或路由器本体上等以颜色渐变形式、亮度渐变形式、或者颜色和亮度均渐变的形式显示在所述路由器图像上,如图3所示为颜色渐变形式,发射功率越大,则颜色越深。同样的,发射功率在被调节过程中,比如将发射功率调高的过程中,则会出现颜色越来越深现象(当然也可以设置颜色越浅,功率越大,则调高过程会出现颜色越来越淡的过程)。亮度的变化同样如此,或者,我们可以结合颜色及亮度一起来显示。
另一种显示方式,以不同的颜色、不同形状的图案、或者不同颜色和形状的图案来显示发射功率的不同大小。也就是说本发明的无线发射功率叠加显示图案也可以使用不同颜色或者不同形状等相互之间具有辨识度的图案来实现。比如,我们可以将发射功率分成不同的等级,每一个等级是一种颜色,例如20%发射功率以下为红色;20%-30%为橙色、30%-40%为黄色、以此类推,依次为绿色、青色、蓝色、紫色、棕色、黑色;发射功率越大,则等级越高,从而显示的颜色越多,如彩虹般绚丽,让用户在视觉上得到美的享受,同样的,在调节的过程中,每调高一个等级,则会点亮一个颜色,每调低一个等级,则会熄灭相应的一个颜色,如此在调节的过程中,也充满了乐趣,提高了用户体验。同样,图案的形状方面,也可根据用户的喜好自行设置,在此不再赘述。
较佳的,本发明所有实施例中的调节发射功率的显示控件可以为多种样式的图像,比如旋钮、开关、滑块、或滑动变阻器等具有调节能力的物体样式。比如我们可以在路由器图像上叠加显示滑块样式的显示控件,将滑块设置发射功率的显示上(比如路由器的天线上),用户通过手指触摸屏幕,滑动滑块来调节发射功率。
本发明一种路由器发射功率的调节方法的另一个实施例,如图4所示,包括步骤:
S100采集实际场景,捕获所述路由器图像;
S200获取所述路由器的位置参数,建立三维空间模型;
S310识别所述路由器的身份信息,建立通信连接;
S321与所述路由器进行通信测试获得所述路由器的第一发射功率;
S322接收所述路由器发送的所述路由器的第二发射功率;
S323比较所述第一发射功率和第二发射功率是否在预设的误差允许范围之内,若是,则进入步骤S324;否则,进入步骤S325;
S324按照预设规则将所述第一发射功率或第二发射功率作为所述路由器的当前发射功率;
S325校准所述路由器的第一发射功率,并将校准后的所述路由器的第一发射功率作为所述路由器的当前发射功率。
S330基于所述三维空间模型,将获取的所述路由器的当前发射功率叠加显示到所述路由器图像上;
S340添加调节所述发射功率的显示控件,并将所述显示控件叠加在所述路由器图像上;
S400监测用户的操作行为,当监测到用户对所述发射功率进行调节操作时,将所述调节操作信息反馈至路由器进行发射功率的调节。
本实施例,相比与之前的实施例,增加了一个发射功率的比较和校准步骤;当识别了路由器身份,建立通信连接后,可以通过测试获取路由器的发射功率;同时,接收路由器上报的发射功率,然后将两者进行比较,如果在预设的误差范围内,则说明路由器上报的发射功率是比较准备,接近实际的,可以作为当前的发射功率来叠加显示,当然,也可以采用测试获得的发射功率作为当前发射功率来叠加显示。而如果测试获得的发射功率与上报的发射功率的差异在误差范围之外,则说明,路由器上报的发射功率出现了偏差,此时,则需要对路由器进行校准,将测试获得的发射功率作为参考发射功率,对路由器的发射功率进行校准。校准后,路由器上报的发射功率则可作为当前发射功率进行叠加显示。
较佳的,在上述所有实施例基础上,还可增加步骤:
S450所述路由器根据所述调节操作信息进行发送功率的调节,在所述路由器图像上以数字形式实时叠加显示当前调节的发射功率大小,和/或以数字形式叠加显示用户操作的目标发射功率大小。
本实施例中,当路由器接收到调节操作的反馈信息后,便开始对自身的发射功率进行调节,而对发射功率的调节不一定能一步到位,因此发射功率在调节的过程中,我们可在路由器图像上以数字形式叠加显示当前调节中的发射功率大小,或者叠加显示用户目标发射功率的大小,或者两者均于显示。当然,我们也可以叠加显示当前发射功率距离目标发射功率还差多少的一个进度显示。
较佳的,关于用户的操作行为,我们可以通过手势去调节,终端回去识别用户的手势来进行相应的调节。当然,如果考虑到成本方面,及便携性方面,我们可选用触摸显示控件来调节。现在的触屏终端也比较普遍,比如,我们可在手机终端上显示的基于增强现实的路由器图像上,通过触屏触摸显示控件来调节发射功率。除此之外,我们也可以采用语音调控的方式,利用现有的终端上的语音功能,用户只需给出语音指令,例如,“请将发射功率调高到至XX”。这种方式的话,则接收到语音指令后,对语音进行解码获取发射功率调节的关键信息,然后将调节发射功率的关键信息转换成相应的调控指令,从而对发射功率进行相应调节。如此则不需要用户手动去调节显示控件了,只需发出语音指令即可。智能化程度高,用户体验感好。
本发明调节方法的最后一个实施例,如图5所示为本实施例的整体示意图,001为实际无线路由器,002为用户手持终端(手机,平板电脑等),003为用户。用户通过手持终端安装相应的增强现实应用软件,软件通过调用手持终端的摄像头来采集包含路由器的实际场景,然后识别得到路由器位置,然后通过在路由器图像上叠加显示无线发射功率信息和无线发射功率调节空间来给用户提供直观、方便的无线路由器发射功率调节方法。
具体软件实现流程图如图6所示:
101:软件通过调用摄像头来采集实际场景图像,如图7a所示,然后通过目标识别算法来在实际场景图像中寻找无线路由器图像,当寻找到无线路由器图像后进入下一步。
102:当捕获到无线路由器图像后,软件需要进一步获取更多的无线路由器信息,建立路由器在3维空间中模型。这些信息需要包括路由器位置的角度(如以路由器中心为原点,按路由器正对摆放时角度为基础,得到当前路由器的旋转角度);路由器的距离(通过单目视觉测距或者双目视觉测距算法来确定路由器到手持终端的距离);路由器上可动部件的位置(如无线路由器的可动天线部分)等等。
103:当软件完成对无线路由器图像的捕获工作后即进入增强显示工作部分,首先软件需要与路由器通信,获取路由器目前的无线发射功率情况。
104:在获得无线路由器的无线发射功率情况后,通过基于102获得的无线路由器的3维空间模型,软件通过将路由器发射功率情况以直观的颜色渐变的形式叠加显示在手持终端显示的路由器图像上,来代表不同的发射功率,如图3所示。
105:为了使用户更加方便的调节无线路由器的无线发射功率,本发明通过在手持终端显示的无线路由器图像上叠加显示虚拟的发射功率调节控件--旋钮,如图7b所示,来让用户在主观上直接对路由器的无线发射功率进行调节。
106:在手持终端上,用户可以通过触摸屏来触摸虚拟旋钮控件来对无线路由器发射功率进行调节,如图7c所示。软件需要实时响应用户的操作来调整旋钮的显示效果,从而模拟真实的旋钮操作体验。
107:软件接收到用户的调节操作信息后,将调节操作发送至无线路由器,无线路由器根据相应的操作信息来调节自身的无线发射功率。
108:上述103至107完成了一次用户和路由器的交互,每次交互后都需要检查软件是否仍然锁定无线路由器图像,如果由于光线、用户剧烈移动或者路由器摆动等因素丢失捕获的图像时则判定失锁,软件需要对路由器图像重新进行捕获。
109:如果无线路由器图像没有失锁,软件仍然需要对捕获的结果进行调整,因为在操作过程中用户手持设备和路由器之间仍然会有一些小的移动,需要进行相应的调整来继续锁定无线路由器图像。
本实施例中的手持终端为具有程序处理能力,具有摄像头来采集图像功能以及显示器能够显示图像,并且支持触摸、用户可以方便移动的设备。
基于相同的技术构思,本发明实施例还提供一种路由器发射功率的调节装置,该调节装置可执行上述方法实施例。本发明实施例提供的调节装置如图8所示。一种路由器发射功率的调节装置,包括采集模块10、获取模块20、显示模块30、交互模块40,所述获取模块20分别与所述采集模块10、显示模块30相连,所述交互模块40与所述显示模块30相连,其中:
所述采集模块10采集实际场景,并从所述采集的实际场景中捕获所述路由器图像;
所述获取模块20获取所述路由器的位置参数,建立三维空间模型;
所述获取模块20获取所述路由器的当前功率信息,基于所述三维空间模块,通过所述显示模块30将所述功率信息及调节控件叠加显示在所述路由器图像上;
所述交互模块40在所述显示模块30上监测用户的操作行为,当监测到用户对所述发射功率进行调节操作时,将所述调节操作信息反馈至路由器进行发射功率的调节。
本实施例的基本内容是该调节装置通过使用增强现实技术来给用户提供一个直观、方便的无线路由器发射功率配置方式。用户通过该装置的增强现实应用,具体的,该装置通过摄像头采集实际路由器场景,捕获路由器图像。然后通过获取模块20根据路由器图像获取路由器的位置参数,建立三维空间模块。具体算法业界已非常熟悉,在此不赘述。最后在场景的路由器图像中叠加虚拟的路由器无线发射功率调节的控件来实现对发射功率的调节。
较佳的,在上述装置实施例的基础上,所述获取模块20包括识别单元21、通信单元22、发射功率获取单元23、位置模型获取单元24,所述识别单元21、发射功率获取单元23及所述位置模型获取单元24分别与所述通信单元22相连;其中:
所述识别单元21识别所述路由器的身份信息,所述通信单元22建立与所述路由器的通信连接;
所述发射功率获取单元23通过所述通信单元22获取所述路由器当前发射功率;
所述显示模块30根据所述位置模型获取单元24获取的所述三维空间模块,将所述路由器当前发射功率叠加显示到所述路由器图像上;
所述显示模块30添加调节所述发射功率的显示控件,并将所述显示控件叠加在所述路由器图像上。
较佳的,上述实施例中,所述路由器的身份信息指所述路由器的二维码、条形码、或MAC地址;
所述调节所述发射功率的显示控件为旋钮、开关、滑块、或滑动变阻器;
所述显示模块30基于所述位置模型获取模块20获取的所述三维空间模型,根据获取的所述路由器的发射功率的大小,以颜色渐变的形式、和/或亮度渐变的形式叠加显示在所述路由器图像上;或
所述显示模块30基于所述位置获取模块20获取的所述三维空间模块,根据获取的所述路由器的发射功率的大小,以不同颜色、和/或不同形状的图像叠加显示在所述路由器图像上。
此处的显示方式或形式,前面方法实施例中已描述,此处不再过多细叙。
较佳的,还可包括语音模块,所述语音模块采集用户的语音信息,并从语音信息中解析出用户的语音调节路由器发射功率的指令,然后将该指令传送给交互模块,交互模块接收到语音模块解析出的调控指令后再在图像上进行相应调节,并同时反馈给路由器进行相应的发射功率的调节。调节完毕后,也可通过交互模块传递给语音模块,通过语音模块以语音的形式告知用户调节完毕,目前发射功率为XX等。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。