用于噪声消除的头戴式受话器和耳机的声耦合装置的制作方法

文档序号:13688515阅读:494来源:国知局
用于噪声消除的头戴式受话器和耳机的声耦合装置的制作方法

发明领域

本发明总体上涉及具有环境噪声消除(“anc”)(有时被称为环境噪声降低(“anr”))特征的头戴式受话器和耳机,其目前通常与移动电子设备(如蜂窝电话手机和音乐播放器)一起使用。特别地,本发明涉及集成到头戴式受话器和耳机中并且允许在不使用外部测量系统的情况下校准噪声消除处理的物理装置,以便允许以最小的手动参与生产线来非常快速的制造。本发明特别适用于前馈型anc头戴式受话器和耳机。

为了解释的简单,本发明将关于anc头戴式受话器进行描述。应当认识到,本发明同样适用于包括用于通信的耳麦中的那些的耳机。

现有技术的背景

为了描述的清楚,首先显示典型anc头戴式受话器的结构是有用的。图1示出了anc头戴式受话器10及其主要组成部件的简化截面图。

头戴式受话器使用安装在基板14上的小型扬声器12(通常为40mm直径的类型)。基板14被构造成使得圆形或椭圆形的助听垫16可以安装在其前表面的周边处,其中装饰网18装配在扬声器12的前部,以保护并遮蔽它不被看到。装饰网18没有声学功能。助听垫16需要基本上是隔音的,因此表皮材料通常由人造皮制成,以在耳朵周围且抵靠头部形成舒适的环形声密封,并且该垫通常填充有泡沫橡胶,且优选为粘弹性的泡沫(“记忆泡沫”)。由位于耳朵和基板之间的助听垫的内表面界定的空气体积称为“前部体积”,如图1中以20所示。

基板的后表面必须以用于扬声器12的后部的一些覆盖物或保护物,并且这可以是(a)相对“开放”型的塑性网格布置,其在很大程度上是透声的,或者(b)“封闭”型的壳,其隔音的。这些通常分别被称为“开放”和“封闭”型的头戴式受话器结构。开放结构不会以任何方式限制扬声器的顺应性,因此其低频性能不受限制。而且,它不会对头戴式受话器增加任何显著的谐振特性,并且因此对于具有优化的频率响应的高保真头戴式受话器来说,开放布置是优选的。

开放头戴式受话器系统的一个小缺点是来自扬声器后部的小的声音的向外发射。然而,更重要的缺点在于结构在声学方面是相对可穿透的,因此环境噪声行进通过开放结构,然后通过扬声器本身到听众的耳朵而没有太多的衰减。

诸如图1所示的后壳22的封闭型头戴式受话器结构减少了声音的向外发射以及也较少了返回(inward-bound)的环境噪声。然而,如果要使用完全封闭的后壳22,则直接耦合到封装在壳内的空气体积的扬声器隔膜现在必须驱动抵抗空气的顺应性以及其自身的顺应性,并且这减少了扬声器的有效顺应性。因此,扬声器的低频性能降低,并且相关联的相位响应也受到影响,两者共同作用使anc系统更难实现。封装在基板后面的封闭壳22内的空气体积称为“后部体积”,如图1中以24所示。麦克风30安装在后壳22上,该麦克风30提供指示到anc系统的将被降低的环境噪声的信号。

为了克服这个限制并且“释放”扬声器12隔膜运动,通常的做法是允许一些空气进入和离开后部体积24,使得扬声器12的隔膜不必违反附加的顺应性:在声学方面,这增加了对部后体积顺应性的平行惯性。这可以通过在后壳中创建通气孔来实现,图1中的后排气孔26为了减少后部体积24中的共振而结合声阻材料28以限制通过排气孔26的气流速率。后排气孔26及其相关联的声阻器28都在图1中示出。声阻式后排气孔28和后部体积24顺应性的组合充当入口环境噪声的高切滤声器,并且这定义了头戴式受话器在中频和高频处的被动衰减特性。通常,外部环境和耳朵之间的高频声音衰减在800hz以上或其周围变得明显。

可选的气流通路是从后部体积24经由基板14再经由声阻器到前部体积20,并且这个选择也在图1中示出(“前后”声阻器32)。这种方法的缺点在于,它降低了头戴式受话器10的低频响应,因为在低频处,前部体积20中的声压级由于经由前后声阻器32和相关联的排气孔进出后部体积24的气流而降低(其中扬声器生成的压力具有与前部体积相反的极性)。

然而,有很好的理由来包括诸如前后声阻器32的前后声学耦合。当头戴式受话器10放置在头部上或从其上移除时,助听垫16以及因此与耳道接触的空气的前部体积20经受压缩或减压。直接耦合到耳道和鼓膜的空气的这些压缩和减压可能是不舒适和令人不愉快的。此外,这些压力的变化导致扬声器12的隔膜分别向内推和向外拉,超出其操作位移的范围,并且这可能导致永久性损坏。因此,有用的是具有小的前后气流通路以允许足够的气流而减少不适且不足以使得其损害头戴式受话器10的低频性能。这个小的通路就其本身而言通常不足以减轻由固定的后部体积24引起的上述顺应性限制的问题,因此有利的是使用后排气孔26和前后路径,每一个具有适当选择放置的声阻器来减小谐振。

为了达到令人满意的噪声消除,头戴式受话器的校准需要考虑到头戴式受话器之间的单元与单元的性能特性差异。

英国专利公布gb2,475,526a描述了前馈型anc校准系统,以及制造和校准用于头戴式受话器的模块的新颖装置。gb2,475,526a描述了将噪声消除信号的幅度调整到其最佳水平的“灵敏度指数”(si)的概念。对于特定anc头戴式受话器或耳机的灵敏度指数被定义为其扬声器及其外部麦克风的灵敏度的乘积。对于gb2,475,526a的模块系统,这通过将anc模块插入且夹紧到特殊的校准系统中,将已知的电信号驱动到扬声器中,并测量所产生的麦克风信号的幅度来获得。该过程需要手动交互、特殊设备,以及然后电子存储所产生的si值,以便随后由合适的anc处理方案使用。

通过将参考信号驱动到扬声器中并测量来自其麦克风的接收到的信号来校准声学噪声消除系统的基本概念不是新的;在现有技术中存在许多示例。例如,美国专利公布us2004/0013273a1描述了主动噪声控制系统的校准,其中通过噪声消除扬声器驱动的并由相关联的麦克风接收的校准参考声音被用于“适应任何麦克风漂移或发生的其他不规则性...”且其“消除了对于昂贵的校准麦克风的需要”。然而,由于在anc麦克风和相应的扬声器之间存在高度的自然声学隔离,所以该方法对于前馈anc头戴式受话器和耳机是不实际的。

发明概述

为了促进前馈anc头戴式受话器和耳机的自校准,本发明提供了扬声器和外部麦克风之间的稳定的、预先确定且精确控制的声耦合,从而使得能够进行快速的anc校准,而不需要费时且昂贵的外部校准程序和硬件。

根据本发明的第一方面,提供了声耦合装置,其包括:

管道,其设置在主体内;

第一端口,该第一端口在主体中,其在声学上将管道连接到环境空气;

第二端口,该第二端口在主体中,其用于在声学上将管道连接到使用中的头戴式受话器扬声器的后部体积,该第二端口与第一端口间隔开;

麦克风,该麦克风具有在声学上耦合到在管道内的预定位置的入口,所述入口与第一端口间隔开。

优选地,管道包含第一声阻材料。

优选地,第一端口包括管道的第一开口端。

优选地,第二端口包括远离第一端的管道的第二开口端。

优选地,第二端口设置在管道的壁中。

优选地,第二端口被第二声阻材料覆盖或至少部分地填充有第二声阻材料。

优选地,第二端口设置在麦克风附近。

优选地,该装置还包括覆盖第一端口的第三声阻材料。

优选地,盖设置在管道的第一端上,第一端口包括设置在盖中的多个第一开口。

优选地,第三声阻材料覆盖第一开口。

优选地,第二端口包括多个第二开口。

优选地,第二开口分布在一个区域上并且被布置在麦克风周围。

根据本发明的第二方面,提供了主动降噪装置,其包括:

壳体,该壳体承载扬声器,该扬声器具有耦合到由用户耳朵限定并耦合到用户耳朵的第一空气体积的第一隔膜表面,以及限定壳体组件内的空腔的第二隔膜表面,以便在该隔膜的后面限定第二空气体积;

根据本发明的第一方面所述的声耦合装置,其中该管道设置在壳体中,该第一端口限定具有第一特性声阻抗的第一声耦合器件,该第二端口限定具有第二特性声阻抗的第二声耦合器件。

优选地,第一声耦合器件和第二声耦合器件中的至少一个具有主要是声阻的特性的声阻抗性质。

优选地,第一声耦合器件和第二声耦合器件中的至少一个通过将声阻网材料的覆盖层密封到具有预定表面区域的开口上而形成。

优选地,第一声耦合器件和第二声耦合器件中的至少一个通过将具有体声阻性质(abulkacousticresistanceproperty)的材料结合到管道中而形成。

优选地,第一声耦合器件和第二声耦合器件中的至少一个具有主要是声惯量特性的声阻抗性质。

优选地,第一声耦合器件和第二声耦合器件中的至少一个由管、凹槽或管道或通过耦合到所述麦克风的辐射阻抗形成。

优选地,第一声耦合器件和第二声耦合器件中的至少一个包括围绕麦克风的主轴大致对称布置的多个开口。

优选地,该装置与反馈型环境降噪系统同时并结合其操作。

优选地,该装置与前馈anc系统和反馈anc系统同时并结合其操作。

附图简述

现在将参考附图描述本发明,其中:

图1是现有技术的头戴式受话器的横截面图;

图2a示出了根据本发明的包含第一类型声学分压器的声耦合装置;

图2b显示了对于图2a中的声耦合装置的等效电路;

图3a示出了根据本发明的包含第二类型声学分压器的声耦合装置;

图3b显示了对于图3a中的声耦合装置的等效电路;

图4a示出了根据本发明的包含第三类型声学分压器的声耦合装置;

图4b显示了对于图4a中的声耦合装置的等效电路;

图5显示了根据本发明的第一实施例的声耦合装置;

图6显示了根据本发明的第二实施例的声耦合装置;

图7显示了根据本发明的第三实施例的声耦合装置;

图8和图9是显示了图5的实施例的性能测量的曲线图;

图10显示了包括根据本发明的声耦合装置的耳机的局部剖视;

图11是图10的耳机的分解图;

图12以组装形式显示了图10的耳机;

图13a显示了包括根据本发明的声耦合装置的第一mems麦克风模块的等距分解图;

图13b显示了通过图13a的模块的正面剖视图;

图14a显示了包括根据本发明的声耦合装置的第二mems麦克风模块的等距分解图;

图14b显示了通过图14a的模块的正面剖视图;以及

图15显示了图13a和图13b的模块结合并联声分流器实现的图示。

优选实施例的描述

本发明是一种声耦合装置,其可用于使用其自身的内部换能器而不是外部校准系统校准前馈型anc头戴式受话器和耳机。具体地,本发明是用于将来自扬声器的信号声耦合到外部麦克风使得可以生成随后可用于设置anc处理器生成的anc信号的幅度的与(扬声器和麦克风的)灵敏度指数相关的信号的装置。

故意将扬声器的信号耦合到外部anc麦克风的概念完全违背了如gb2,445,388第15页所述的anc头戴式受话器和耳机设计的既定认知:“在这样的实施例中,期望的是环境噪声感测麦克风尽可能远离出口端口对(itisdesirable,insuchanembodiment,thattheambientnoise-sensingmicrophonesarepositionedasfaraspossiblefromtheoutletportpairs.)”。对此地原因是如果从外部麦克风得到的anc扬声器信号的任何部分将被耦合回到相同的外部麦克风,则会产生具有以下潜在后果的时间延迟的反馈回路。

在anc系统中出现不稳定的正反馈的可能性,导致用户耳朵周围“嚎叫”和大声吹口哨。

因为噪声消除取决于非常精确地定义的电子滤波,而没有时间延迟效应,所以前馈噪声消除有效性将被这样的声耦合显著削弱的可能性。

通过声耦合引入的梳状滤波,音乐播放和其他音频的质量也将衰减的可能性。

在本发明中,被选择用于驱动声耦合的扬声器信号可以从头戴式受话器结构的前部体积或后部体积中提取出来。尽管这种信号是相互相反的相位,但是从扬声器耦合到麦克风所需的信号相对较小并且可被补偿。

如果使用前部体积信号,那么这相对于输入噪声是相反的相位,并且因此正反馈问题小于使用从后部体积得到的信号,但是功能受耳朵是否存在于头戴式受话器前腔的影响。对于在受控条件下的工厂中进行的校准,这当然这是不相关的。然而,使用后部体积信号更加实用和方便,这是因为头戴式受话器的后排气孔可以容易地靠近外部麦克风入口端口定位,并且这允许创建若干简洁的耦合机构。

本发明使用新概念“声学分压器”来精确地控制从扬声器耦合到前馈anc麦克风的信号的幅度。公开了三种不同的方法,用于使用不同类型的声阻器材料来创建声学分压器装置。第一种方法使用具有体声阻率的材料,诸如开孔膨胀泡沫橡胶,并且优选地是粘弹性泡沫(“记忆泡沫”),因为它是稳定的和部分衰减的,这降低了颤噪效应。第二种方法使用众所周知的用作声阻器材料的片状材料,诸如尼龙网或类似材料。用于创建声学分压器的第三种方法使用声阻器和声惯量的组合,这是实现本发明的非常实用的方法,特别是对于可用空间在一定程度上受限的入耳式耳机。

图2a描绘了基于第一类型的声学分压器装置(“类型1”)的原理的声耦合装置100。具有适当体声阻率的材料102(诸如粘弹性泡沫)被使用,其中体阻材料102的圆柱体或柱体被布置成在两个分离的声环境之间形成声耦合,将体阻材料102耦合于端口“a”(最上面)和端口“b”(最下面)。这可以表示例如通过头戴式受话器的外部壳106被创建并且填充有短圆柱的粘弹性泡沫的管道104,其中下端口“b”在平面r-r'处耦合到头戴式受话器的后部体积,并且最上面的端口“a”耦合到在平面p-p'处的环境空气。麦克风108设置在位于距p-p'的距离x和距r-r'的距离y的中间平面q-q'处。因此,如本领域技术人员将认识到的,以类似于分压器上的“滑块”的方式,麦克风108的平面q-q'处的体材料(bulkmaterial)中的声压与端口“a”和“b”之间的声压差成比例,并且取决于距离x和y的比率。声压沿着材料102的长度以线性方式变化,因此如果端口a和b处的声压级(spl)分别为spla和splb,并且麦克风处的spl为splq,则麦克风108的声压可以如下计算。

因此,这种类型1的装置提供了将预定分数的声信号传送到所选择的麦克风108的受控的且精确的方法。为了实际的目的,材料102自身的声惯量和顺应性可以被忽略,因为与材料的声阻相比,这些声学效应相对较小。图2b显示了等效的类似电气网络,其中声阻被描绘为rx和ry,麦克风为q,端口为a和b。

图3a描绘了基于第二类型的声学分压器装置(“类型2”)的原理的声耦合装置200,其使用具有适当声阻率的通过材料本身的平面的薄片材料,诸如尼龙网、穿孔箔等。这些材料都广泛用于头戴式受话器和扬声器制造中,并且可以根据例如编织网、穿孔或其它通过材料从一个表面到另一个表面的声学通路的紧密度以宽范围的声阻获得。图3a显示了通过固体材料204形成的管道202,其特征再次在于最上面的端口“a”和最下面的端口“b”,并且具有位于形成在管道202中的空腔208内的麦克风206。在这种情况下,系统具有延伸的长度没有任何优点。两个端口a、b中的每一个分别通过由声阻片材形成的声阻器210、212覆盖,使得每个端口具有良好限定的声阻(以声欧姆mks为单位)。这些声阻由(a)暴露的声阻材料的面积和(b)所选材料的具体声导两者定义。因此,可以精确地设计各种声阻器值。分压器装置的整体串联声阻是两个端口声阻之和。

该装置200类似于装置100之处在于,它表示一对串联连接的声阻器,其中互连节点耦合到麦克风206,以便形成“声学分压器”。这里,图3a的端口“a”处的最上面的声阻器210对应于图2b的声阻器rx,并且图3a的端口“b”处的最下面的声阻器212对应于图2b的声阻器ry。因此,等式[1]也适用于这个配置。

图3a显示了配置在位于后部体积216和环境218之间的头戴式受话器的后壳214中的声学分压器装置200。在实际的头戴式受话器中,后排气孔可能需要具有例如50欧姆的声阻,以便提供合适的声频响应。在这种情况下,如果需要以小比例(例如10%)的后部体积声压信号驱动anc麦克风,则可以选择两个端口的相应声阻,以便:(a)向麦克风提供10%的信号,和(b)具有50欧姆的总和。因此,声阻器210将需要具有5个声欧姆的声阻,并且声阻器212具有45声欧姆的声阻。

图3b显示了作为等效的类似电路的图3a的声学装置,其中声阻器210、212分别由声阻器“r网_a”和“r网_b”表示。在声学装置中,必须有一个小的中心空腔208,麦克风206位于该中心空腔208中,并且这种空气体积(声学顺应性)在图3b中在等效电路中通过接地电容“c_麦克风_空腔”表示。实际上,与声阻器相比,这种顺应性的效果可能相对较小,但是为了完整性而将其包括在此。

图2a和图3a中所示的声耦合装置赋予的另外的好处在于前馈麦克风不直接暴露在环境中;而是通过粘弹性泡沫或网在某种程度上被屏蔽,这减少了风噪相关的人为影响。另一个有用的特征在于两个结构由于其声阻元件而本质上衰减,因此不向头戴式受话器或耳机添加将使相关联的anc处理明显复杂化并且损害相关联的anc处理的任何谐振结构。

图4a描绘了包含第三类型声学分压器(“类型3”)的声耦合装置300。这一次,不是基于一对声阻器,而是它基于声阻器和声惯量的使用,后者表示管或管道等,并且方便地形成为头戴式受话器或耳机的塑料模制件的一部分。

参考图4a,细长管道302形成为穿过头戴式受话器或耳机的壳或外壳304,其最下面的的开口或端口306耦合到头戴式受话器的后部体积308,并且最上面的端口310暴露于环境空气312。以声阻网形式的声阻器314横跨端口306存在,提供对管道302中的空气与头戴式受话器的后部体积中的空气之间的气流的阻力。麦克风316位于管道302中,与端口310间隔开。如图4a所示,在该实施例中,麦克风316设置在端口306和声阻器314附近。管道302中的空气具有类似于电感的声质量或惯量的性质,并且因此具有随频率而增加的声阻抗。

声质量ma类似于(机械)质量mm,但具有kg.m-4的量纲。它与通过净力且不压缩而经历加速的气体质量相关联。管道302中的空气的声质量(或惯量)ma可以根据管道中存在的空气的机械质量mm及其横截面积s如下计算。

空气的质量mm可以根据管道302中的空气体积和空气的密度ρ0(在标准温度和压力下约为1.18kg.m-3)来计算。对于具有长度l和横截面积s的空气的管的进一步计算揭示了声质量m管如下。

在频率f下,相应的声阻抗za类似于电感的情况,如下。

za=2πfma声欧姆(mks)[4]

管道尺寸可以相对较小,但仍然对于本发明的使用非常有效。例如,直径为0.6mm、长度为4mm的管道具有对应于167mh的电当量的惯量,在1khz处的声阻抗为188欧姆;它还具有283欧姆的串联电阻分量。类似地,由适用于入耳式耳机的420级尼龙网形成的1mm直径的声阻器具有约2500欧姆的典型声阻。用于管道和网的这些阻抗值在规模上是相似的,因此它们非常适合于制造在1khz及其周围处操作的平衡良好的声学分压器。

图4b显示了表示图4a的简单声学装置(网络)的等效的类似电路,其中管道302的声学阻抗为“z_管道”,声阻器314的阻抗(声阻)为“r_网_b”,并且管道302的顺应性是“c_管道”。这种简单模型的进一步开发将向环境节点添加辐射阻抗,但是这种简单的模型足以解释作为声学分压器的装置的原理。虽然管道惯量将频率依赖元件引入声耦合中,但是它是稳定的,并且可以通过例如精密塑性成型对于本发明以具有适当阻抗性质的精确和再现性进行工程设计。

图5显示了包含类型3声学分压器的声耦合装置400的实际实施例。相似的参考数字用于表示与图4a中相似的部件,其中向其添加100。在图5所示的实施例中,端口406位于管道402的面向麦克风416的侧壁418中。该配置非常适合于在小型耳机中的应用,如稍后将描述的。这种装置的类似电路又是图4b的电路。

图6显示了包含适用于头戴式受话器和耳机两者的应用的使用体声阻材料的类型1声学分压器的声耦合装置500的实际实施例。相似的参考数字用于表示与图2a中相似的部件,其中向其添加了400。在图5所示的实施例中,这里,头戴式受话器/耳机的管道504包含粘弹性泡沫橡胶塞或其它具有合适体声阻率的材料形式的声阻器502。麦克风508被设置成便于按照图2a和图2b以及等式[1]的原理在后部体积510和外部环境512之间的中间平面处采样声压。

图7显示了包含适用于头戴式受话器和耳机两者的应用、使用片状声阻器材料的类型2声学分压器的声耦合装置600的实际实施例。相似的参考数字用于表示与图3a中相似的部件,其中向其添加了400。

声耦合装置600是基于图3a的结构的更复杂的装置,其具有如下的设计中的附加特征。

如上所述,在传统的后排气的头戴式受话器中,后排气孔是用于空气传播的环境噪声以进入头戴式受话器结构并行进到耳朵的进入点。因此,理想情况下,麦克风应该位于同一点处,以便产生具有与输入噪声相同的幅度和相位性质的噪声消除波形。如果麦克风被定位在距离后排气孔几厘米,则两者之间可能会有时间差异并且因此有相位差异。20mm的距离表示时间周期为58μs的声学路径,并且相应的相位值在1khz为21°,而这将显著损害anc的性能,如gb2,475,526a所述。实际上,输入噪声可以从任何方向到达,有时到达麦克风前方20mm的排气孔,反之亦然。因此,在麦克风信号和输入噪声信号之间可能存在±21°的相位变化(在1khz处),并且这种变化以及由此产生的anc性能将取决于方向,并且对听众可听见。然而,如前所述,在传统的现有技术的anc头戴式受话器或耳机中,如果外部麦克风被定位成与后排气孔太靠近,则该系统将变得容易受到“嚎叫”的正反馈和类似的不稳定性的影响。

声耦合装置600包括端口“a”上的盖620。多个开口622设置在盖620中以形成端口a。开口在空间上分布在优选地位于麦克风606的中心的预定区域上方。例如,开口622可以布置成跨过20mm直径区域的“胡椒粉瓶”图案(a“pepper-pot”pattern)。虽然在图7中示出了盖620,但是在其他实施例中,盖可以与头戴式受话器的外部壳集成在一起。

类似地,端口b包括多个第二开口624,其在空间上分布在优选地位于麦克风606的中心的第二预定区域上方。

如果存在单个外部排气孔,那么如果例如用户的头靠在枕头上休息,则可能会被堵塞,因此anc会受到损害,并且可能会出现反馈或不稳定性的可能性。通过使用空间上分布在预定区域上的多个外部排气孔,可以避免这种情况(因为不可能所有排气孔都被阻挡)。

图7的实施例的特征在于,麦克风606相对于端口b的第二开口624和端口a的开口622大致居中地布置。开口622、624可以被配置成一维线性阵列或二维区域阵列(如“胡椒粉瓶”图案)。

声耦合装置600允许对后部体积616与环境618之间的声耦合的幅度的精确控制的衰减。麦克风606相对于开口622、624的位置导致麦克风606在对耳机或头戴式受话器中的其精确的空气传播的进入点处检测到输入噪声。结果是麦克风/排气孔装置与来自在三维中的所有方向的输入噪声相位相干,因此它对所得到的噪声消除性能赋予了有价值的全方位性质–对于当前的anc头戴式受话器,噪声消除性能不依赖于方向,其中当用户的头部相对于噪声源旋转时,可以听到残留噪声以改变特性和音量。

图8和图9显示了其中使用如图3a所示的实施例集成了本发明的耳罩式anc头戴式受话器的频率响应和振幅数据。头戴式受话器使用40mm扬声器和4mm驻极体前馈anc麦克风。尼龙网在端口a、b中分别用于声阻器210、212;使用具有不同的特定声阻率的两种类型的网(类型280和类型420;后者更密集并且具有更大的声阻)。在两种情况下,在7mm直径的端口b上使用中密度网(类型420),提供约20声欧姆的声阻。

首先,图8显示了使用最外侧的后排气孔上的类型280的较低声阻的各种传递功能,以便提供从扬声器到麦克风的相对较小的声耦合,从而最小程度地扰乱驱动器到耳朵和环境到麦克风的功能。最上面的两条迹线(位于另一个上面)显示了以下图形:(1)与头戴式受话器壳直接相邻的参考麦克风;和(2)本发明的该实施例中的前馈麦克风。很明显,两者之间几乎没有可辨别的差异,这表明本发明对外部刺激的麦克风响应几乎不受其与后部体积的耦合的影响。(这两个图都包含测量扬声器的响应,其尚未得到补偿。)

接下来,图8的最下面的图示显示了扬声器到麦克风的响应。这是从后部体积216到前馈anc麦克风206的耦合,且这是用于自校准的信号。

图9显示了用于外部网210的不同密度的各种传递功能,表明可以精确地控制麦克风206处的校准信号水平。

图9的最上面的两个迹线(实际上位于另一个的上面),显示了头戴式受话器被安装在其上的人造头部耳模拟器的头戴式受话器驱动器到耳朵的曲线图,以便示出不同的网状声阻不干扰头戴式受话器的正常频率响应。很明显,两者之间存在很小或没有可辨别的差异,因此本发明的使用不会显著影响头戴式受话器的自然声学响应。

接下来,图9的最下面的两个曲线图示出了对于两个不同外部网密度的驱动器到麦克风的响应,证明了扬声器到麦克风耦合可以被调整到不同的值,如等式[1]所述。这两个曲线图中的最上面的曲线图显示了麦克风处的较高电平的信号,因为外部网更密集(中等声阻类型420),而两个曲线图中的较低者表示较小的声耦合,因为外部网较不密集,类型280,因此等式1的{y/(y+x)}因子更小。

本发明可以非常容易地并入现有的anc耳机结构中,并且可以在不产生额外成本的情况下进行,且不需要任何额外的空间或特殊特征。为了证明这一点,使用图5的结构将使用类型3的声学分压器(使用声阻器/惯量组合)的声耦合装置集成到现有的anc耳机设计(incuslabs,型号il812)中。在us8,989,424b2中公开了耳机的设计和内部结构的全部细节,并且通过引用并入本文。

包括根据本发明的声耦合装置的耳机在图10-12中被详细示出。

图10显示了耳机900的截面端视图;在图的左手侧是截面图中的橡胶“耳塞”凸缘902,耳机的主体904及其麦克风壳体906位于右侧。这里的重要特征是声耦合装置908,其包括形成在耳机主体904的后部和麦克风壳体906之间的管道910。装置908包括形成在管道910的侧壁中的端口b,该端口b将扬声器914的后部体积912连接到管道910。端口b包含在耳机主体904的内表面上的声阻器网916形式的声阻器。端口b首先经由声阻器916然后其次经由管道910将后部体积912中的空气耦合到环境918。用于前馈anc麦克风922的入口920以图5所述的方式位于管道910的与端口b相对的一侧上,因此麦克风922检测在后排气孔声网声阻器和管道惯量之间的概念节点处的声压,如图5所描绘的。在图10中,为了清楚起见,麦克风922被示出为沿其中心轴线向外移动。

图11显示了耳机900的分解等距视图,以进一步说明实施例,特别是模制到耳机主体中的管道910的形状和布置。这里使用的管道910是锥形的垂直取向的管道或通道的形式,具有1.8mm的下部宽度、3.0mm的上部宽度和1.0mm的深度。管道910形成在端口b上方。管道910的下端被封闭,并且其最上端在结构顶部处对环境开放,限定端口a。当麦克风壳体906位于适当位置时,麦克风入口920暴露于管道910的内部,管道910成为在其最下端处封闭并在顶部开口的管状通道。

图12显示了组装的耳机900的另一等距视图,其中麦克风壳体906现在适当地固定在耳机主体904的后部上。管道910的端口a表现为与耳机904的后部主体的弯曲边缘相邻的窄槽。这是对于管道910的良好位置,因为它不暴露于用户的手指(在处理时可能产生麦克风噪声),也不直接暴露于将产生风噪人为影响的风压。

再次参考图4的声学分压器的概念图,在管道中提供了麦克风,其中有上端口“a”和下端口“b”,每个端口设有声阻网覆盖层,所述端口在外壳中的空气和每个相应端口外部的空气之间形成声耦合。声阻网赋予声耦合声阻的性质,否则声耦合将以声惯量的形式本质上主要是电抗的。

然而,在没有声阻网的情况下,声学分压器原理仍然适用,其中电位比现在由两个惯量的阻抗而不是两个声阻定义。应当认识到,在实践中,本文讨论的声阻抗本质上将从不是完全阻性的,也不是完全抗性的,但是总是表现出类似于具有实部和虚部的电抗的复阻抗性质。

本发明的实施例可以有利地以使用基于mems(微机电系统)技术的麦克风的微型模块的形式实现,其中硅麦克风芯片本身的物理尺寸可以尽可能小到1mm×2mm,并且具有仅1mm的厚度。

为了保护麦克风并将其以可回流焊接的形式供应以用于组装到例如蜂窝电话耳麦中,每个mems麦克风芯片通过将其结合到微型pcb型衬底上而被包装,形成适当的围绕麦克风的声密封,然后将上部金属外壳密封并结合到pcb衬底上。上部外壳包含一个或更多个微孔,其用作麦克风的入口端口,将外部环境空气连接到包装内的空气,从而连接到麦克风本身。封装的包装非常小。例如,knowleselectronics数字mems麦克风型spk0415hm4h的尺寸为3.00mmx4.00mmx1.06mm。

麦克风隔膜后面的“后部体积”空气通常经由在硅制造过程中产生的非常小的声学泄漏耦合到包装内的“前部体积”空气,包括与麦克风隔膜平行的许多微观孔(通常为20μm直径)。这是为了通过提供用于扩张(收缩)空气的气流泄漏路径来防止温度变化期间隔膜的应力和破裂。麦克风只响应前部体积空气压力水平。一些mems麦克风以反向格式(“底部端口配置”)安装以节省空间或增加灵敏度(或两者),使得隔膜的后表面暴露于空气(并且出于与上述相同的安全性原因,麦克风的前部体积空气经由非常高的阻抗泄漏连接到它)。然而,在这两种配置中,即“顶部端口”和“底部端口”,mems麦克风单独响应于单个环境空气压力信号。

已知的另一种类型的麦克风配置通常被称为“单向”型,其中在隔膜前面的前部体积空气经由第一端口与外部环境耦合,并且在隔膜后面的后部体积空间经由第二端口耦合到外部环境。结果是:

(a)隔膜上的净力取决于每个端口处的压力之间的差,因此所得的麦克风信号表示两个端口之间的压力差(它是差分麦克风);和

(b)没有气流通路通过麦克风-气流被隔膜阻挡。

这种类型的麦克风通常安装在外壳或挡板中,以便在用户的嘴唇附近使用,使得紧密接近的语音信号与另一个麦克风端口相比更接近于一个麦克风端口(并且因此该信号在该端口处比在另一个端口处更大),而背景噪声在两个端口处同等存在。因此,由于背景噪声信号在麦克风隔膜的两侧以相等的水平存在,所以来自麦克风的所产生的差分信号主要包含语音信号,使得没有净压差,因此存在很小或没有背景噪声信号。

与此相反,本发明提供一种麦克风,其响应于经由不同端口供应的两个独立压力信号之间的预定线性内插值。

这些麦克风类型(基于mems的)和其他方面的性质与本发明的性质总结如下,并且适用于模拟和数字两种类型。

1、具有(a)顶部端口配置或(b)底部端口配置的mems麦克风都具有单个入口端口并生成与所述入口端口处的声压级(spl)成比例的电信号(等式[5])。没有空气通路通过麦克风。

v出口αspl入口1[5]

2、通常称为“单向”麦克风的差分麦克风具有两个入口端口(通常在其外壳或包装的最上面和最下面),并生成与两个入口端口之间的spl差异成比例的电信号(等式[6])。没有空气通路通过端口之间的麦克风。

v输出∝spl入口1-spk入口2[6]

3、根据等式[7](基于等式[1]),本发明具有两个端口,并且生成与两个端口中的每一个处的spl之间的预定线性内插值成比例的电信号。空气通路在两个端口之间通过设备存在。

mems技术和包装装置对于实现本发明的模块型实施例是理想的,其中麦克风及其伴随的声耦合作为单个包装提供给耳机和头戴式受话器制造商,使得不需要它们来对本发明本身的声耦合进行设计和工程设计,本发明作为单一的、明确定义的自校准anc麦克风包装被供应。

图5和图10-12显示了声耦合装置的示例,其中暴露于环境的最上面的端口是声惯量而不是声阻,并且应当认识到,事实上声学分压器的声耦合的两者原则上可以主要是惯量型阻抗。这消除了对于使用声阻网的需要,这使得该设备制造更简单且成本更低。此外,它使得能够以基于mems的模块的形式制造本发明的更小的实现,其实施例在图13a-15中示出。

现在参考图13a和图13b,示出了mems模块1000,其包括mems麦克风1006安装到诸如微型印刷线路板(pwb)的衬底1007上。mems麦克风1006根据其规格通常伴随着用于执行一些初始信号处理(诸如ad转换、预放大、多路复用或其它信号处理)的辅助集成电路1011。通常由金属形成以提供电屏蔽的上部外壳1009被结合到衬底1007并围绕其边缘密封,以在其间形成管道1008,并将mems麦克风1006和相关联的电路封装在管道1008内。在该实施例中,在衬底1007中设置有一个或更多个孔洞1024,优选地是小直径孔洞的小阵列(第一微孔阵列),以便在管道1008内的空气和衬底1007下面的空气(通常是使用中的扬声器的后部体积)之间形成声耦合。上部外壳1009还包含一个或更多个孔洞1022,优选地为小直径孔洞的小阵列(第二微孔阵列),以便在管道1008内的空气和在上部外壳1009上方的空气(通常是使用中的环境空气)之间形成声耦合。

图13a和图13b的装置提供了基于mems的声学分压器,其中电位分数由通过孔洞1022、1024形成的第一微孔阵列和第二微孔阵列的声阻抗的比值来定义。

通常,为了减少亥姆霍兹共振效应,优选在微孔阵列中引入一定程度的声阻。在声阻抗方面,小孔洞和短长度孔主要表现为声惯量。然而,随着孔洞或管的直径减小,空气和管的侧壁之间的摩擦相互作用开始变得显著,并且这增加了其复阻抗的阻性分量。对于通过侧壁或外壳的短路径的长度(例如,小于2mm),则当直径小于0.2mm或左右时,声阻抗变得显著。例如,在1khz的情况下,0.2mm厚的衬底中的0.2mm的孔洞具有665.2声欧姆(cgs为单位)的声阻分量和873.2声欧姆(cgs)的声阻抗分量。因此,通过单独使用小直径孔,可以制造稳定且精确的设备,而不需要声阻网覆盖层。

上述实施例的电位比通过两个声耦合的阻抗来限定,这又由每个微孔阵列中的孔洞的数量和尺寸确定。例如,如果孔洞直径例如为0.2mm,长度为0.2mm,则衬底中的5个孔洞的阵列和上部外壳中的45个孔洞的阵列将提供0.9的电位分数(如等式[1]所述)。

图14a和图14b中示出了本发明的另一实施例(“b”),其具有与图13a和图13b的实施例大体相同的形式,其中最上面的声阻网层1102设置在外壳1009上,并且在衬底1007上设置有最下面的声阻网层1104。可能是由于最大阻尼或其它原因,在这被制造商优选的情况下,声阻网层1102、1104有助于两个声耦合的阻抗。

在图13a、图13b和图14a、图14b中,为了清楚起见,省略了组件的一些细节。例如,焊接凸点和互连件未示出。

在关于图3a的本发明的先前描述中,注意到本发明的这种实施例可以直接替代头戴式受话器的后排气孔,因为其阻抗可以相应地被计算和设计出。然而,在图13a、图13b和图14a、图14b的本发明的微型模块型实施例中,端口或孔的尺寸相当小,因此相关联的声阻抗相对较大。如果模块的“通过”阻抗(即,串联加入最上面和最下面的端口阻抗)大于对于所需的后部体积顺应性所需的阻抗,则可以与传统的电阻端口并行操作,如图15所示,以提供合适的组合的后排气孔阻抗。

使用前面的示例,如果耳机或头戴式受话器需要50声欧姆的后排气孔阻力,并且本发明的mems模块1000具有500声欧姆的声阻,则如图15所示,它可以与具有55.5声欧姆阻力的后排孔口1200并联使用,使得两者的并联组合将有效地提供50欧姆的所需要的后排气孔声阻抗。然而,实际上,对于这种类型的应用的阻抗通常不是关键的,并且模块结合现有的没有变化的头戴式受话器后排气孔端口的使用可能被证明是可以接受的。

在图15所示的实现中与mems模块1000并联布置的声排气孔1200被示出为阻性耦合,具有声阻抗覆盖层1202特征的端口,但是本发明的使用不限于此。如那些本领域技术人员所知的,本发明适用于所有其他类型的声排气孔,包括主要是行为惯量的声排气孔,以及那些具有惯量耦合(诸如短管)和阻性耦合的并联组合的那些情况。

因此,如果anc头戴式受话器制造商具有现有设计,则可以通过仅将头戴式受话器中的现有前馈anc麦克风替换为本发明的基于mems模块的实施例,并适当的耦合到头戴式受话器的后部体积,从而提供自校准设备,由此来结合本发明是可能的。

具有本发明的头戴式受话器可以如下校准。

首先,以现有技术的方式通过优化其anc信号电平以便最小化听众感知到的环境噪声来校准具有等于或接近制造商规格(或大批量的平均值)的扬声器和麦克风灵敏度的代表性(“黄金”)样品anc头戴式受话器。记录anc系统的anc增益水平,比如说在1khz处为15db。(这可以在几个标定频率处完成。)

其次,通过以固定频率(例如,在1khz处的100mvrms)将精确已知的电压源驱动到头戴式受话器的扬声器中,使用“黄金”样品来建立灵敏度指数(si),并且由此产生的自校准(即前馈)麦克风信号(固定增益预放大后)被测量。这是通过将头戴式受话器悬挂在自由空间中完成的,以避免反射和其他干扰。麦克风信号的幅度表示灵敏度指数。例如,比如说,来自这样的程序的预放大麦克风信号是150mvrms。

第三,选择候选头戴式受话器进行校准,并进行上述程序2。si(麦克风信号)测量为180mvrms。这表明扬声器或麦克风(或这两者)比“黄金”样品更敏感,因此需要较低的anc增益来获得最佳的anc性能。与“黄金”样品相比,180到150mvrms比值表示对于候选样品的si增加1.58db,因此候选头戴式受话器的anc增益设置应降低到在黄金样品水平15db之下的1.58db值,即为13.42db。

实施本发明作为实际系统的一个重要因素是相关联的电子器件和信号处理的准确性。例如,在模拟系统中,由于包括pga(可编程增益放大器)在内的各种增益确定电阻器的公差,系统增益可能会有5%(或更大)的变化。类似地,虽然数字处理系统本质上是精确的,但仍然需要一些用于ad转换的模拟部件。然而,如下,通过上述校准程序的小的变化,可以克服这些实际的限制。

不是将anc系统增益设置为预先确定的已知值(上述第三步骤),这可能引起上述相关联的容限误差,而是在监视自校准麦克风信号的同时调整anc系统增益,而后者被调整为与“黄金”样品(150mvrms)的情况相同。这可以如下按照上述步骤3之后的附加程序进行。

最后,在监视si(麦克风信号)的同时,调整系统增益,其具有固有公差变化。首先,如上述步骤3所述,这被测量为180mvrms。调整系统增益(在这种情况下减少),使得麦克风信号与黄金样本的情况的精确匹配,即150mvrms。

这需要电气接入各种电路节点,以及隔离anc处理的某些元件的能力,但这可以作为与相关联的微控制器耦合的集成anc处理器的一部分来实现。

自校准过程中的另一个重要因素是扬声器到麦克风的耦合的重现性,因为这直接限定了anc增益水平。如果使用声耦合装置,则所使用的声阻应具有可重现的性质。在声阻器使用不同的材料的情况下,这可能需要精确控制声阻器。在声阻器中使用相同材料的情况下,可以通过在单片网状材料中形成一对相邻的声阻器,具有合适的限定区域来实现重现性。网阻的任何变化对于两个声阻都是共同的,因此由它们的区域限定的电位比将不受影响。

如上所述,本发明可应用于头戴式受话器和耳机,应用于mems麦克风,并且还可用于蜂窝电话耳麦的听筒anc系统。为了清楚起见,权利要求中使用的术语头戴式受话器用于包括头戴式受话器、耳机和听筒。

应当认识到,尽管本发明涉及前馈型anc系统,但它也同样适用于所谓的“混合”型anc系统,其中前馈anc系统和反馈anc系统同时并且彼此结合地操作。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1