本发明属于蜂窝异构网络技术领域,涉及一种异构网络中使用可再生能源为基站供电来满足用户在回传阶段的流量需求的解决方案。
背景技术:
为了满足移动用户的指数增长和对数据流量的爆炸性需求,蜂窝异构网络将成为下一步移动通信的重点研究方向,而异构网络的资源分配和干扰问题是制约其发展的重要因素。如何促使异构网络中的能量分配策略与网络频谱分配的有效融合,在满足不同移动用户服务质量的前提下,提升能效、谱效,同时也使得基站的效率得以增加,是亟需解决的一个问题。现有文献大多是针对能源或者频谱场景提出优化策略,而对于可再生能源联合频谱的场景,并没有提出使用可再生能源作为共通的资源协同频谱合作方案。对于资源联合分配,宏基站和微基站以及能源供应商之间可以通过协作减少不必要的资源存储,从而减少了额外开销。另外,对于资源联合分配模型现今也没有提出过使用可再生能源联合频谱来满足用户在回传阶段的流量需求的解决方案。
经对现有技术文献的检索发现,y.guo等人在《ieeetrans.commun.,vol.62,no10,pp.257-263,oct2014》上发表了题为“jointenergyandspectrumcooperationforcellularcommunicationsystems”一文,该文针对蜂窝系统中能量联合频谱的分配问题,提出了能量与频谱合作方式下的最优执行策略,但是此策略只引入了能源开销,并未考虑频谱的开销以及资源供应商的概念。
另检索发现,jiexu等人在《ieeetrans.veh.technol.,vol.65,no.4,apr.2016》上发表题为"cooperativeenergytradingincompsystemspoweredbysmartgrids,"一文,该文提出传统能源联合绿色能源进行资源分配。然而该文的系统模型针对的仅仅是能量合作方面,并没有将频谱资源考虑进去。
经检索还发现,dapengli等人在《ieeejournalonselectedareasincommunications,vol.34,no.5,pp.1140-1159,may.2016》上发表题为"decentralizedrenewableenergypricingandallocationformillimeterwavecellularbackhaul"一文,该文设计了一种基于分散系统的绿色能源分配方案。该文虽然提出了运营商和资源供应商之间的最优策略,但没有更加深入的分析运营商与资源供应商之间的相互关系,同时也未提及资源块的使用。
技术实现要素:
本发明针对上述技术的不足,提出了一种基于博弈论的蜂窝异构网络资源分配方法。本方法详细分析了在异构网络无线回传阶段,由可再生能源供电的微基站根据需要向宏基站支付一定的费用购买到相应的带宽,向可再生能源供应商购买电能,用来满足移动用户的需求。通过博弈分析方法,证明资源供应商之间存在帕累托最优容量均衡,同时基于帕累托最优容量均衡,得出了资源供应商的最佳定价策略,最终使得网络系统中的能效、谱效得以充分利用。微基站通过这种分配最大化的满足用户在回传阶段的流量需求。
为实现上述目的,本发明采用的技术方案包括如下步骤:
第一步,通过集中式算法,求出一种最优资源分配,得到宏基站和能源供应商的最优均衡存储因子zc,带宽和发射功率的最优单位价格总和uc;
第二步,在分布式算法下,建立带宽和发射功率关于单位价格的关系函数;
第三步,考虑纳什均衡条件,建立宏基站和能源供应商的效用函数,求出带宽和发射功率的最优均衡单位价格ui(z);
第四步,采用逆向归纳法,证明集中式算法求得的zc就是分布式算法在纳什均衡条件下的帕累托最优解;
第五步,根据最优存储因子zc和最优单位价格ui(z)求得微基站的最优收益。
进一步,上述集中式算法又包含以下步骤:
第一步,在均衡条件下,系统遵循相同的事件序列,所以宏基站和能源供应商提供的单位带宽和发射功率的数量相同(q=q1=q2),即存储因子相同(z=z1=z2);
第二步,考虑需求函数为关于单位价格总和u的随机分布,即d(u)=y(u)ε,ε是一个随机因子,c为宏基站和能源供应商的单位价格总和,cn为微基站的单位固有成本,建立整个异构网络的效用函数πc(u,q)=ue[min{q,y(u)ε}]-(c+cn)q;
第三步,通过求导得到宏基站和能源供应商的最优均衡存储因子zc,带宽和发射功率的最优单位价格总和uc;
第四步,求出在集中式算法下异构网络最优效用。
进一步,上述计算带宽和发射功率关于单位价格的关系函数为:
进一步,上述宏基站和能源供应商的效用函数为:
πi(ui|u-i,z)=(1-r)uiy(ui+u-i)e[min{z,ε}]-cizy(ui+u-i)=y(ui+u-i){(1-r)ui[z-λ(z)]-ciz}
ui为带宽w或发射功率pn的单位价格,
进一步,上述求出宏基站和能源供应商的最优收益的具体过程为:
通过对ui求导,可以得到ui有最大值,即
这种纯策略均衡单位价格ui(z)如果存在,则可以通过求解k个联立方程,所以,如果b>k,则对于任何给定的储备因子z,宏基站和能源供应商的价格博弈具有唯一的纳什均衡解,即:
据此可以计算出资源供应商的总销售价格:
进一步,上述计算宏基站和能源供应商的最优存储因子的逆向归纳法的过程如下:
如果d[xh(x)]/dx=h(x)+xd[h(x)]/dx>0,则宏基站和能源供应商的效用函数πi(ui|u-i,z)是关于z的拟凹函数,根据集中决策的结果分析,z有最大值z=zc,并且zc是集中式算法下的存储因子,所以当z=zc时,相应的纳什均衡就是帕累托最优,即可以得到z=zc是宏基站和能源供应商的子博弈问题中z的最优解,求得在均衡条件下宏基站和能源供应商单位价格总和为:
进一步,根据宏基站和能源供应商提供的最优带宽和发射功率,计算微基站的最优效用如下:
其中
g(r)={[(1-α)b+(b-k)α]r-(b-k)α}1-r)b-1
通过推导可知,对于b>k,pbs的效用函数π0(r)是关于r的拟凹函数,所以r具有唯一的最大值,即
与现有技术相比,本发明的有益效果是:
1)介绍了由可再生能源供电的蜂窝异构网络的资源分配方法,并采用资源块来满足移动用户回传阶段的流量需求,使资源供应商、微基站、用户之间建立了一个稳定的联系。
2)通过考虑移动用户对流量需求的不确定性,对资源供应商和微基站之间的关系进行了详细分析。
3)采用逆向归纳法,寻找出了资源供应商之间的最优帕累托容量均衡以及最佳定价策略。
附图说明
图1是系统模型示意图。
图2是宏基站和能源供应商的收益对比。
图3是微基站的效用对比。
图4是宏基站的(吞吐量)干扰对比。
图5是系统方法分配流程图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,为系统模型示意图,图中列出了宏基站和可再生能源供应商、微基站、用户三者的对应关系,清晰展示了系统的实施方式。
图2是宏基站和能源供应商的收益对比。
图3是微基站的效用对比,表现了微基站固有成本对微基站效用收益的影响,以及宏基站和能源供应商的价格因子r对微基站效用的影响。从图中可以看到在不同的α下,微基站的收益(即其节省的花费)情况。此外可以很明显的看到会有一个最优的r选择,证明了算法的有效性。
图4是宏基站的(吞吐量)干扰对比,表明利益的更优往往要在一个方面付出更大的代价,即可以看到微基站对宏基站的干扰的影响,当在分散决策下为了获得更大收益,需要更大的发射功率,那么就会对宏基站造成更大的干扰。
图5是系统方法分配流程图,详细介绍了本发明资源分配方法的实施过程。
为便于本领域的普通技术人员实施本发明,现提供一个实施例,如下:
本实施例用于蜂窝异构网络无线回传链路中,包括步骤如下:
第一步,通过集中式算法,求出一种最优资源分配,得到宏基站和能源供应商的最优均衡存储因子zc,带宽和发射功率的最优单位价格总和uc;
第二步,在分布式算法下,建立带宽和发射功率关于单位价格的关系函数;
第三步,考虑纳什均衡条件,建立宏基站和能源供应商的效用函数,求出带宽和发射功率的最优均衡单位价格ui(z);
第四步,采用逆向归纳法,证明集中式算法求得的zc就是分布式算法在纳什均衡条件下的帕累托最优解;
第五步,根据最优存储因子zc和最优单位价格ui(z)求得微基站的最优收益。
宏基站和能源供应商的效用函数为:πi(u,qi)=(1-r)uie[min{qi,y(u)ε}]-ciqi,微基站的效用函数为:πn(u,q)=rue[min{q,d}]-cnq=rue[min{q,y(u)ε}]-cnq,其中ui为带宽w或发射功率pn的单位价格,
又进一步,计算宏基站和能源供应商的最优效用函数πi(ui|u-i,z)为:
πi(ui|u-i,z)=(1-r)uiy(ui+u-i)e[min{z,ε}]-cizy(ui+u-i)=y(ui+u-i){(1-r)ui[z-λ(z)]-ciz}
通过对ui求导,可以得到ui有最大值,即
这种纯策略均衡价格ui(z)如果存在,则可以通过求解k个联立方程。所以,如果b>k,则对于任何给定的储备因子z,宏基站和能源供应商的价格博弈具有唯一的纳什均衡解,即:
据此可以计算出带宽和发射功率的单位价格总和:
所述唯一最优帕累托存储因子zc,其可能存在形式如下:
如果d[xh(x)]/dx=h(x)+xd[h(x)]/dx>0,则宏基站和能源供应商的效用函数πi(ui|u-i,z)是关于z的拟凹函数,根据集中决策的结果分析,z有最大值z=zc,并且zc是集中决策模式下的存储因子。
对宏基站和能源供应商的同时定价博弈,如果d[xh(x)]/dx=h(x)+xd[h(x)]/dx>0,并且b>k,则对于任何z(a≤z<zc),在第一阶段所有微基站同时确定存储因子z构成了一个纳什均衡,在第二阶段选择其对应的价格ui(z)。当z=zc时,相应的均衡是帕累托最优。所以可以得到z=zc是宏基站和能源供应商子博弈问题中z的最优解。求得在均衡条件下微基站s的总销售价格公式。
根据最优带宽和最优能量,可以得到微基站的效用函数为:
其中
g(r)={[(1-α)b+(b-k)α]r-(b-k)α}(1-r)b-1
通过推导可知,对于b>k,微基站的效用函数π0(r)是关于r的拟凹函数,所以r具有唯一的最大值。即
通过对比可知,本实施例得到的宏基站和能源供应商(即资源供应商)的容量存储最优具有唯一性,帕累托最优性和稳定性,即对资源供应商所存储的资源容量集合,不存在另一种合作关系,使得每个资源供应商够得到更好的协作效益。同时,也会相应的使得基站的效用最大。