发声装置的振膜以及发声装置的制作方法

文档序号:19125501发布日期:2019-11-13 02:04阅读:439来源:国知局
发声装置的振膜以及发声装置的制作方法
本发明涉及电声转换
技术领域
,更具体地,涉及一种发声装置的振膜以及发声装置。
背景技术
:现有扬声器振膜材料多采用高模量的塑料基材层(peek、par、pei、pi等)与柔软的热塑性聚氨酯弹性体(tpu)以及阻尼胶层(丙烯酸胶、硅胶等)复合的结构。上述振膜的综合性能较差,容易造成听音不良。随着高功率化、防水以及高音质要求的提高,其他弹性体材质(如tpee)的振膜在扬声器领域得到了推广应用。但相对于peek等塑料层,弹性体材料的表面能相对较低,阻尼胶层与弹性体(如tpu、tpee、tps等)的粘结力偏弱。长期振动后会出现分层甚至破膜的问题。现有技术复合前通过对薄膜层进行表面处理(电晕、底涂或等离子等)可以在一定程度上提高粘结力,但表面处理具有时效性,对生产要求较为严格,同时生产成本增加。因此,需要提供一种新的技术方案,以解决上述技术问题。技术实现要素:本发明的一个目的是提供一种发声装置的振膜以及发声装置。根据本发明的第一方面,提供了一种用于发声装置的振膜,包括至少一层弹性体层和至少一层阻尼胶层,所述弹性体层和阻尼胶层复合构成所述振膜,所述阻尼胶层采用压敏胶制成,在所述振膜中,所述弹性体层与阻尼胶层接触的表面中的至少一个面的表面粗糙度范围为0.3~2.0μm。可选地,所述阻尼胶层的模量为20~2000kpa。可选地,所述弹性体层厚度为5~50μm。可选地,所述阻尼胶层厚度为2~40μm。可选地,所述振膜包括塑料层,所述塑料层与弹性体层通过层压复合方式复合;和/或所述塑料层与阻尼胶层通过层压复合方式复合。可选地,所述阻尼胶层的上下表面均设置弹性体层;或者,所述阻尼胶层的上下表面分别设置弹性体层和塑料层。可选地,在所述振膜中,每个所述弹性体层的与阻尼胶层接触的表面的表面粗糙度范围为0.3~2.0μm。可选地,所述弹性体层采用热塑性弹性体制成,所述热塑性弹性体包括共聚酯类热塑性弹性体(tpc)、聚氨酯类热塑性弹性体(tpu)、聚酰胺类热塑性弹性体(tpae)、聚苯乙烯类热塑性弹性体(tps)、聚烯烃类热塑性弹性体(tpo)、动态硫化橡胶/热塑性塑料共混物型热塑性弹性体(tpv)、有机硅类弹性体中的至少一种。可选地,所述阻尼胶层采用的压敏胶包括丙烯酸酯类压敏胶、有机硅类压敏胶、聚氨酯类压敏胶的至少一种。可选地,所述塑料层采用聚醚醚酮(peek)、聚芳酯(par)、聚醚酰亚胺(pei)、聚酰亚胺(pi)、聚苯硫醚(pps)、聚萘二甲酸乙二醇酯(pen)、聚对苯二甲酸乙二醇酯(pet)、聚对苯二甲酸丁二醇酯(pbt)、聚砜(psf/psu)中的至少一种制成。根据本发明的另一方面,提供了一种发声装置,包括振动系统和与所述振动系统相互配合的磁路系统,所述振动系统包括上述所述的发声装置的振膜。根据本发明公开的一个实施例,本发明的发声装置的振膜具有良好的界面粘结能力和更优的阻尼性能,发声装置在振动过程中一致性优,抗偏振能力优,失真较低,具有更高的音质。通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。附图说明被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。图1是根据本发明的一个实施例的扬声器振膜的剖视图。图2是本发明表1中的3种不同粗糙度的扬声器振膜在5v大电压测试下的hohd曲线对比图。图3-图6是根据本发明的不同实施例的扬声器振膜的剖视图。具体实施方式现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。本发明提供了一种用于发声装置的振膜,所述振膜包括复合在一起的弹性体层与阻尼胶层。振膜中包括了至少一层弹性体层和至少一层阻尼胶层,在本发明不同的实施方式中,振膜可以由多层弹性体层和阻尼胶层复合而成,本发明并不对此进行限制。所述弹性体层与阻尼胶层接触的表面中的至少一个面的表面粗糙度在0.3~2.0μm这一范围内。本发明的弹性体层的表面粗糙度与工艺参数相关。具体可以通过例如控制弹性体层在成型之前工艺设定的压力、工具与弹性体层表面的摩擦力等方式进行控制。或者,在弹性体层在成型之后,通过控制与弹性体层相衬的离型薄膜的粗糙度、弹性体层在冷却时冷却辊的表面粗糙度以及冷却辊对弹性体层施加的压力等物理参数,使得本发明的弹性体层的表面粗糙度为0.3~2.0μm。为了提高弹性体层与胶层的粘结力,现有技术的方案是:在复合前通过对弹性体层进行表面处理(电晕、底涂或等离子等),虽然现有技术的方案可以在一定程度上提高粘结力,但现有技术中对表面进行处理的方式存在缺陷。一方面,表面处理的工艺相对复杂,生产成本,延长了制作周期。另一方面,提高粘结力的效果存在时效性,在产品应用一段时间后,材料的粘结性能减弱,造成产品的可靠性下降。本发明弹性体层的粗糙度是其固有属性(弹性体层在成型之后,表面粗糙度在0.3~2.0μm范围内是其本身具备的属性),这样使得弹性体层不会因为使用时间过长,而与阻尼胶层之间发生分层等现象,延长了发声装置的使用寿命。同时本发明控制弹性体层的表面粗糙度在0.3~2.0μm的加工工艺与制作弹性体层的加工工艺一样,并没有额外的采用其他设备和/或增加其他的工艺流程,本发明控制表面粗糙度的工艺难度相对于现有技术中后期对表面再进行处理的加工难度更低,不会增加加工成本。弹性体层表面粗糙度大,阻尼胶层可以与弹性体层表面有更大的接触面积,从而增加粘结强度。但对于振膜材料来说,振膜材料的粗糙度过大,会导致严重的外观缺陷,且薄膜表面的一致性较差,振膜尺寸及强度一致性较差,从而导致在振动过程中易出现偏振等问题,影响音质。相反地,如果弹性体表面的粗糙度过小,即弹性体层表面接近镜面时,弹性体层表面与阻尼胶层的接触面积小,阻尼胶层与弹性体层粘结力较弱,在振动过程中易出现分层问题,从而影响音质甚至可靠性破膜等,同时弹性体层与阻尼胶层的接触面积越小,振动过程中可吸收的振动能越低,复合材料的阻尼越低。本发明人发现,弹性体层用于与阻尼胶层接触的表面的粗糙度为0.3~2.0μm时,弹性体层与阻尼胶层的粘结力显著提高,能够有效的防止复合振膜在振动等应用过程中分层的风险,延长了振膜的使用寿命。同时,发声装置听音稳定性得到提升,而且振膜在振动过程中一致性优,抗偏振能力优,失真较低,扬声器具有更高的音质。进一步优选地,弹性体层与阻尼胶层接触面的至少一个表面的粗糙度为0.5~1.5μm,当弹性体层与阻尼胶层接触面的至少一个表面的粗糙度为0.5~1.5μm,特别地,弹性体层与阻尼胶层接触面的至少一个表面的粗糙度为1μm时,发声装置在振动过程中振膜材料具有更好的阻尼性能,在大电压下振膜的位移较大时,阻尼的提升能够在一定程度上稳定振膜的振幅,减少振膜与其他元件发生擦碰的可能性,提高了发声装置的音质。在本发明的不同实施方式中,一个弹性体层有可能只有一个表面与阻尼胶层粘结,也有可能其两侧的表面均与阻尼胶层粘结。另一方面,一个振膜中可能复合了多层弹性体层和阻尼胶层。本发明的基础实施方式并不对具体哪个弹性体层的哪个表面的粗糙度符合上述粗糙度的范围,只要有一个弹性体层的一个用于与阻尼胶层粘结的表面的粗糙度符合上述范围,即可以在一定程度上改善振膜的粘结强度和结构一致性。根据本发明的一个实施例,所述阻尼胶层的模量为20~2000kpa。模量是指阻尼胶层在受力状态下的应力与应变之比。即,模量越大,阻尼胶层的质地越硬。当阻尼胶层的质地较硬时,其不容易与弹性体层的表面更好的融合。相反地,如阻尼胶层的模量越小,阻尼胶层的质地越软。当阻尼胶层的质地较软时,容易与弹性体层的表面更好融合,阻尼胶层能够更好的进入弹性体层的较小间距和微小峰谷间隙中。为了保证阻尼胶层与弹性体层之间具有良好的粘结强度,本发明人发现,在阻尼胶层的模量为20~2000kpa时,阻尼胶层不仅可以提供良好的粘结力和阻尼性,且强度适中,复合材料综合性能更优,确保了复合及成型后振膜振动的一致性。进一步优选地,所述阻尼胶层的模量为100~1000kpa,当阻尼胶层的模量为100~1000kpa时,阻尼胶层质地柔软,能够与弹性体层的表面更好的融合。而且,在阻尼胶层与弹性体层层压复合时,阻尼胶层不易发生溢出现象,不会对发声装置的外观造成影响。同时,本发明人发现,在阻尼胶层的模量在100~1000kpa这一范围内时,并且弹性体层与阻尼胶层接触面的至少一个表面的粗糙度为0.5~1.5μm时,阻尼胶层与弹性体层表面的粘结强度不仅没有降低,而且振膜阻尼效果好,振膜综合性能更优,压制而成的发声装置的音质效果好。可选地,所述弹性体层厚度为5~50μm。该厚度范围使得扬声器振膜的灵敏度更高,在施加同样的驱动力的情况下,弹性体层厚度符合上述范围的振膜相对于其它振膜而言,产生振幅更大,相应速度更高。进一步地,使振动系统的振动空间余量更大。可选地,所述阻尼胶层厚度为2~40μm。阻尼胶层的粘结力随着胶层厚度的增加而增大。厚度太小,则粘结力不足,在振动过程中无法有效的保证胶黏剂层上、下的表面的运动的一致性。同时,阻尼胶层提供的阻尼效果也会随着厚度的降低而减小。相反地,如果阻尼胶层的厚度太大,一方面降低了振动空间余量;另一方面扬声器振膜的边缘易出现溢胶等问题,影响制程良率。该厚度范围的阻尼胶层能够兼顾足够的粘结力、优良的阻尼效果以及使振动系统具有充足的振动空间余量。可选地,所述弹性体层采用热塑性弹性体制成,所述热塑性弹性体选自共聚酯类热塑性弹性体(tpc)、聚氨酯类热塑性弹性体(tpu)、聚酰胺类热塑性弹性体(tpae)、聚苯乙烯类热塑性弹性体(tps)、聚烯烃类热塑性弹性体(tpo)、动态硫化橡胶/热塑性塑料共混物型热塑性弹性体(tpv)、有机硅类弹性体的一种或多种。根据本发明的一个实施例,所述阻尼胶层采用压敏胶制成,所述压敏胶选自丙烯酸酯类压敏胶、有机硅类压敏胶、聚氨酯类压敏胶的一种或多种。可选地,本发明以3层复合振膜为例,如图1所示,101和103为聚酯弹性体层,厚度为25μm,102为阻尼胶层,厚度为20μm。a表面为聚酯弹性体层101上用于与阻尼胶层102接触的表面,b表面为聚酯弹性体层103上用于与阻尼胶层102接触的表面。在本发明的实施方式中,a表面和/或b表面的表面粗糙度在0.3~2.0μm这一范围内。对于本发明所能带来的技术效果,本发明以3层复合振膜结构为例,采用相同材料配方的振膜材料,制备3种复合振膜,包括第1种复合振膜,第2种复合振膜,第3种复合振膜。其中第1种复合振膜为对比例1,第2中复合振膜为对比例2,第3种复合振膜为本发明的一种实施例。第1种复合振膜的a表面和b表面的表面粗糙度设置为0.2μm,表面粗糙度不在本发明设置范围内,小于本发明设置的表面粗糙度的最小值0.3μm。第2种复合振膜的a表面和b表面的表面粗糙度设置为2.1μm,表面粗糙度不在本发明设置范围内,大于本发明设置的表面粗糙度的最大值2.0μm。第3中复合振膜的a表面和b表面的表面粗糙度设置为1.0μm,表面粗糙度1.0μm属于本发明设置的范围0.3μm~2.0μm。第1种复合振膜、第2种复合振膜、第3种复合振膜的a表面和b表面设置的表面粗糙度不同,对发声装置的影响如表1和附图2所示:表1:表面粗糙度与产品剥离力对照表a/b表面粗糙度ra/μm剥离力(g/25mm)对比例10.2350对比例22.1470本发明实施例1.0465采用对比例1、对比例2和本发明实施例所述的复合振膜材料进行振膜的压制,然后组装成发声装置进行声学性能测试。如表1所示,随着表面粗糙度的增加,弹性体层与阻尼胶层的粘结力有增加的趋势。粘结力的增加,可以有效的防止多层复合材料在振动过程中分层的风险,听音稳定性得到提升。如图2所示,点虚线表示对照实施例1的高阶谐波失真测试曲线,横坐标表示频率(hz),纵坐标表示高阶谐波失真hohd(%);实线表示本发明实施例的高阶谐波失真测试曲线,横坐标表示频率(hz),纵坐标表示高阶谐波失真hohd(%);线虚线表示对照实施例2高阶谐波失真测试曲线,横坐标表示频率(hz)纵坐标表示高阶谐波失真hohd(%)。高阶谐波失真hohd的严重程度与振膜振动时发生偏振的严重程度和振膜振动时与其他元件发生擦碰的严重程度有关,具体地,振膜的弹性元件的表面粗糙度越大,弹性体层的厚度一致性变差,复合后振膜材料的一致性也变差,导致振膜在振动过程中易出现偏振,位置发生偏移程度大时与其他元件发生擦碰等现象增多,高阶谐波容易发生失真。图2所示为5v大电压测试下的hohd曲线,可以发现相对于对照实施例1和对照实施例2,本发明实施例的hohd曲线相对更低。相对于对比例1,本发明实施例中弹性体层表面粗糙度的增加使得弹性体层与阻尼胶层的接触面积增加,振动过程中本发明实施例的振膜材料具有更好的阻尼性能,在大电压下振膜的位移较大,阻尼的提升可以降低振膜的振幅,减少擦碰,hohd曲线更低。对比例2的弹性体层虽然具有更高的粗糙度,但弹性体层的厚度一致性变差,复合后振膜材料的一致性也变差,从而导致在振动过程中易出现偏振,导致大位移下擦碰等现象增多,hohd曲线升高。在一个例子中,阻尼胶层提供扬声器振膜所需的阻尼性以及粘结性。阻尼胶层可以直接与弹性体层进行层压复合粘结在一起,从而形成两层复合结构。这使得扬声器振膜的制作十分容易。其中弹性体层与阻尼胶层接触面的表面粗糙度设置为0.3~2.0μm。在一个可选的实施方式中,如图3所示,所述发声装置的振膜为三层结构,从上至下依次包括弹性体层301,阻尼胶层302,弹性体层或塑料层303。当阻尼胶层302的上下表面同时设置弹性体层时,所述弹性体层301的用于与阻尼胶层302接触的表面为a表面,弹性体层303的用于与阻尼胶层302接触的表面为b表面,优选地,a表面与b表面至少一个表面的表面粗糙度为0.3~2.0μm。可选地,a表面和b表面的表面粗糙度为0.3~2.0μm。其中本实施中“上下表面”分别为与弹性体层接触的表面。优选地,弹性体层301与弹性体层或塑料层303的厚度相同,这使得扬声器振膜的均一性良好,并且不容易卷曲、褶皱。如图3所示,弹性体层301与弹性体层303的材质可以相同或不同。当弹性体层301与弹性体层303材质相同时,弹性体层301与弹性体层303的杨氏模量相同,弹性体层301与弹性体层303的振动一致性更好。当弹性体层301与弹性体层303材质不相同时,弹性体层301与弹性体层303的杨氏模量会存在不相同,在这种情况下,可以通过调节杨氏模量来调配所述振膜上、下振动的难易程度,以使振膜的振动性能能够满足发声装置的特殊振动性能需求应用要求。在另一种可选的实施方式中,如图4所示,所述扬声器振膜为四层结构,从上至下依次包括塑料层401,弹性体层402,阻尼胶层403,弹性体层或塑料层404。当阻尼胶层403的上下表面同时设置弹性体层时,弹性体层402的用于与阻尼胶层403接触的表面为a表面,弹性体层404的用于与阻尼胶层403接触的表面为b表面,优选地,a表面与b表面至少一个表面的表面粗糙度为0.3~2.0μm。可选地,a表面和b表面的表面粗糙度均为0.3~2.0μm。当阻尼胶层403的上下表面分别设置弹性体层和塑料层时,弹性体层402的用于与阻尼胶层403接触的表面为a表面,a表面的表面粗糙度为0.3~2.0μm。本例子中“上下表面”为分别与弹性体层接触的表面和与塑料层接触的表面。阻尼胶层403的下表面可以设置塑料层。所述塑料层401与弹性体层402通过层压复合方式复合在一起,具体地,在不使用粘结剂情况下,通过加热或加压方式将塑料层401与弹性体层402复合或使用粘结剂。在使用粘结剂情况时,所述粘结剂被涂到塑料胶层401的下表面和/或弹性体层402的上表面,其中粘结剂可以铺设在材料的整个表面或设置为离散点涂到材料的局部表面。其中塑料层401的下表面和弹性体层402的上表面为相互接触的两个表面。在另一种可选的实施方式中,如图5所示,所述扬声器振膜为五层结构,从上至下依次包括塑料层501,阻尼胶层502,弹性体层503,阻尼胶层504,弹性体层或塑料层505。所述阻尼胶层502和阻尼胶层504的材质可以相同也可以不相同。在一个例子中,所述弹性体层503的用于与阻尼胶层502接触的表面为a表面,弹性体层503的用于与阻尼胶层504接触的表面为b表面,弹性体层505的用于与阻尼胶层504接触的表面为c表面。可选地,a表面、b表面、c表面至少一个表面的表面粗糙度设置为0.3~2.0μm。可选地,a表面与b表面中至少一个表面的表面粗糙度设置为0.3~2.0μm,并且,c表面的表面粗糙度设置为0.3~2.0μm;可选地,a表面。b表面和c表面的表面粗糙度均设置为0.3~2.0μm。在一个例子中,所述弹性体层503的用于与阻尼胶层502接触的表面为a表面,弹性体层503的用于与阻尼胶层504接触的表面为b表面。可选地,a表面与b表面中至少一个表面的表面粗糙度设置为0.3~2.0μm;可选地,a表面与b表面的表面粗糙度设置为0.3~2.0μm。阻尼胶层504的下表面设置塑料层。在一个例子中,如图6所示,所述扬声器振膜为五层结构,从上到下依次包括塑料层601,弹性体层602,阻尼胶层603,弹性体层604,塑料层605。所述弹性体层602的用于与阻尼胶层603接触的表面为a表面,弹性体层604的用于与阻尼胶层603接触的表面为b表面。可选地,a表面与b表面中至少一个表面的表面粗糙度设置为0.3~2.0μm。可选地,a表面与b表面的表面粗糙度设置为0.3~2.0μm。本例子中,弹性体层均匀分布于阻尼胶层两侧,该结构中振膜在回弹性方面更优,但阻尼性略有降低,可以通过增加阻尼胶层的一定厚度提高结构的阻尼性和/或在塑料层与弹性体层层压复合时,在塑料层与弹性体层离散设置具有阻尼效果的粘黏剂提高结构的阻尼性。根据本发明的一个实施例,提供一种发声装置。该发声装置包括振动系统和与振动系统相互配合的磁路系统。振动系统包括本发明提供的扬声器振膜。例如,振膜为折环振膜或者平板振膜。该扬声器具有发声效果好,耐用性良好的特点。虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1