利用改进的稳定性系统和方法的过电流保护与流程

文档序号:21084443发布日期:2020-06-12 16:47阅读:139来源:国知局
利用改进的稳定性系统和方法的过电流保护与流程

根据一个或多个示例,本公开大体上涉及处理模拟信号,并且更特别地例如涉及改进高性能放大器内的过电流保护。



背景技术:

许多现代装置(诸如,膝上型电脑、平板电脑、mp3播放器以及智能电话)提供用于内部或外部扬声器连接性的高保真度音频信号。这样的系统可以数字地生成音频内容,使数字信号转换成模拟信号,放大模拟信号,并且将放大的模拟电流信号递送到音频换能器。在一些高保真度系统中,例如,主级驱动器放大器电路包括用以限制放大的电流信号的幅度的过电流保护电路,该放大的电流信号被提供给耳机扬声器。为了防止芯片损坏,过电流保护电路持续地监测提供给耳机装置的放大的电流信号。遗憾的是,常规过电流保护电路可能在过电流状况期间变得不稳定,并且要求额外的稳定化元件(诸如,密勒电容器),例如以维持稳定性。然而,稳定化电容器的添加可减小主级驱动器放大器电路的带宽,从而导致不期望的信号失真和噪声。因而,用户可能经受使用耳机装置的不那么令人愉快的体验。鉴于前文,在本领域中依然需要改进的过电流保护电路,该改进的过电流保护电路保证改进的过电流保护稳定性和驱动器放大器性能。



技术实现要素:

本公开提供解决本领域中的对于现代装置(诸如,合并扬声器连接性的现代装置)中使用的放大器内的改进的过电流保护稳定性的需要的系统和方法。

在各种示例中,过电流保护电路包括:nmosfet功率器件,其可操作以在漏极端子处生成电流信号;电流比较放大器,其可操作以放大包括nmosfet功率器件的复制电流信号与参考电流信号之间的差的差分信号,以驱动电流比较放大器电压输出信号;以及pmosfet钳位器件,其包括源极端子,该源极端子耦合到nmosfet功率器件的栅极端子,该源极端子可操作以响应于电流比较放大器电压输出信号而限制nmosfet功率器件的栅极端子处的电压。

在各种示例中,过电流保护电路包括:pmosfet功率器件,其可操作以在漏极端子处生成电流信号;电流比较放大器,其可操作以放大包括pmosfet功率器件的复制电流信号与参考电流信号之间的差的差分信号,以驱动电流比较放大器电压输出信号;以及nmosfet钳位器件,其包括源极端子,该源极端子耦合到pmosfet功率器件的栅极端子,该源极端子可操作以响应于电流比较放大器电压输出信号而限制pmosfet功率器件的栅极端子处的电压。

在各种示例中,方法包括:从nmosfet功率器件接收电流信号;生成电流信号的复制电流信号;放大包括复制电流信号与参考电流信号之间的差的差分信号,以驱动电流比较放大器电压输出信号;以及响应于电流比较放大器电压输出信号而由pmosfet钳位器件限制nmosfet功率器件的栅极端子处的电压。

本公开的范围由权利要求定义,权利要求通过引用而合并到此部分中。通过考虑以下对一个或多个示例的详述,将向本领域技术人员提供对本公开的更全面的理解以及其额外的优点的实现。将参考附图,这些附图将首先被简要描述。

附图说明

能够参考以下附图和随后的详述而更好地理解本公开的方面及其优点。应当意识到,相似的参考标号用于标识在一个或多个图中图示的相似的元件,在图中,其中的显示出于图示本公开的示例的目的,而不是出于限制本公开的示例的目的。附图中的部件不一定按比例绘制,而是将重点放在清楚地图示本公开的原理上。

图1图示包括常规过电流保护电路的驱动器放大器的示意图。

图2图示根据本公开的示例的包括过电流保护电路的驱动器放大器的示例性框图。

图3图示根据本公开的示例的包括过电流保护电路的驱动器放大器的示例性示意图。

图4图示根据本公开的包括过电流保护电路的驱动器放大器的备选示例的示例性示意图。

图5是图示根据本公开的示例的用于过电流保护电路的操作的方法的流程图。

具体实施方式

本公开描述解决本领域中的对于改进的过电流保护电路的需要的系统和方法,所述过电流保护电路在合并内部和外部扬声器放大器功能性的现代装置中保证改进的过电流保护稳定性。以下讨论将针对具有过电流保护电路示例的耳机驱动器放大器。但将意识到,本文中所公开的过电流保护电路可以在其它类型的驱动器放大器电路(诸如,例如低压差调节器(lowdrop-outregulator,ldo))中实现。

图1图示包括常规过电流保护电路的驱动器放大器100的示意图。如图1中所示出的,驱动器放大器100包括第一级放大器101、主放大器电路102、过电流保护电路104以及互补过电流保护电路134。在这点上,第一级放大器101将差分放大信号提供给主放大器电路102,所述主放大器电路102提供放大的输出电流驱动信号以驱动负载。过电流保护电路104和互补过电流保护电路134为放大的输出电流驱动信号的过电流保护作准备,所述放大的输出电流驱动信号是主放大器电路102的。

第一级放大器101接收输入电压的差分对(在第一级放大器101的非反相(+)端子处接收的正输入电压111以及在第一级放大器101的反相(-)端子处接收的负输入电压121)。第一级放大器101在主放大器电路102的n沟道金属氧化物半导体场效应晶体管(nmosfet)114的栅极端子处提供负放大信号122,并且在主放大器电路102的p沟道金属氧化物半导体场效应晶体管(pmosfet)124的栅极端子处提供正放大信号123。nmosfet114的漏极端子提供放大的输出电流驱动信号128,并且,pmosfet124的漏极端子提供放大的输出电流驱动信号129,以驱动负载(例如,未示出)。nmosfet114的源极端子连接到模拟地106,并且,pmosfet124的源极端子连接到dc电压源极105。过电流保护电路104和互补过电流保护电路134分别接收放大的输出电流驱动信号128和放大的输出电流驱动信号129。

过电流保护电路104包括复制电流传感器103、电流镜电路112、参考电流源107以及钳位器件110。复制电流传感器103感测nmosfet114的放大的输出电流驱动信号128,并且提供与放大的输出电流驱动信号128成比例的、缩放的电流信号148。电流镜电路112包括实现为串联对的电流镜pmosfet115和电流镜pmosfet116,并且在电流镜pmosfet115的漏极端子处接收缩放的电流信号148,并且在电流镜pmosfet116的漏极端子处提供电流镜输出信号158。参考电流源107被实现来提供参考电流信号157。在钳位器件110的钳位nmosfet109的栅极端子处提供包括电流镜输出信号158与参考电流信号157之间的差的差分信号168。钳位nmosfet109的漏极端子连接到nmosfet114的栅极端子,并且,钳位nmosfet109控制nmosfet114的栅极电压,以监测放大的输出电流驱动信号128并且持续地将其限制到预定的最大电流驱动电平。

互补过电流保护电路134包括互补复制电流传感器133、互补电流镜电路132、互补参考电流源137以及互补钳位器件130。互补复制电流传感器133感测pmosfet124的放大的输出电流驱动信号129,并且提供与放大的输出电流驱动信号129成比例的、缩放的电流信号149。互补电流镜电路132包括实现为串联对的电流镜nmosfet135和电流镜nmosfet136,并且在电流镜nmosfet135的漏极端子处接收缩放的电流信号149,并且在电流镜nmosfet136的漏极端子处提供电流镜输出信号159。互补参考电流源137被实现来提供互补参考电流信号167。在互补钳位器件130的钳位pmosfet139的栅极端子处提供包括电流镜输出信号159与互补参考电流信号167之间的差的差分信号169。钳位pmosfet139的漏极端子连接到pmosfet124的栅极端子,并且,钳位pmosfet139控制pmosfet124的栅极电压,以监测放大的输出电流驱动信号129并且持续地将其限制到预定的最小电流驱动电平。

图1的过电流保护电路104包括两个高阻抗节点,所述两个高阻抗节点可以使得过电流保护电路104在过电流状况期间固有地不稳定并且在驱动器放大器100内引起振荡。第一高阻抗节点位于电流镜电路112的输出处(例如,电流镜pmosfet116的漏极端子处),并且,第二高阻抗节点位于钳位器件110的输出处(例如,钳位nmosfet109的漏极端子处)。互补过电流保护电路134包括具有类似高阻抗节点的类似位置。为了降低不稳定性,图1的驱动器放大器100包括:密勒电容器108,其将钳位nmosfet109的栅极端子连接到nmosfet114的栅极端子;以及密勒电容器138,其将钳位pmosfet139的栅极端子连接到pmosfet124的栅极端子。密勒电容器108和密勒电容器138各自减小驱动器放大器100的带宽,这使放大器性能降级并且引起信号失真和噪声。此外,密勒电容器108和密勒电容器138需要驱动器放大器100内的额外管芯区域,从而引起驱动器放大器100的管芯尺寸的增加。

因此,在本领域中需要改进的过电流保护电路,其保证改进的过电流保护稳定性和驱动器放大器性能。

图2图示根据本公开的示例的包括过电流保护电路204的驱动器放大器200的示例性框图。如图2中所示出的,驱动器放大器200包括前置放大器201、主放大器202以及过电流保护电路204。前置放大器201将放大信号提供给主放大器202的输入,所述主放大器202进一步放大信号并且将放大的输出电流信号提供给负载(例如,未示出)。过电流保护电路204耦合到主放大器,并且为持续地感测放大的输出电流信号并且限制放大的输出电流信号的电流作准备,以防止主放大器向负载提供可能潜在地损坏负载或引起不期望的性能降级的电流。

在一些示例中,过电流保护电路204包括电流比较放大器213和pmosfet钳位器件210(例如,诸如图3的pmosfet钳位器件210)。在各种示例中,电流比较放大器213包括复制负载电流传感器203和参考电流源207。复制负载电流传感器203感测放大的输出电流信号,并且提供复制电流信号。复制电流信号与由参考电流源207生成的参考电流信号比较,以提供差分信号。差分信号被放大并且驱动电流比较放大器电压输出信号。pmosfet钳位器件210接收电流比较放大器电压输出信号并且响应于该电流比较放大器电压输出信号而限制主放大器202处的电压。

参考图3进一步描述包括过电流保护电路系统的驱动器放大器200的操作。图3图示包括过电流保护电路的驱动器放大器200的示例性示意图。图3示出驱动器放大器200,其实现为具有过电流保护电路系统的耳机驱动器放大器。在这点上,过电流保护电路系统包括过电流保护电路204和过电流保护电路234。过电流保护电路204和过电流保护电路234的操作基本上类似,并且,将在本文中描述两个电路之间的差异。

前置放大器201接收输入电压的差分对(在非反相(+)端子处接收的正输入电压111以及在反相(-)端子处接收的负输入电压121)。前置放大器201在主放大器202的nmosfet114的栅极端子处提供负放大信号122(例如,输入驱动信号),并且在主放大器202的pmosfet124的栅极端子处提供正放大信号123(例如,第二输入驱动信号)。nmosfet114的漏极端子提供放大的输出电流驱动信号128(例如,电流信号),并且,pmosfet124的漏极端子提供放大的输出电流驱动信号129(例如,第二电流信号),以驱动负载(例如,未示出)。nmosfet114的源极端子连接到模拟地106,并且,pmosfet124的源极端子连接到dc电压源105。在一些示例中,dc电压源可以是三伏与五伏dc之间的电压。将意识到,在其它示例中,其它dc电压是可能的。过电流保护电路204和第二过电流保护电路234分别接收放大的输出电流驱动信号128和放大的输出电流驱动信号129。

过电流保护电路204包括电流比较放大器213和pmosfet钳位器件210。电流比较放大器213包括复制负载电流传感器203和参考电流源207。在一些示例中,复制负载电流传感器203感测nmosfet114的放大的输出电流驱动信号128并且生成复制电流信号348。在这点上,复制负载电流传感器203是与nmosfet114类似的nmosfet器件,并且按因子n缩放,以将放大的输出电流驱动信号128减小至1/n,从而生成复制电流信号348,所述复制电流信号348包括与放大的输出电流驱动信号128成比例的、缩放的电流信号。参考电流源207被实现来生成参考电流信号358。在一些示例中,参考电流源207实现为适于可选择的电流源,以将放大的输出电流驱动信号128限制到预定最大值。

在一些示例中,电流比较放大器213可操作以放大包括复制电流信号348与参考电流信号358之间的差的差分信号,以驱动电流比较放大器电压输出信号359。电流比较放大器电压输出信号359驱动pmosfet钳位器件210的栅极端子。pmosfet钳位器件210的源极端子连接到nmosfet114的栅极端子,以控制nmosfet114的栅极电压。在这点上,pmosfet钳位器件210限制nmosfet114的栅极端子处的、与预定最大电流信号对应的电压,以持续地监测并且限制来自nmosfet114的放大的输出电流驱动信号128。

将意识到,电流比较放大器213为pmosfet钳位器件210的源极端子(其连接到nmosfet114的栅极端子)处的低阻抗节点和复制负载电流传感器203的漏极端子处的单个高阻抗节点作准备。在这点上,过电流保护电路204为在没有密勒电容器的情况下的过电流状况期间和正常操作期间都稳定的放大的输出电流驱动信号128作准备,所述放大的输出电流驱动信号128来自nmosfet114。

过电流保护电路234包括第二电流比较放大器233和nmosfet钳位器件230。第二电流比较放大器233包括第二复制负载电流传感器243和第二参考电流源237。在一些示例中,第二复制负载电流传感器243感测pmosfet124的放大的输出电流驱动信号129,并且生成复制第二电流信号369。在这点上,第二复制负载电流传感器243是与pmosfet124类似的pmosfet器件,并且按因子n缩放,以将放大的输出电流驱动信号129减小至1/n,从而生成包括与放大的输出电流驱动信号129成比例的、缩放的电流信号的复制第二电流信号369。第二参考电流源237被实现来生成第二参考电流信号379。在一些示例中,第二参考电流源237实现为适于可选择的电流源,以将放大的输出电流驱动信号129限制到预定最小值。

在一些示例中,第二电流比较放大器233可操作以放大包括复制第二电流信号369与第二参考电流信号379之间的差的第二差分信号,以驱动第二电流比较放大器电压输出信号370。第二电流比较放大器电压输出信号370驱动nmosfet钳位器件230的栅极端子。nmosfet钳位器件230的源极端子连接到pmosfet124的栅极端子,以控制pmosfet124的栅极电压。在这点上,nmosfet钳位器件230限制pmosfet124的栅极端子处的、与预定最小电流信号对应的电压,以持续地监测并且限制来自pmosfet124的放大的输出电流驱动信号129。

将意识到,第二电流比较放大器233为nmosfet钳位器件230的源极端子(其连接到pmosfet124的栅极端子)处的低阻抗节点和第二复制负载电流传感器243的漏极端子处的单个高阻抗节点作准备。在这点上,过电流保护电路234为在没有密勒电容器的情况下的过电流状况期间和正常操作期间都稳定的放大的输出电流驱动信号129作准备,所述放大的输出电流驱动信号129来自pmosfet124。

图4图示包括过电流保护电路的驱动器放大器400的备选示例的示例性示意图。例如,图4包括在过电流保护电路404或过电流保护电路434中使用的两个电流镜电路。在这点上,过电流保护电路404包括电流比较放大器413和pmosfet钳位器件210。电流比较放大器413包括复制负载电流传感器203、第一电流镜电路452、第二电流镜电路455以及参考电流源207。

第一电流镜电路452包括实现为串联对的电流镜pmosfet453和电流镜pmosfet454,并且在电流镜pmosfet453的漏极端子处接收复制电流信号348,并且在电流镜pmosfet454的漏极端子处提供电流镜输出信号464。第二电流镜电路455包括实现为串联对的电流镜nmosfet456和电流镜nmosfet457,并且在电流镜nmosfet456的漏极端子处接收电流镜输出信号464,并且在电流镜nmosfet457的漏极端子处提供电流镜输出信号448。电流比较放大器413可操作以放大包括电流镜输出信号448与参考电流信号358之间的差的差分信号,以驱动电流比较放大器电压输出信号359,从而控制pmosfet钳位器件210。将意识到,电流比较放大器413为pmosfet钳位器件210的源极端子(其连接到nmosfet114的栅极端子)处的低阻抗节点和电流镜nmosfet457的漏极端子处的单个高阻抗节点作准备。在这点上,过电流保护电路404为在正常操作期间和过电流状况期间都稳定的放大的输出电流驱动信号128作准备,所述放大的输出电流驱动信号128来自nmosfet114。

过电流保护电路434包括电流比较放大器433和nmosfet钳位器件230。电流比较放大器433包括第二复制负载电流传感器243、第一电流镜电路458、第二电流镜电路461以及第二参考电流源237。第一电流镜电路458包括实现为串联对的电流镜nmosfet459和电流镜nmosfet460,并且在电流镜nmosfet459的漏极端子处接收复制第二电流信号369,并且在电流镜nmosfet460的漏极端子处提供电流镜输出信号468。第二电流镜电路461包括实现为串联对的电流镜pmosfet462和电流镜pmosfet463,并且在电流镜pmosfet462的漏极端子处接收电流镜输出信号468,并且在电流镜pmosfet463的漏极端子处提供电流镜输出信号469。

电流比较放大器433可操作以放大包括电流镜输出信号469与第二参考电流信号379之间的差的差分信号,以驱动第二电流比较放大器电压输出信号370,从而控制nmosfet钳位器件230。将意识到,电流比较放大器433为nmosfet钳位器件230的源极端子(其连接到pmosfet124的栅极端子)处的低阻抗节点和电流镜pmosfet463的漏极端子处的单个高阻抗节点作准备。在这点上,过电流保护电路434为在正常操作期间和过电流状况期间都稳定的放大的输出电流驱动信号129作准备,所述放大的输出电流驱动信号129来自pmosfet124。

图5是图示根据本公开的示例的用于过电流保护电路的操作的方法500的流程图。方法500开始于步骤502的操作。在一个示例中,步骤502的操作由驱动器放大器200的nmosfet114和/或pmosfet124执行。在另一示例中,步骤502的操作由驱动器放大器400的nmosfet114和/或pmosfet124执行。例如,nmosfet114提供放大的输出电流驱动信号128,并且,pmosfet124提供放大的输出电流驱动信号129,以驱动负载。

方法500可以进一步包括生成复制电流信号的操作(步骤504)。在一些示例中,复制负载电流传感器203感测nmosfet114的放大的输出电流驱动信号128,并且生成复制电流信号348。在一些示例中,第二复制负载电流传感器243感测pmosfet124的放大的输出电流驱动信号129,并且生成复制第二电流信号369。

方法500可以进一步包括以下操作:放大包括复制电流信号与参考电流信号之间的差的差分信号以驱动电流比较放大器电压输出信号(步骤506)。在一些示例中,参考电流源207被实现来生成参考电流信号358。参考电流源207可以实现为适于可选择的电流源,以将放大的输出电流驱动信号128限制到预定最大值。在一些示例中,电流比较放大器213可操作以放大包括复制电流信号348与参考电流信号358之间的差的差分信号,以驱动电流比较放大器电压输出信号359。

在一些示例中,第二参考电流源237被实现来生成第二参考电流信号379。第二参考电流源237实现为适于可选择的电流源,以将放大的输出电流驱动信号129限制到预定最小值。在一些示例中,第二电流比较放大器233可操作以放大包括复制第二电流信号369与第二参考电流信号379之间的差的第二差分信号,以驱动第二电流比较放大器电压输出信号370。

方法500可以进一步包括以下操作:响应于电流比较放大器电压输出信号而限制功率器件的栅极端子电压(步骤508)。在一些示例中,电流比较放大器电压输出信号359驱动pmosfet钳位器件210的栅极端子。pmosfet钳位器件210的源极端子连接到nmosfet114的栅极端子,以控制nmosfet114的栅极电压。在这点上,pmosfet钳位器件210限制nmosfet114的栅极端子处的、与预定最大电流信号对应的电压,以持续地监测并且限制来自nmosfet114的放大的输出电流驱动信号128。

在一些示例中,第二电流比较放大器电压输出信号370驱动nmosfet钳位器件230的栅极端子。nmosfet钳位器件230的源极端子连接到pmosfet124的栅极端子,以控制pmosfet124的栅极电压。在这点上,nmosfet钳位器件230限制pmosfet124的栅极端子处的、与预定最小电流信号对应的电压,以持续地监测并且限制来自pmosfet124的放大的输出电流驱动信号129。

鉴于本公开,将意识到,根据本文中所阐述的各种示例实现的驱动器放大器200可以提供过电流保护电路,所述过电流保护电路持续地监测并且限制放大的输出电流驱动信号,并且改进过电流保护稳定性和驱动器放大器性能。驱动器放大器200合并pmosfet钳位器件210(其连接到nmosfet114功率器件的栅极端子以控制nmosfet114的栅极电压)和nmosfet钳位器件230(其连接到pmosfet124功率器件的栅极端子以控制pmosfet124的栅极电压),从而全部用来在不需要额外的稳定化元件(其增加驱动器放大器的复杂性和管芯尺寸)的情况下使过电流保护稳定性优化。

在可适用的情况下,由本公开提供的各种示例可以使用硬件、软件或硬件和软件的组合来实现。同样地,在可适用的情况下,在不脱离本公开的精神的情况下,本文中所阐述的各种硬件部件和/或软件部件可以组合成包括软件、硬件和/或两者的复合部件。在可适用的情况下,在不脱离本公开的范围的情况下,本文中所阐述的各种硬件部件和/或软件部件可以分离成包括软件、硬件或两者的子部件。另外,在可适用的情况下,预期的是,软件部件可以实现为硬件部件,并且反之亦然。

以上公开不旨在将本公开限制于所公开的精确形式或特定使用领域。同样,鉴于本公开,预期不论是在本文中明确地描述还是暗示,对于本公开的各种备选示例和/或修改都是可能的。在已经这样描述本公开的示例的情况下,本领域普通技术人员将认识到,在不脱离本公开的范围的情况下,可以在形式和细节上作出改变。因而,本公开仅由权利要求限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1