一种多载波系统中AD转换信噪比损失的估计方法及装置与流程

文档序号:20509547发布日期:2020-04-24 18:21阅读:623来源:国知局
一种多载波系统中AD转换信噪比损失的估计方法及装置与流程

本发明涉及无线技术领域,特别是一种多载波系统中ad转换信噪比损失的估计方法及装置。



背景技术:

在无线通信系统设计中,需要为接收端选择合适的解调译码算法,以保证系统ber(biterrorrate,误码率)指标要求。为达到此目的,在最先的链路仿真中,需要对信号接收端每个处理模块引入的信噪比损失进行估计。本专利主要研究信号经过ad转换的信噪比损失估计方法,以确定信号接收处理过程的信噪比损失,进而能够保证系统ber指标要求。

在ad转换过程中,ad转换器件存在孔径抖动、积分非线性、差分非线性以及交调失真等因素的影响,由此引入的噪声称为ad非理想量化噪声;其次,多载波系统中papr(papr-peaktoaveragepowerratio,峰值平均功率比)的影响,以及输入载波信号的特性(包括载波信息速率、载波个数、信噪比)均会影响ad转换信噪比损失。

文献《接收机增益选择与adc噪声电平匹配》(李立明,火控雷达技术,2012)给出了接收机的信噪比损失和动态范围之间如何折衷的计算方法,讨论了adc(analog-to-digitalconverter,模/数转换器)的动态范围,信噪比损失,过采样处理。未涉及多载波系统中ad转换信噪比损失的估计方法。

文献《抗干扰扩频接收机中的adc设计》(杨伟君,张朝杰,袁铁山,金小军,金仲和,系统工程与电子技术,2012)根据adc误差产生的机理,针对存在干扰的情况,得出了adc输出snr(signal/noise,信噪比),关于输入snr、量化位数和干信比的计算公式。但该计算公式并不适用于多载波系统,并且未考虑ad采样率、载波信息速率对于信噪比损失的影响。

文献《提高adc动态范围的研究》(于淑芳,济源职业技术学院学报,2007)提出了将对数放大器和ad转换器组合,可在不增加ad量化位数的情况下有效提高adc的动态范围。未涉及多载波系统中ad转换信噪比损失的估计方法。

文献《基于离散小波的gps中频信号噪声抑制方法》(赵琳,高帅和,丁继成,何周,中国惯性技术学报,2010)针对gps(globalpositioningsystem,全球定位系统)接收机射频前端的中频信号在模数转换过程中存在的信号损失问题,提出一种应用离散小波抑制噪声干扰的处理方法。在研究adc结构的基础上,分析采样误差、量化误差,以及孔径抖动等因素对中频信号信噪比的影响。未涉及多载波系统中ad转换信噪比损失的估计方法。

文献《adclimltatonsonthedynamicrangeofadigitalreceiver》(zhengshenghua,xudazhuan,jinxueming,ielconf,2005,pp.79-82)分析了adc的量化误差、抖动噪声和杂波对于数字接收机动态范围的影响,并讨论了改善数字接收机性能的方法。未涉及多载波系统中ad转换信噪比损失的估计方法。

文献《anewmethodforanalyzingthequantizationeffectofadcinbroadbandqamreceiver》(boshen;qian-lingzhang,ielcitation,2002,pp.1262-1266vol.2)通过分析ad转换器的量化位数和宽带qam(quadratureamplitudemodulation,正交振幅调制)解调器的ber性能,得到了一个adc量化位数和snr损失的表达式。但该表达式并不适用于多载波系统,并且未考虑ad采样率、载波信号信息速率对于信噪比损失的影响。

专利《一种提高接收机动态范围的装置及其使用方法》公开了一种提高接收机动态范围的装置及其使用方法,通过压缩模块对大信号幅度进行压缩,对小信号近似线性放大,进而降低接收信号峰均比,提高接收机动态范围。未涉及多载波系统中ad转换信噪比损失的估计方法。

从以上文献研究内容可以看出,针对ad转换信噪比损失,已有成果均不适应于多载波系统,并且未考虑多载波papr、载波信号个数和信息速率对于ad转换信噪比损失的影响,无法准确评估ad转换的信噪比损失。



技术实现要素:

本发明解决的技术问题是:克服现有技术中未考虑多载波papr、载波信号个数和信息速率对于ad转换信噪比损失的影响,无法准确评估ad转换的信噪比损失的不足,提供了一种多载波系统中ad转换信噪比损失的估计方法及装置。

为了解决上述技术问题,本发明实施例提供了一种多载波系统中ad转换信噪比损失的估计方法,包括:

在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率;

根据单个载波信号的载波信号信息,确定所述单个载波信号和采样带宽内热噪声之间的功率比值;

根据所述ad满量程输入功率、ad输入功率回退值、载波信号个数和所述功率比值,获取单个载波信号功率和输入ad的热噪声功率;

根据所述ad非理想量化噪声功率、所述单个载波信号功率和所述输入ad的热噪声功率,确定ad转换后的所述单个载波信号的转换后信噪比;

根据转换前信噪比和所述转换后信噪比,确定ad转换信噪比损失值。

所述根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率的步骤,包括:

采用下述公式(1)获取所述ad非理想量化噪声功率:

上述公式(1)中,pad_noise为ad非理想量化噪声功率,单位dbm,snradc为ad器件的信噪比理想值,单位db,pad_fs为ad满量程输入功率,单位dbm,enob为ad转换有效位数。

所述根据单个载波信号的载波信号信息,确定所述单个载波信号和采样带宽内热噪声之间的功率比值的步骤,包括:

根据所述单个载波信号ad转换前的信噪比、信息速率和ad采样率,获取所述功率比值。

所述根据所述单个载波信号的信噪比、信息速率和ad采样率,获取所述功率比值的步骤,包括:

采用下述公式(2)获取所述功率比值:

上述公式(2)中,snrawgn为功率比值,单位db,fs为ad采样率,r为单个载波信号的信息速率,snrinput为单个载波信号ad转换前的信噪比。

所述根据所述ad满量程输入功率、ad输入功率回退值、载波信号个数和所述功率比值,获取单个载波信号功率和输入ad的热噪声功率的步骤,包括:

采用下述公式(3)获取所述单个载波信号功率和所述输入ad的热噪声功率:

上述公式(3)中,psingle_signal为单个载波信号功率,单位dbm,ptherm_noise为输入ad的热噪声功率,单位dbm,pad_input为输入ad的热噪声功率,单位dbm,snrawgn为单个载波信号和采样带宽内热噪声之间的功率比值,ncarrier为多载波信号个数。

所述根据所述ad非理想量化噪声功率、所述单个载波信号功率和所述输入ad的热噪声功率,确定ad转换后的所述单个载波信号的转换后信噪比的步骤,包括:

采用下述公式(4)获取转换后信噪比:

上述公式(4)中,snrsingle_carrier为转换后信噪比,psingle_signal为单个载波信号功率,ptotal_noise为ad转化换后总的噪声功率。

所述根据转换前信噪比和所述转换后信噪比,确定ad转换信噪比损失值的步骤,包括:

计算所述转换后信噪比和所述转换前信噪比之间的差值;

将所述差值作为所述ad转换信噪比损失值。

一种多载波系统中ad转换信噪比损失的估计装置,包括:

非理想噪声功率确定模块,用于在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率;

功率比值确定模块,用于根据单个载波信号的载波信号信息,确定所述单个载波信号和采样带宽内热噪声之间的功率比值;

信号热噪声功率获取模块,用于根据所述ad满量程输入功率、ad输入功率回退值、载波信号个数和所述功率比值,获取单个载波信号功率和输入ad的热噪声功率;

转换后信噪比确定模块,用于根据所述ad非理想量化噪声功率、所述单个载波信号功率和所述输入ad的热噪声功率,确定ad转换后的所述单个载波信号的转换后信噪比;

信噪比损失值确定模块,用于根据转换前信噪比和所述转换后信噪比,确定ad转换信噪比损失值。

所述非理想噪声功率确定模块包括:

采用下述公式(1)获取所述ad非理想量化噪声功率:

上述公式(1)中,pad_noise为ad非理想量化噪声功率,单位dbm,snradc为ad器件的信噪比理想值,单位db,pad_fs为ad满量程输入功率,单位dbm。

所述功率比值确定模块包括:

功率比值确定子模块,用于根据所述单个载波信号ad转换前的信噪比、信息速率和ad采样率,获取所述功率比值。

所述功率比值确定子模块包括:

采用下述公式(2)获取所述功率比值:

上述公式(2)中,snrawgn为功率比值,单位db,fs为ad采样率,r为单个载波信号的信息速率,snrinput为单个载波信号ad转换前的信噪比。

所述信号热噪声功率获取模块包括:

采用下述公式(3)获取所述单个载波信号功率和所述输入ad的热噪声功率:

上述公式(3)中,psingle_signal为单个载波信号功率,单位dbm,ptherm_noise为输入ad的热噪声功率,单位dbm,pad_input为输入ad的热噪声功率,单位dbm,snrawgn为单个载波信号和采样带宽内热噪声之间的功率比值,ncarrier为多载波信号个数。

所述转换后信噪比确定模块包括:

采用下述公式(4)获取转换后信噪比:

上述公式(4)中,snrsingle_carrier为转换后信噪比,psingle_signal为单个载波信号功率,ptotal_noise为ad转化换后总的噪声功率。

所述信噪比损失值确定模块包括:

差值计算子模块,用于计算所述转换后信噪比和所述转换前信噪比之间的差值;

损失值获取子模块,用于将所述差值作为所述ad转换信噪比损失值。

本发明与现有技术相比的优点在于:本发明实施例对ad转换信噪比损失的估计考虑了ad非理想量化噪声、多载波系统papr以及输入载波信号特性三个影响因素。其中,用ad转换有效位数enob及ad满量程输入功率pad_fs来模拟非理想量化噪声;用ad输入功率回退值来模拟多载波系统papr的影响。

附图说明

图1为本发明实施例提供的一种多载波系统中ad转换信噪比损失的估计方法的步骤流程图;

图2为本发明实施例提供的一种多载波系统中ad转换信噪比损失的估计装置的结构示意图。

具体实施方式

下面将结合本发明的实施例中的附图,对本发明的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的实施例一部分实施例,而不是全部的实施例。基于本发明的实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明的实施例保护的范围。

实施例一

参照图1,示出了本发明实施例提供的一种多载波系统中ad转换信噪比损失的估计方法的步骤流程图,如图1所示,该多载波系统中ad转换信噪比损失的估计方法具体可以包括如下步骤:

步骤101:在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率。

在本发明实施例中,ad转换后输出信号信噪比的理想值为:snradc=6.02*enob+1.76。

其中,enob为ad转换有效位数,snradc为ad器件的信噪比理想值,单位为dbm。

那么,可以采用下述公式(1)计算得到ad非理想量化噪声功率:

上述公式(1)中,pad_noise为ad非理想量化噪声功率,单位为dbm,pad_fs为ad满量程输入功率值,单位为dbm,snradc为ad器件的信噪比理想值。

在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率之后,执行步骤102。

步骤102:根据单个载波信号的载波信号信息,确定所述单个载波信号和采样带宽内热噪声之间的功率比值。

载波信号信息是指单个载波信号的相关信息,可以包括:单个载波信号的信噪比、信息速率和ad采样率。

功率比值是指单个载波信号和采样带宽内热噪声之间的功率比值。

在本发明中,可以根据单个载波信号的载波信号信息,确定单个载波信号和采样带宽内热噪声之间的功率比值,具体地,可以结合下述优选实施例进行详细描述。

在本发明的一种优选实施例中,上述步骤102可以包括:

子步骤a1:根据所述单个载波信号的信噪比、信息速率和ad采样率,获取所述功率比值。

在本发明实施例中,可以结合单个载波信号的信噪比、信息速率和ad采样率,获取到功率比值。

设单个载波信号ad转换前的信噪比为:snrinput

那么单个载波信号与采样带宽内热噪声之间的功率比值可以如下述公式(2)所示:

上述公式(2)中,snrawgn为功率比值,fs为ad采样率,r为单个载波信号的信息速率,snrinput为单个载波信号ad转换前的信噪比。

在根据单个载波信号的载波信号信息,确定单个载波信号和采样带宽内热噪声之间的功率比值之后,执行步骤103。

步骤103:根据所述ad满量程输入功率、ad输入功率回退值、载波信号个数和所述功率比值,获取单个载波信号功率和输入ad的热噪声功率。

在多载波系统中,为了模拟papr对于ad转换信噪比损失的影响,引入ad输入功率回退值,记为preturn,则输入到ad的载波信号以及热噪声总功率为:pad_input=pad_fs-preturn。

设单个载波信号功率为psingle_signal,输入ad的热噪声功率为ptherm_noise,则有以下关系:

由上面两个式子联立可以解得:

其中,ncarrier为多载波信号个数。

在本发明中,可以根据ad满量程输入功率、ad输入功率回退值、载波信号个数和转换前噪声比,获取单个载波信号的单信号功率和输入ad的热噪声功率,其中,ad输入功率回退值来模拟多载波系统papr的影响。

在根据ad满量程输入功率、ad输入功率回退值、载波信号个数和转换前噪声比,获取单个载波信号功率和输入ad的热噪声功率之后,执行步骤104。

步骤104:根据所述ad非理想量化噪声功率、所述单个载波信号功率和所述输入ad的热噪声功率,确定ad转换后的所述单个载波信号的转换后信噪比。

在获取ad非理想量化噪声功率、单个载波信号功率和输入ad的热噪声功率之后,可以根据ad非理想量化噪声功率、单个载波信号功率和输入ad的热噪声功率,计算得到ad转换后的单个载波信号的转换后信噪比。

载波信号经过ad转换后,引入非理想量化噪声pad_noise,加上输入的热噪声ptherm_noise,因此,总的噪声功率为:

因此,单个载波信号经过ad转换后的信噪比为:

在根据ad非理想量化噪声功率、单信号功率和热噪声功率,确定出ad转换后的所述单个载波信号的转换后信噪比之后,执行步骤105。

步骤105:根据转换前信噪比和所述转换后信噪比,确定ad转换信噪比损失值。

在获取到转换后信噪比之后,可以根据转换前信噪比和转换后信噪比确定出ad转换信噪比损失值。具体地,可以结合下述优选实施例进行详细描述。

在本发明的一种优选实施例中,上述步骤105可以包括:

子步骤b1:计算所述转换后信噪比和所述转换前信噪比之间的差值;

子步骤b2:将所述差值作为所述ad转换信噪比损失值。

在本发明实施例中,在得到转换后信噪比和转换前信噪比之后,计算转换后信噪比和转换前信噪比之间的差值,并将该差值作为ad转换信噪比损失值。

最终得到,ad转换前后,单个载波信号的信噪比损失为:snrloss=snrinput-snrsingle_carrier。

从上式可以看出,多载波系统中,载波信号经过ad转换的信噪比损失可以通过本发明估计方法得到,估计方法与以下7个参数有关。

a、ad有效位数enob;

b、ad采样率fs;

c、ad满量程输入功率pad_fs:

d、ad输入功率回退值preturn;

e、单载波信息速率:r

f、单载波个数:ncarrier;

g、单个载波信号ad转换前的信噪比:snrinput。

本发明实施例将ad非理想量化噪声、多载波系统papr、输入载波信号特性等因素引入ad转换信噪比损失的建模中,与实际情形高度相似,能够准确估计载波信号经过ad转换后的信噪比损失,可应用于无线系统链路级仿真中。

本发明实施例提供的多载波系统中ad转换信噪比损失的估计方法,通过在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率,根据单个载波信号的载波信号信息,确定单个载波信号和采样带宽内热噪声之间的功率比值,根据ad满量程输入功率、ad输入功率回退值、载波信号个数和功率比值,获取单个载波信号功率和输入ad的热噪声功率,根据ad非理想量化噪声功率、单个载波信号功率和输入ad的热噪声功率,确定ad转换后的单个载波信号的转换后信噪比,根据转换前信噪比和转换后信噪比,确定ad转换信噪比损失值。本发明实施例将ad非理想量化噪声、多载波系统papr、输入载波信号特性等因素引入ad转换信噪比损失的建模中,与实际情形高度相似,能够准确估计载波信号经过ad转换后的信噪比损失,可应用于无线系统链路级仿真中。通过对ad转换信噪比损失的估计考虑了ad非理想量化噪声、多载波系统papr以及输入载波信号特性三个影响因素。其中,用ad转换有效位数enob及ad满量程输入功率pad_fs来模拟非理想量化噪声;用ad输入功率回退值来模拟多载波系统papr的影响。

实施例二

参照图2,示出了本发明实施例提供的一种多载波系统中ad转换信噪比损失的估计装置的结构示意图,如图2所示,该多载波系统中ad转换信噪比损失的估计装置可以包括如下模块:

非理想噪声功率确定模块210,用于在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率;

功率比值确定模块220,用于根据单个载波信号的载波信号信息,确定所述单个载波信号和采样带宽内热噪声之间的功率比值;

信号热噪声功率获取模块230,用于根据所述ad满量程输入功率、ad输入功率回退值、载波信号个数和所述功率比值,获取单个载波信号功率和输入ad的热噪声功率;

转换后信噪比确定模块240,用于根据所述ad非理想量化噪声功率、所述单个载波信号功率和所述输入ad的热噪声功率,确定ad转换后的所述单个载波信号的转换后信噪比;

信噪比损失值确定模块250,用于根据转换前信噪比和所述转换后信噪比,确定ad转换信噪比损失值。

优选地,所述非理想噪声功率确定模块210包括:

采用下述公式(1)获取所述ad非理想量化噪声功率:

上述公式(1)中,pad_noise为ad非理想量化噪声功率,snradc为ad器件的信噪比理想值,pad_fs为ad满量程输入功率,pad_noise和pad_fs单位均为dbm,snradc单位为db。

优选地,所述功率比值确定模块220包括:

功率比值确定子模块,用于根据所述单个载波信号ad转换前的信噪比、信息速率和ad采样率,获取所述功率比值。

优选地,所述功率比值确定子模块包括:

采用下述公式(2)获取所述功率比值:

上述公式(2)中,snrawgn为功率比值,fs为ad采样率,r为单个载波信号的信息速率,snrinput为单个载波信号ad转换前的信噪比。

优选地,所述信号热噪声功率获取模块230包括:

采用下述公式(3)获取所述单个载波信号功率和所述输入ad的热噪声功率:

上述公式(3)中,psingle_signal为单个载波信号功率,ptherm_noise为输入ad的热噪声功率,pad_input为输入ad的热噪声功率,三者单位均为dbm,snrawgn为单个载波信号和采样带宽内热噪声之间的功率比值,ncarrier为多载波信号个数。

优选地,所述转换后信噪比确定模块240包括:

采用下述公式(4)获取转换后信噪比:

上述公式(4)中,snrsingle_carrier为转换后信噪比,psingle_signal为单个载波信号功率,ptotal_noise为ad转化换后总的噪声功率。

优选地,所述信噪比损失值确定模块250包括:

差值计算子模块,用于计算转换后信噪比和所述转换前信噪比之间的差值;

损失值获取子模块,用于将所述差值作为所述ad转换信噪比损失值。

本发明提供的多载波系统中ad转换信噪比损失的估计装置,通过在进行ad转换的过程中,根据ad转换有效位数和ad满量程输入功率,确定ad非理想量化噪声功率,根据单个载波信号的载波信号信息,确定单个载波信号和采样带宽内热噪声之间的功率比值,根据ad满量程输入功率、ad输入功率回退值、载波信号个数和功率比值,获取单个载波信号功率和输入ad的热噪声功率,根据ad非理想量化噪声功率、单个载波信号功率和输入ad的热噪声功率,确定ad转换后的单个载波信号的转换后信噪比,根据转换前信噪比和转换后信噪比,确定ad转换信噪比损失值。本发明实施例将ad非理想量化噪声、多载波系统papr、输入载波信号特性等因素引入ad转换信噪比损失的建模中,与实际情形高度相似,能够准确估计载波信号经过ad转换后的信噪比损失,可应用于无线系统链路级仿真中。通过对ad转换信噪比损失的估计考虑了ad非理想量化噪声、多载波系统papr以及输入载波信号特性三个影响因素。其中,用ad转换有效位数enob及ad满量程输入功率pad_fs来模拟非理想量化噪声;用ad输入功率回退值来模拟多载波系统papr的影响。

本发明说明书中未详细描述的内容属于本领域的公知常识。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1