一种传输方法及网络侧设备与流程

文档序号:25872241发布日期:2021-07-16 16:44阅读:129来源:国知局
一种传输方法及网络侧设备与流程

1.本发明涉及无线通信技术领域,尤其涉及一种传输方法及网络侧设备。


背景技术:

2.在正常电磁波中添加一个相位旋转因子exp(jlφ),此时相位波前将不再是平面结构,而是围绕波束传播方向旋转。轨道角动量(orbital angular momentum,oam)特性使得电磁波的等相位面沿着传播方向呈螺旋的形态,旋转一周,相位变化2πl,且波前中心处场强的强度为零。
[0003][0004]
其中a(r)为电磁波幅值,r表示到波束中心轴线的辐射距离,为方位角,l表示轨道角动量的本征值,也叫模态值、阶数。
[0005]
不同本征值l的电磁涡旋波是相互正交的,也即因此可以在同一带宽内并行传输不同本征值的oam涡旋波。


技术实现要素:

[0006]
有鉴于此,本发明提供一种传输方法及网络侧设备,用于解决目前通信系统容量小以及多用户之间存在干扰的问题。
[0007]
为解决上述技术问题,第一方面,本发明提供一种传输方法,包括:
[0008]
获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0009]
利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0010]
可选的,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0011]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0012]
可选的,所述第二距离为:
[0013][0014]
其中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0015]
可选的,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一
个得到。
[0016]
可选的,所述利用第二信道矩阵进行预编码传输的步骤包括:
[0017]
采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0018]
可选的,预编码采用的算法为块对角化算法,或者包括块对角化算法和奇异值分解算法。
[0019]
第二方面,本发明还提供一种网络侧设备,包括:
[0020]
测量模块,用于获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0021]
传输模块,用于利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0022]
可选的,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0023]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0024]
可选的,所述第二距离为:
[0025][0026]
其中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0027]
可选的,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一个得到。
[0028]
可选的,所述传输模块包括:
[0029]
发送单元,用于采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0030]
可选的,预编码采用的算法为块对角化算法,或者包括块对角化算法和奇异值分解算法。
[0031]
第三方面,本发明还提供一种网络侧设备,包括:收发器和处理器;
[0032]
所述收发器,用于获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0033]
所述收发器,还用于利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0034]
可选的,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0035]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0036]
可选的,所述第二距离为:
[0037][0038]
其中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0039]
可选的,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一个得到。
[0040]
可选的,所述收发器,用于采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0041]
可选的,预编码采用的算法为块对角化算法,或者包括块对角化算法和奇异值分解算法。
[0042]
第四方面,本发明还提供一种网络侧设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述计算机程序时实现上述任一种传输方法中的步骤。
[0043]
第五方面,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述任一种传输方法中的步骤。
[0044]
本发明的上述技术方案的有益效果如下:
[0045]
本发明实施例,一方面通过oam-mimo复用技术可提升通信系统容量,另一方面通过预编码技术还能抑制多用户之间的干扰,尤其适用于长距离los场景。采用本发明实施例提供的传输方法的网络侧设备还能为未来6g网络中的新型终端(例如无人机)提供服务。
附图说明
[0046]
图1为本发明实施例一中的一种传输方法的流程示意图;
[0047]
图2为一种oam天线阵列发射的涡旋电磁波示意图;
[0048]
图3为图2所示的涡旋电磁波传输路径上任意一点(不包括暗区)在圆柱坐标系下的波矢示意图;
[0049]
图4为等效模型示意图;
[0050]
图5为本发明实施例的一种应用场景示意图;
[0051]
图6为针对图5所示的应用场景的等效模型示意图;
[0052]
图7为本发明实施例二中的一种网络侧设备的结构示意图;
[0053]
图8为本发明实施例三中的一种网络侧设备的结构示意图;
[0054]
图9为本发明实施例四中的一种网络侧设备的结构示意图。
具体实施方式
[0055]
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
[0056]
请参阅图1,图1为本发明实施例一提供的一种传输方法的流程示意图,该方法应
用于网络侧设备,所述网络侧设备作为发送端,包括基于轨道角动量的多输入多输出(multiple-input multiple-output,mimo)天线阵列,所述方法包括以下步骤:
[0057]
步骤11:所述网络侧设备获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0058]
步骤12:所述网络侧设备利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0059]
需要说明的是,所述接收天线可以为用户端(也即终端)的接收天线。所述第一信道矩阵为实际的发送天线与接收天线之间的实际信道矩阵,所述第二信道矩阵为等效的发送天线与接收天线之间的等效信道矩阵。
[0060]
具体的,在基于oam的mimo通信系统中,发送端天线阵列是n个oam天线的均匀线性阵列(uniform linear array,ula),每个oam天线都是循环行波天线,可以生成一种oam模态的波;接收端天线阵列可以是n个普通mimo天线的ula。因此,可以建立n*n的视距传播(line of sight,los)路径。另外,由于不同模态的波空间发散角不同,因此所述基于oam的mimo通信系统还包括用于对涡旋电磁波进行“塑形”的抛物面反射器。请参阅图2,不同oam天线发射的不同模态的电磁波,经该抛物面反射器“塑形”后,空间发散角α变得完全相同,从而,经过相同的传播距离d后,接收圆的半径r相同。接收天线需要位于接收圆的切点,才能同时接收多个不同oam模态的电磁波,接收半径r=dtanα。当涡旋电磁波传播距离足够远时,接收半径r远大于天线阵列中天线间距,请参阅图3和图4,可以构建相似三角形,并根据相似三角形得出每一oam天线(tx0、tx1)的等效普通mimo发送天线(tx0、tx1)。由图4可以看出,等效发送天线之间的距离大于实际的天线间距,也就是说,采用oam天线阵列相当于拉大了天线间距,从而可以降低信道的相关性,增加了特征值,从而可以提升通信系统的容量。
[0061]
本发明实施例提供的传输方法,一方面通过oam-mimo复用技术可提升通信系统容量,另一方面通过预编码技术还能抑制多用户之间的干扰,尤其适用于长距离los场景。采用本发明实施例提供的传输方法的网络侧设备还能为未来6g网络中的新型终端(例如无人机)提供服务。
[0062]
下面举例说明上述传输方法。
[0063]
其中一种可选的具体实施方式中,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0064]
具体来说,获取所述第一信道矩阵包括以下步骤:
[0065]
所述网络侧设备接收所述接收天线发送的参考信号;
[0066]
所述网络侧设备根据所述参考信号,获取所述第一信道矩阵。
[0067]
本发明实施例中,可以基于信道互易性,通过上行参考信号获取下行信道矩阵。例如,终端发送信道探测参考信号(sounding reference signal,srs),所述网络侧设备接收srs,得到真实的信道矩阵——第一信道矩阵。
[0068]
具体的,在长距离los场景下,oam天线阵列中一个发送天线ant
n
(n为oam天线阵列中的天线编号)到一个接收天线antˊ
m
(m为接收天线编号)的第一信道h(d1)为:
[0069]
[0070]
其中,当d1远远大于天线尺寸时,β为常数,由于所述发送天线和接收天线的图样(pattern)等引起的衰落和相位旋转等,d1为所述发送天线ant
n
与所述接收天线antˊ
m
之间的距离,为自由空间衰落,指数项代表了电磁波的传播特性,λ为电磁波的波长。
[0071]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0072]
具体来说,获取所述第二信道矩阵包括以下步骤:
[0073]
根据所述第一信道矩阵,计算得到每一所述发送天线与所述接收天线之间的第一距离;
[0074]
根据所述第一距离,计算得到每一所述等效发送天线与所述接收天线之间的第二距离;
[0075]
根据所述第二距离,得到所述第二信道矩阵。
[0076]
具体的,可根据上述公式一估算得到d1。
[0077]
可选的,所述第二距离为:
[0078][0079]
上式中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0080]
下面以图5中的应用场景(其中,1为普通终端,2为新型终端(例如无人机),3为接入回传一体化(integrated access backhaul,iab)节点)为例,具体说明所述第二信道矩阵的计算过程。
[0081]
请参阅图6,针对图5中的应用场景,构造等效发送天线,然后以等效发送天线5和实际的oam天线4之间的距离x1为半径画圆。由图6可以得出:
[0082]
所述第二距离
[0083]
d=d1*cosα,
ꢀꢀꢀ
公式四
[0084]
r=d1*sinα,
ꢀꢀꢀ
公式五
[0085][0086]
根据相似三角形原理得到:a/x1=b/d1(b与发送天线到接收天线的损耗(比如路损)有关,因此当发送天线和接收天线的位置固定时b为常数,也即在d1确定的情况下,b是与d1对应的常数),从而,
[0087]
x1=a*d1/b;
ꢀꢀꢀ
公式七
[0088]
另外,
[0089]
将上述公式五和公式八代入上述公式七,可得到:
[0090][0091]
将上述公式四、公式五、公式六和公式九代入上述公式三,得到上述公式二。
[0092]
所述第二信道所述第二信道可根据上述公式二计算得到。
[0093]
所述网络侧设备按照上述方法,分别根据oam天线阵列中每一oam天线到接收天线之间的实际信道求得每一等效发送天线到接收天线之间的等效信道,并得到等效的第二信道矩阵,然后,所述网络侧设备根据求得的第二信道矩阵确定预编码矩阵,以抑制多用户(终端)之间的干扰。
[0094]
其中一种可选的具体实施方式中,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一个得到。
[0095]
举例来说,所述获取第一信道矩阵的步骤包括:
[0096]
基于接收信号矩阵和对应的训练序列,采用最小二乘法计算得到发射端离开中心角/接收端到达中心角;
[0097]
基于所述计算得到的发射端离开中心角/接收端到达中心角、接收信号矩阵、对应的训练序列、预设的噪声功率、预设的最大角度扩展值,计算得到对应的预估角度扩展值;
[0098]
基于接收信号矩阵、所述训练序列、计算得到的发射端离开中心角/接收端到达中心角和所述预估角度扩展值,采用斯莱皮恩扩展计算得到所述第一信道矩阵。
[0099]
其中,接收信号矩阵为n*l的矩阵,训练序列为1*l的向量,其中,n表示基站中配置的ula中的天线单元的数量,l表示所述训练序列的长度。
[0100]
可选的,所述利用第二信道矩阵进行预编码传输的步骤包括:
[0101]
采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0102]
具体的,可通过以下方法确定目标预编码矩阵:
[0103]
第一步:对所述第二信道矩阵和预置的预编码码本集合中的每一个预编码矩阵,分别进行内积及取模运算,得到多个模值;
[0104]
第二步:选择所述多个模值中最大的模值对应的预编码矩阵作为目标预编码矩阵。
[0105]
在其他的可选具体实施方式中,还可通过以下方法确定目标预编码矩阵:
[0106]
第一步:对所述第二信道矩阵进行分块零化,得到准对角矩阵x和分块初等列变换矩阵q;
[0107]
第二步:对准对角矩阵x进行分块奇异值分解,得到酉矩阵v;
[0108]
第三步:根据矩阵q和矩阵v得到所述目标预编码矩阵。
[0109]
可选的,预编码采用的算法为块对角化(block diagonalization,bd)算法,或者包括块对角化算法和奇异值分解(singular value decomposition,svd)算法。
[0110]
具体来说,采用bd算法可消除多用户之间的干扰,用户内部多个天线之间的干扰
留给用户自己处理。采用bd+svd算法,可在抑制用户间干扰的同时,最大化有用信号的强度。
[0111]
请参阅图7,图7是本发明实施例二提供的一种网络侧设备的结构示意图,该网络侧设备70包括:
[0112]
测量模块71,用于获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0113]
传输模块72,用于利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0114]
本发明实施例提供的网络侧设备,一方面通过oam-mimo复用技术可提升通信系统容量,另一方面通过预编码技术还能抑制多用户之间的干扰,尤其适用于长距离los场景。该网络侧设备还能为未来6g网络中的新型终端(例如无人机)提供服务。
[0115]
可选的,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0116]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0117]
可选的,所述第二距离为:
[0118][0119]
其中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0120]
可选的,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一个得到。
[0121]
可选的,所述传输模块包括:
[0122]
发送单元,用于采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0123]
可选的,预编码采用的算法为块对角化算法,或者包括块对角化算法和奇异值分解算法。
[0124]
本发明实施例是与上述方法实施例一对应的产品实施例,故在此不再赘述,详细请参阅上述实施例一。
[0125]
请参阅图8,图8是本发明实施例三提供的一种网络侧设备的结构示意图,该网络侧设备80包括:收发器81和处理器82;
[0126]
所述收发器81,用于获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0127]
所述收发器81,还用于利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0128]
本发明实施例提供的网络侧设备,一方面通过oam-mimo复用技术可提升通信系统容量,另一方面通过预编码技术还能抑制多用户之间的干扰,尤其适用于长距离los场景。
该网络侧设备还能为未来6g网络中的新型终端(例如无人机)提供服务。
[0129]
可选的,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0130]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0131]
可选的,所述第二距离为:
[0132][0133]
其中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0134]
可选的,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一个得到。
[0135]
可选的,所述收发器81,用于采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0136]
可选的,预编码采用的算法为块对角化算法,或者包括块对角化算法和奇异值分解算法。
[0137]
本发明实施例是与上述方法实施例一对应的产品实施例,故在此不再赘述,详细请参阅上述实施例一。
[0138]
请参阅图9,图9是本发明实施例四提供的一种网络侧设备的结构示意图,该网络侧设备90包括处理器91、存储器92及存储在所述存储器92上并可在所述处理器91上运行的计算机程序;所述处理器91执行所述计算机程序时实现如下步骤:
[0139]
获取第一信道矩阵,其中,所述第一信道矩阵是基于轨道角动量的多输入多输出天线阵列中的每一发送天线到接收天线之间的信道矩阵;
[0140]
利用第二信道矩阵进行预编码传输,其中,所述第二信道矩阵是所述第一信道矩阵的等效矩阵。
[0141]
可选的,所述第一信道矩阵是根据所述接收天线发送的参考信号获取。
[0142]
可选的,所述第二信道矩阵是根据每一所述发送天线的等效发送天线到所述接收天线之间的第二距离得到,所述第二距离是根据所述发送天线与所述接收天线之间的第一距离得到,所述第一距离是根据所述第一信道矩阵得到。
[0143]
可选的,所述第二距离为:
[0144][0145]
其中,d1为所述第一距离,α为所述发送天线发送的电磁波发散角,l为所述发送天线发送的电磁波模态值,b为常数。
[0146]
可选的,所述第一信道矩阵是采用最小二乘信道估计算法、最小均方误差信道估计算法、最大似然估计算法、最大后验概率信道估计算法和导频辅助信道估计算法中的一
个得到。
[0147]
可选的,所述处理器91执行所述计算机程序时还可实现如下步骤:
[0148]
所述利用第二信道矩阵进行预编码传输的步骤包括:
[0149]
采用基于所述第二信道矩阵确定的目标预编码矩阵,对待发送的信号进行预编码处理后发送。
[0150]
可选的,预编码采用的算法为块对角化算法,或者包括块对角化算法和奇异值分解算法。
[0151]
本发明实施例的具体工作过程与上述方法实施例一中的一致,故在此不再赘述,详细请参阅上述实施例一中方法步骤的说明。
[0152]
本发明实施例五提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例一中任一种传输方法中的步骤。详细请参阅以上对应实施例中方法步骤的说明。
[0153]
本发明实施例中的网络侧设备可以是全球移动通讯(global system of mobile communication,简称gsm)或码分多址(code division multiple access,简称cdma)中的基站(base transceiver station,简称bts),也可以是宽带码分多址(wideband code division multiple access,简称wcdma)中的基站(nodeb,简称nb),还可以是lte中的演进型基站(evolutional node b,简称enb或enodeb),或者中继站或接入点,或者未来5g或6g网络中的基站等,在此并不限定。
[0154]
本发明实施例中的终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,简称ran)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,简称pcs)电话、无绳电话、会话发起协议(session initiation protocol,简称sip)话机、无线本地环路(wireless local loop,简称wll)站、个人数字助理(personal digital assistant,简称pda)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、终端(user device or user equipment),在此不作限定。
[0155]
上述计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(pram)、静态随机存取存储器(sram)、动态随机存取存储器(dram)、其他类型的随机存取存储器(ram)、只读存储器(rom)、电可擦除可编程只读存储器(eeprom)、快闪记忆体或其他内存技术、只读光盘只读存储器(cd-rom)、数字多功能光盘(dvd)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
[0156]
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员
来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1