mid器件中仅设置一个耦合输出端口,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口也可以满足通信需求,而且还减少射频pa mid器件内部的射频走线复杂度,同时也可以提高射频pa mid器件各走线的隔离度性能。
附图说明
19.为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
20.图1为一实施例的射频pa mid器件的结构示意图之一;
21.图2为一实施例的射频pa mid器件的结构示意图之二;
22.图3为一实施例的耦合单元的结构示意图;
23.图4为一实施例的射频pa mid器件的结构示意图之三;
24.图5为一实施例的射频pa mid器件的结构示意图之四;
25.图6为一实施例的射频pa mid器件的结构示意图之五;
26.图7a为一实施例的射频pa mid器件的引脚配置示意图;
27.图7b为图7a的射频pa mid器件的封装示意图;
28.图8为一实施例的射频系统的结构示意图之一;
29.图9为一实施例的srs天线轮发示意图;
30.图10为一实施例的射频系统的结构示意图之二;
31.图11为一实施例的射频pa mid器件的结构示意图之六;
32.图12a为一实施例的射频pa mid器件的引脚配置示意图;
33.图12b为图12a的射频pa mid器件的封装示意图;
34.图13为一实施例的射频系统的结构示意图之三;
35.图14为一实施例的通信设备的结构示意图。
具体实施方式
36.为了便于理解本技术,为使本技术的上述目的、特征和优点能够更加明显易懂,下面结合附图对本技术的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本技术,附图中给出了本技术的较佳实施方式。但是,本技术可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本技术的公开内容理解的更加透彻全面。本技术能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本技术内涵的情况下做类似改进,因此本技术不受下面公开的具体实施例的限制。
37.此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本技术的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。在本技术的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
38.本技术实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,ue)(例如,手机),移动台(mobile station,ms)等等。为方便描述,上面提到的设备统称为通信设备。网络设备可以包括基站、接入点等。
39.如图1所示,本技术实施例提供一种射频pa mid器件。在其中一实施例中,射频pa mid器件10,用于发射多个不同工作频段的射频信号,其能够对发射的每个射频信号进行耦合,以选择输出每个射频信号的正向耦合信号和反向耦合信号。其中,射频pa mid器件10被配置有耦合输出端口cplout和多个用于与天线连接的天线端口ant。射频pa mid器件10包括耦合模块110和多路选择开关120。具体地,该射频pa mid器件10可以理解为一封装芯片,其耦合模块110和多路选择开关120均集成在同一封装芯片中。其耦合输出端口cplout和多个天线端口ant可以理解为配置在该射频pa mid器件10与其他模块连接的各射频引脚。
40.在其中一个实施例中,射频pa mid器件10中设置有多个用于发射不同频段射频信号的发射电路以形成对应的发射通路a。耦合模块110包括多个耦合单元111,每个耦合单元111对应设置在一个发射通路a上,以能够实现对射频信号耦合输出,其耦合输出的耦合信号可用于测量射频信号的耦合功率。具体地耦合单元111包括输入端口a、输出端口b、第一耦合端口c和第二耦合端口d。同时,耦合单元111还包括在输入端口a和输出端口b之间延伸的主线、以及在第一耦合端口c和第二耦合之间延伸的副线。
41.其中,输入端口a,用于接收任一射频信号(例如,第一射频信号),输出端口b,与天线端口ant连接,用于向天线输出端口b接收的射频信号,第一耦合端口c,用于对输入端口a接收的射频信号进行耦合并输出前向耦合信号;第二耦合端口d,用于对输出端口b接收的射频信号的反射信号进行耦合并输出反向耦合信号。其中,基于第一耦合端口c输出的前向耦合信号,可以检测该射频信号的前向功率信息;基于第二耦合端口d输出的反向耦合信号,可以对应检测该射频信号的反向功率信息,并将该检测模式定义为反向功率检测模式。
42.需要说明的是,在本技术实施例中,可以将第一耦合端口c称之为前向功率输出端口b,可以将第二耦合端口d称之为反向功率输出端口b。
43.多路选择开关120,分别与每一耦合单元111的第一耦合端口c、第二耦合端口d、耦合输出端口cplout、地端连接。多路选择开关120用于选择性地将任一耦合单元111输出的前向耦合信号传输至耦合输出端口cplout,并将输出的反向耦合信号传输至地端,以实现对该射频信号前向功率的检测,并将该检测模式定义为前向功率检测模式。或,多路选择开关120用于选择性地将任一耦合单元111输出的前向耦合信号传输至地端,并将输出的反向耦合信号传输至耦合输出端口cplout,以实现对该射频信号反向功率的检测,并将该检测模式定义为反向功率检测模式。也即,该多路选择开关120用于在前向功率检测模式和反向功率检测模式之间进行切换。
44.上述射频pa mid器件10中仅通过一个多路选择开关120就可以实现在多个耦合单元111中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频pa mid器件10中仅设置一个耦合输出端口cplout,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口cplout也可以满足通信需求,而且还减少射频pa mid器件10内部的射频走线复
杂度,同时也可以提高射频pa mid器件10各走线的隔离度性能。
45.如图2所示,在其中一个实施例中,射频pa mid器件10还包括第一电阻r1,第一电阻r1分别与多路选择开关120的一第二端、地端连接,用于释放前向耦合信号或反向耦合信号。当多路选择开关120的一个第二端经第一电阻r1接地时,可以避免传统方案中的耦合切换开关的开关触点开路造成前向耦合信号或者反向耦合信号的泄露问题。示例性的,以任一耦合单元111为例进行说明,当处于反向功率检测模式时,可以将经前向功率输出端口b泄露的前向耦合信号经负载接地,就不会耦合到反向功率输出端口b,因此,不会对反向功率输出端口b造成干扰;当处于前向功率检测模式时,可将泄露的反向耦合信号经负载接地,避免对反向功率输出端口b造成干扰。
46.如图3所示,在其中一个实施例中,耦合单元111包括反向串联的第一定向耦合器1112和第二定向耦合器1114。
47.其中,耦合器是微波测量和其它微波系统中常见的微波和毫米波部件,可用于信号的隔离、分离和混合,如功率的监测、源输出功率稳幅、信号源隔离、传输和反射的扫频测试等。第一定向耦合器1112和第二定向耦合器1114均包括主线和副线两部分,彼此之间通过小孔、缝、隙等各种形式进行耦合。信射频号流经主线的输入端口后,到达输出端口。从主线上经过的射频信号的功率,将有一部分耦合到副线中去,由于波的干涉或叠加,使功率仅沿副线-一个方向传输(称“正向”),而另一方向则几乎毫无功率传输(称“反向”)。
48.假设定向耦合器的耦合度是10db,当输入端口a功率为0dbm时,耦合输出端口cplout的功率是-10dbm。一般通信设备的定向耦合器的主要参数如表1所示。当通信发射机的输出功率为26dbm时,则耦合端有1dbm的信号送到通信反馈检测通道,定向耦合器的直通输出为25.8dbm,而泄漏到隔离端的反向耦合输出功率,则被一个负载吸收掉了。
49.表1耦合器主要指标
50.耦合度反向耦合度插入损耗最大输入功率25db25db0.2db33dbm
51.在本技术实施例中,耦合单元111包括第一定向耦合器1112和第二定向耦合器1114。其中,可将第一定向耦合器1112作为前向耦合器,可将第二定向耦合器1114作为反向耦合器。参见图3,第一定向耦合器1112和第二耦合器反向串联,其中,第一定向耦合器1112的耦合端作为耦合单元111的第一耦合端口c,第二定向耦合器1114的耦合端作为耦合单元111的第二耦合端口d,第一定向耦合器1112和第二定向耦合器1114的隔离端经通信负载接地。示例性的,分流电阻r2可以作为第一定向耦合和第二定向耦合器1114的通信负载。其分流电阻r2的大小可以设置为50欧姆。示例性的,可以通过提供诸如可调谐或可变电容器、电感器或电阻器的一个或多个可调谐阻抗元件来实现可调节通信负载。
52.需要说明的是,在本技术实施例中,对耦合单元111的具体形式不做进一步的限定,其耦合单元111还可以由双向耦合器、定向耦合器构成,其具体形式在本技术实例中不做进一步的限定。
53.在其中一个实施例中,射频pa mid器件10中可设置多个射频通路,每个射频通路都可以用于输出一个射频信号,其中,耦合单元111可对应设置该射频通路上,这样,射频pa mid器件10就可以实现对多个射频信号的耦合,以实现对多个射频信号的前向功率和反向功率的检测。
54.在其中一个实施例中,多路选择开关120包括多个第一端和两个第二端,其中,多路选择开关120的每一第一端分别对应与多个耦合单元111的任一第一耦合端口c或任一第二耦合端口d连接,多路选择开关120的一第二端与耦合输出端口cplout连接,多路选择开关120的一第二端接地。
55.其中,当射频pa mid器件10包括的多个耦合单元111为m个时,其对应的多路选择开关120的第一端的数量为2*m个,2*m个第一端一一对应与m个耦合单元111的第一耦合端口c、第二耦合端口d连接,其中,m≥2。也即,一个耦合度单元的第一耦合端口c、第二耦合端口d可一一对应与多路选择开关120的两个第一端连接。
56.如图4所示,当耦合单元111的数量为两个时,其多路选择开关120的第一端的数量为四个,多路选择开关120的第二端的数量为两个。示例性的,该多路选择开关120可以为射频dp4t开关。
57.其中,两个耦合单元111可分别记为第一耦合单元111a和第二耦合单元111b。其中,第一耦合单元111a,设置在用于发射第一射频信号的第一发射通路a上,第一耦合单元111a用于接收第一射频信号并对第一射频信号进行耦合以输出第一前向耦合信号和第一反向耦合信号;第二耦合单元111b,设置在用于发射第二射频信号的第二发射通路a’上;第二耦合单元111b用于接收第二射频信号并对第二射频信号进行耦合以输出第二前向耦合信号和第二反向耦合信号。
58.多路选择开关120的第一端的数量为四个,可分别记为触点1、触点2、触点3和触点4,多路选择开关120的第二端的数量为两个,可分别记为触点5、触点6。其中,一第一端(触点2)与第一耦合单元111a的第一耦合端口c连接,一第一端(触点1)与第一耦合单元111a的第二耦合端口d连接,一第一端(触点4)与第二耦合单元111b的第一耦合端口c连接,一第一端(触点3)与第二耦合单元111b的第二耦合端口d连接。一第二端(触点6)与耦合输出端口cplout连接,一第二端(触点5)接地。
59.在其中一个实施例中,第一射频信号和第二射频信号均可以为5g nr信号,但各自的工作频段不同。示例性的,第一射频信号可以为工作频段为n77(78)的5g信号,第二射频信号可以为工作频段为n79的5g信号。相应的,第一射频信号可以为工作频段为n79的5g信号,第二射频信号可以为工作频段为n77(78)的5g信号。具体地,n77的工作频段为3.3ghz-4.2ghz,n78的工作频段为3.3ghz-3.8ghz,n79的工作频段为4.4ghz-5.0ghz。
60.以第一射频信号为n77(78)的5g信号、多路选择开关120为射频dp4t开关为例来对第一耦合单元111a的前向功率检测模式和反向功率检测模式进行说明。
61.在处于前向功率检测模式中,也即,采集第一射频信号的前向功率时,可控制dp4t的一第一端(触点2)连接到第二端(触点5),一第一端(触点1)连接到第二端(触点6)以将第一前向耦合信号导出到耦合输出端口cplout,同时也可以将泄露的第一反向耦合信号经负载接地,避免对反向功率输出端口b造成干扰。相应的,在反向功率检测模式中,也即,采集第一射频信号的反向功率时,可控制dp4t的一第一端(触点1)连接到第二端(触点5),一第一端(触点2)连接到第二端(触点6)以将第一反向耦合信号导出到耦合输出端口cplout,同时也可以将泄露的第一前向耦合信号经负载接地,避免对反向功率输出端口b造成干扰。
62.相应的,第二耦合单元111b和第一耦合单元111a的工作原理相同,其中第二耦合单元111b在前向功率检测模式中,也即,采集第二射频信号的前向功率时,可控制dp4t的一
第一端(触点3)连接到第二端(触点5),一第一端(触点4)连接到第二端(触点6)以将第二前向耦合信号导出到耦合输出端口cplout,同时也可以将泄露的第二反向耦合信号经负载接地,避免对反向功率输出端口b造成干扰。相应的,在反向功率检测模式中,也即,采集第二射频信号的反向功率时,可控制dp4t的一第一端(触点4)连接到第二端(触点5),一第一端(触点3)连接到第二端(触点6)以将第二反向耦合信号导出到耦合输出端口cplout,同时也可以将泄露的第一前向耦合信号经负载接地,避免对反向功率输出端口b造成干扰。
63.如图5所示,在其中一个实施例中,射频pa mid器件10还被配置有多个发射端口(例如,rfin1、rfin2),射频pa mid器件10还包括多个用于发射射频信号的发射电路130。示例性的,该接收电路的数量为两个,分别可对第一射频信号、第二射频信号的发射进行处理。其中,每个发射电路130用于发射不同工作频段的射频信号,同时还可以对所发射的射频信号进行放大滤波处理。发射电路130可以构成前述实施例中涉及的发射通路a。具体的,每一发射电路130包括功率放大器131和滤波单元132。其中,功率放大器131的输入端与发射端口(例如,rfin1或rfin2)连接,功率放大器131的输出端与第一耦合单元的输入端口a连接,用于接收射频信号,并对射频信号进行功率放大;滤波单元132,分别与输出端口b、天线端口(例如,ant1或ant2)连接,用于对射频信号进行滤波处理,并将滤波处理后的射频信号经天线端口ant输出。
64.在其中一个实施例中,参考图1,耦合单元111的数量还可以为三个,其多路选择开关120的第一端的数量为六个,多路选择开关120的第二端的数量为两个。示例性的,该多路选择开关120可以为射频dp6t开关。六个第一端一一对应与3个耦合单元111的第一耦合端口c、第二耦合端口d连接。也即,一个耦合度单元的第一耦合端口c、第二耦合端口d可一一对应与多路选择开关120的两个第一端连接。射频pa mid器件10就可以实现对三个射频信号的耦合,以实现对三个射频信号的前向功率检测模式与反向功率检测模式的切换。
65.在其中一个实施例中,如图6所示,射频pa mid器件10还被配置有多个接收端口(rx1、rx2),射频pa mid器件10还包括多个用于接收射频信号的接收电路。示例性的,该接收电路的数量为两个,分别可对第一射频信号、第二射频信号的接收进行处理。该接收电路可对经天线接口接收的射频信号进行滤波放大处理后,输出至射频收发器进行处理。其中,每一接收电路包括:低噪声放大器141和第一开关单元142。其中,低噪声放大器141的输入端与第一开关单元142连接,低噪声放大器141的输出端与接收端口(rx1或rx2)连接;第一开关单元142,分别与滤波单元132、耦合单元111、低噪声放大器141连接,用于选择导通耦合单元111所在的发射电路130或低噪声放大器141所在的接收电路。
66.需要说明的是,发射电路130、接收电路和耦合单元111的数量相同,且耦合单元111对应设置在发射电路130的发射通路a中。其中,用于处理同一射频信号的发射电路130和接收电路可构成一收发电路,以实现对射频信号的发射、耦合和接收控制。
67.每一发射电路130中所包括的功率功率放大器131和滤波单元132以及接收电路中设置的低噪声放大器141均可以用于支持该射频电路所发射的射频信号。示例性的,当以发射电路130用于发射第一射频信号时,其该功率放大器131、滤波单元132均可支持对第一射频信号的发射处理,当接收电路用于接收第一射频信号时,该低噪声放大器141可支持对第一射频信号的接收处理。
68.以第一射频信号为n77频段的5g信号为例进行说明。其中,功率放大器131、低噪声
放大器141、耦合单元111、滤波单元132均能够支持n77频段的信号,也即,可以对n77频段的信号进行放大、耦合处理。其中,滤波单元132仅允许n77频段的信号通过,同时还可以滤波除n77频段的信号以外的杂散波。
69.在其中一个实施例中,滤波单元132可以为带通滤波单元或低通滤波器。
70.在其中一个实施例中,第一开关单元142为单刀双掷开关。具体地,单刀双掷开关的第一不动端与耦合单元111连接,单刀双掷开关的第二不动端与低噪声放大器141的输入端连接,单刀双掷开关的动端与滤波单元132连接。
71.第一开关单元142用于tdd制式下收发工作模式的切换。具体的,当控制单刀双掷开关的不动端与耦合单元111导通连接时,可是导通该耦合单元111所在的发射通路a以实现对第一射频信号的发射控制;当控制控制单刀双掷开关的不动端与低噪声放大器141导通连接时,可是导通该低噪声放大所在的接收通路以实现对第一射频信号的接收控制。
72.可选的,第一开关单元142还可以为电子开关管、移动产业处理器(mobile industry processor interface,mipi)接口和/或通用输入/输出(general-purpose input/output,gpio)接口。其对应的控制单元可为mipi控制单元和/或gpio控制单元。示例性的,当需要导通接收链路或发射链路时,mipi控制单元可以对应输出时钟和数据信号至与耦合单元111、低噪声放大器141连接的对应引脚。gpio控制单元可对应输出高电平信号至与耦合单元111、低噪声放大器141连接的对应引脚。
73.需要说明的是,在本技术实施例中,对滤波单元132、开关单元的具体形式不做进一步的限定。
74.在其中一个实施例中,射频pa mid器件10还包括分别与每个耦合单元111的输出端口b、每一天线端口ant连接的第二开关单元150,第二开关单元150用于选择导通任一耦合单元111的输出端口b与任一天线之间的收发通路。具体的,第二开关单元150也可包括多个第一端和多个第二端,其中,多个第一端分别对应与各耦合单元111的输出端口b连接,多个第二端可分别对应与射频pa mid器件10的多个天线端口ant连接。也即,第二开关单元150的第一端的数量与耦合单元111的数量可相同,第二开关单元150的第二端的数量可根据射频pa mid器件10配置的天线端口ant相匹配。
75.本实施例中,通过在射频pa mid器件10中集成第二开关单元150,可以提高射频pa mid器件10的集成度。当射频pa mid器件10包括两个收发电路时,每一收发电路可包括发射电路130和接收电路,以实现对双频段(n77和n79)的射频信号的收发控制,其射频pa mid器件10可以称之为双频段功率射频pa mid器件10。
76.需要说明的是,根据通讯需求,射频pa mid器件10中还可以对应设置多个收发电路,以实现对多个不同频段的射频信号的收发控制。
77.在其中一个实施例中,参考图6射频pa mid器件10还包括第一控制单元160和第二控制单元170。其中,第一控制单元160分别与第一开关单元142、第二开关单元150、功率放大器131连接,用于控制第一开关单元142、第二开关单元150的通断,还用于控制功率放大器131的工作状态。
78.第二控制单元170分别与低噪声放大器141连接,用于调节低噪声放大器141的增益系数。其中,低噪声放大器141为增益可调节的放大器件。示例性的,低噪声放大器141具有8个增益等级。
79.示例性的,第一控制单元160和第二控制单元170可以为移动行业处理器接口(mobile industry processor interface,mipi)—射频前端控制接口(rf front end control interface,rffe)控制单元,其控制方式其符合rffe总线的控制协议。当第一控制单元160和第二控制单元170为mipi-rffe控制单元时,其射频pa mid器件20还被配置有时脉讯号的clk输入引脚、单/双向数据讯号的sdatas输入或双向引脚、参考电压vio引脚等等。在其中一个实施例中,射频pa mid器件10内的各个器件均可集成在同一封装芯片中,其封装芯片的引脚配置图如图7a和封装芯片的封装示意图如图7b所示,可以提高各个射频pa mid器件10的集成度,缩小该射频pa mid器件的占有空间。
80.在其中一个实例中,本技术实施例还提供一种射频系统。如图8所示,射频系统可包括如上述任一实施例中的射频pa mid器件10、第一天线ant0和第二天线ant1。其中,射频pa mid器件10配置有第一天线端口ant1和第二天线端口ant2;射频pa mid器件10还用于选择导通任一耦合单元111的输出端口b分别与第一天线端口ant1和第二天线端口ant2之间的发射通路。
81.第一天线ant0,与第一天线端口ant1连接,用于收发多个不同工作频段的射频信号,
82.第二天线ant1,与第二天线端口ant2连接,用于收发多个不同工作频段的射频信号。
83.第一天线ant0、第二天线ant1均为能够支持4g频段、5g nr频段的天线。在其中一个实施例中,第一天线ant0、第二天线ant1可以为定向天线,也可以为非定向天线。示例性的,第一天线ant0和第二天线ant1可以使用任何合适类型的天线形成。例如,第一天线ant0和第二天线ant1可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
84.上述射频系统中,通过在射频pa mid器件10设置了多个耦合单元111和多路选择开关120,可以实现在多个耦合单元111中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频pa mid器件10中仅设置一个耦合输出端口cplout,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口cplout也可以满足通信需求,而且还减少射频pa mid器件10内部的射频走线复杂度,同时也可以提高射频pa mid器件10各走线的隔离度性能。
85.随着技术的发展和进步,5g移动通信技术逐渐开始应用于通信设备。5g网络支持波束赋形技术,可以向通信设备定向发射。而基站要想定向发射,首先得探测到通信设备的位置、传输通路的质量等,从而使基站的资源更加精准地分配给每一个通信设备。通信设备发送srs信息即是用于基站探测通信位置和信道质量的方式;其中,srs即为sounding reference signal(信道探测参考信号)。图9为srs天线轮发示意图,具体说明如下:
86.其一,1t1r:固定在第一天线ant0ant0向基站反馈信息,不支持srs轮发;
87.其一,1t4r:在第一天线ant0ant0到第四天线轮流发射srs信息,每次只选择一个天线发射,目前非独立组网(non-standalone,nsa)采用这种模式;
88.其三,2t4r:在第一天线ant0ant0到第四天线轮流发射srs信息,每次选择两个天
线同时发射,目前独立组网(standalone,sa)采用这种模式。
89.在其中一个实施例中,如图10所示,射频pa mid器件10的数量为两个,分别为第一射频pa mid器件11和第二射频pa mid器件12。具体的,第一射频pa mid器件11和第二射频pa mid器件12均可包括两个收发电路,以实现对双频段的射频信号的收发、耦合控制。
90.射频系统还包括反馈切换开关20、第一射频lna器件30、第二射频lna器件40、第三天线ant2和第四天线ant3。
91.第三天线ant2、第四天线ant3均用于收发多个不同工作频段的射频信号,可为能够支持4g频段、5g nr频段的天线。在其中一个实施例中,第三天线ant2、第四天线ant3可以为定向天线,也可以为非定向天线。示例性的,第三天线ant2、第四天线ant3可以使用任何合适类型的天线形成。例如,第三天线ant2、第四天线ant3可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同射频信号的频段组合。
92.需要说明的是,可以根据射频系统的通信需求来选择第一天线ant0、第二天线ant1、第三天线ant2、第四天线ant3的类型,以实现对不同工作频段的射频信号的收发。
93.反馈切换开关20,分别与第一射频pa mid器件11和第二射频pa mid器件12连接,用于选择性地向反馈通道输入第一射频pa mid器件11或第二射频pa mid器件12输出的前向耦合信号或反向耦合信号。示例性的,该反馈切换开关20可以为单刀双掷开关,以选择性的将第一射频pa mid器件11的耦合输出端或第二射频pa mid器件12的耦合输出端口cplout的输出信号(前向耦合信号或反向耦合信号)输出至反馈反馈通道(例如射频系统的处理器),该射频系统可依据采样的前向耦合信号或反向耦合信号的功率信息等进行分析,以对各个射频信号的发射功率进行调整,并监控链路的驻波比等信息。
94.第一射频lna器件30,分别与第一射频pa mid器件11的第一天线端口ant1、第一天线ant0、第二天线ant1连接,用于经第一天线ant0、第二天线ant1接收多个射频信号,并对接收的多个射频信号进行滤波放大器处理。
95.第二射频lna器件40,分别与第一射频pa mid器件11的第二天线端口ant2、第二射频pa mid器件12的第一天线端口ant1、第三天线ant2、第四天线ant3连接,用于经第三天线ant2、第四天线ant3接收多个射频信号,并对接收的多个射频信号进行滤波放大器处理。
96.在其中一个实施例中,第一射频lna器件30和第二射频lna器件40的结构可相同。以第一射频lna器件30为例进行说明。其中,第一射频lna器件30可被配置有用于连接射频收发器的第一射频接收端口rx1和第二射频接收端口rx2以及用于连接天线的第一射频天线端口ant1和第二射频天线端口ant2,所述第一射频lna器件包括双通道接收切换电路。其中,所述双通道接收切换电路分别与所述第一射频接收端口rx1、第二射频接收端口rx2、第一射频天线端口ant1、第二射频天线端口ant2、第一射频pa mid器件11连接,用于经所述第一天线端口ant1、第二天线端口ant2接收第一射频信号、第二射频信号,以对接收的所述第一射频信号进行滤波放大处理后经所述第一射频接收端口rx1输出或将接收的所述第一射频信号切换至所述射频pa mid器件11,并对接收的所述第二射频信号进行滤波放大处理后经所述第二射频接收端口rx2输出。
97.进一步的,双通道接收切换电路可包括射频输入开关、两个低噪声放大器、两个滤
波器和射频输出开关。其中,该第一射频lna器件30可同时接收两个具有不同工作频段的第一射频信号和第二射频信号,并可以实现同时对第一射频信号和第二射频信号的接收控制,并可将接收的第一射频信号、第二射频信号输出给射频收发器处理,还可以将接收的第一射频信号和第二射频信号传输至第一射频pa mid器件的天线端口ant,以使第一射频pa mid器件11能够实现对第一射频信号和第二射频信号的接收。
98.基于实施例的射频系统,可以支持nsa模式和sa模式以及srs功能。nsa和sa的通道配置表2所示,nsa、sa路径配置、srs路径配置分别如表3、表4和表5所示。
99.表2 nsa模式和sa模式通道数配置
[0100] n77n79nsa1t4r1t4rsa2t4r1t4r
[0101]
表3 nsa模式详细路径配置表nsa模式详细路径配置表
[0102]
表4 sa模式详细路径配置表
[0103] n77n79txo&prx路径1->路径4路径1->路径4drx路径1->路径5路径1->路径5tx1&prx路径3->路径6路径3->路径6drx路径3->路径7路径3->路径7
[0104]
表3和表4中,txo&prx表示主发射链路和主集接收链路,drx表示分集接收链路,tx1&mimo prx表示辅助发射链路和mimo主集接收链路,mimo drx表示mimo分集接收链路。
[0105]
表5 srs详细路径配置表
[0106] n77n79channel0路径1->路径4路径1->路径4channel1路径1->路径5路径1->路径5channel2路径2->路径6路径2->路径6channel3路径2->路径7路径2->路径7
[0107]
表5中,channel0、channel1、channel2、channel3分别为天线轮流发射的发射链路。
[0108]
本技术实施例中的射频系统可以实现通信设备在频分复用fdd制式中的支持通过探测参考信号srs在发射天线间轮发发送4端口srs的功能,还可以支持4根天线同时接收数
据的nsa模式和sa模式。
[0109]
在其中一个实施例中,如图11所示,射频pa mid器件10还被配置有耦合输入端口cplin,多路选择开关120的一第一端与耦合输入端口cplin连接,耦合输入端口cplin用于接收外部耦合信号,并将耦合信号经耦合输出端口cplout输出。
[0110]
在其中一个实施例中,当射频pa mid器件10中配置了该耦合输入端口cplin时,其多路选择开关120的第一端的数量也需要对应增加一。示例性的,若多个耦合单元111为m个,多路选择开关120的第一端的数量为2*m+1个,2*m个第一端一一对应与m个耦合单元111的第一耦合端口c、第二耦合端口d连接,一第一端与耦合输入端口cplin连接。
[0111]
在其中一个实施例中,耦合模块110包括包括两个耦合单元111,可分别记为第一耦合单元111a和第二耦合单元111b。多路选择开关120的第一端的数量为五个,多路选择开关120的第二端的数量为两个。示例性的,该多路选择开关120可以为射频dp5t开关。
[0112]
多路选择开关120的第一端的数量为五个,可分别记为触点1、触点2、触点3、触点4和触点5,多路选择开关120的第二端的数量为两个,可分别记为触点6、触点7。
[0113]
其中,一第一端(触点2)与第一耦合单元111a的第一耦合端口c连接,一第一端(触点1)与第一耦合单元111a的第二耦合端口d连接,一第一端(触点4)与第二耦合单元111b的第一耦合端口c连接,一第一端(触点3)与第二耦合单元111b的第二耦合端口d连接,一第一端(触点5)与耦合输入端口cplin连接。一第二端(触点7)与耦合输出端口cplout连接,一第二端(触点6)接地。
[0114]
在本实施例中,可将射频dp4t开关替换成射频dp5t开关,第一端的数量增加到5个,当第二端(触点7)与第一端(触点5)连接时,可形成一个通路,外部耦合信号(前向耦合信号或反向耦合信号)可以从耦合输入端口cplin进入,再由耦合输出端口cplout输出。
[0115]
在其中一个实施例中,射频pa mid器件10内的各个器件均可集成在同一封装芯片中,其封装芯片的引脚配置图如图12a和封装芯片的封装示意图如图12b所示,可以提高各个射频pa mid器件10的集成度,缩小该射频pa mid器件的占有空间。
[0116]
如图13所示,当射频pa mid器件10的数量为两个时,可分别记为第一射频pa mid器件11和第二射频pa mid器件12,此时,第二射频pa mid器件12的耦合输出端口cplout可与第一射频pa mid器件11的耦合输入端口cplin连接,可将第二射频pa mid器件12输出的任一射频信号的前向耦合信号或反向耦合信号输出至第一射频pa mid器件11,以使第一射频pa mid器件11直接将第二射频pa mid器件12的任一射频信号的前向耦合信号或反向耦合信号经耦合输出端口cplout输出至反馈通道。
[0117]
示例性的,以第一射频pa mid器件11为例,阐述第一射频信号(例如,n77频段的5g信号)的收发控制原理:
[0118]
第一射频信号的发射流向:第一发射信号经第一射频pa mid器件11的发射端口rfin进入,经过功率放大器131进行功率放大,放大处理后的第一射频信号经第一耦合单元111a,采样第一射频信号的前向耦合信号和反向耦合鑫海,并将采集到的信号通过射频dp5t开关切换到耦合输出端口cplout;同时,第二射频pa mid器件12的耦合信号从第二射频pa mid器件12的耦合t端口输出,再通过射频的走线进入第一射频pa mid器件11的耦合输入端口cplin,最终从第一射频pa mid器件11的耦合端口输出至处理其的反馈端口。经过第一耦合单元111a的输出端口b输出的第一射频信号经第一开关单元142切换至滤波单元
132,由滤波单元132滤波处理后经第二开关单元150切换至天线端口ant,经第一分集射频信号输出至第一天线ant0或第二天线ant1。
[0119]
第一射频信号的接收流向:第一射频信号经第一分集射频pa mid器件10从天线端口ant进入,通过第二开关单元150切换至滤波单元132,经滤波处理后经过第一开关单元142切换至低噪声放大器141所在的接收通路,进而可经接收端口rx输出至射频收发器。
[0120]
在本实施例中,通过在第一射频pa mid器件11中增设一耦合输入端口cplin,可以省略前述如图10所示的实施例中的反馈切换开关20,可以缩短射频的走线长度,减小了射频系统布局的复杂度,同时还减少射频系统占用pcb的面积,降低了成本。
[0121]
如图14所示,本技术实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频系统和与射频系统连接的射频收发器90,通过在通信设备上设置该射频系统,可以实现在多个耦合单元111中选择输出任一射频信号的前向耦合信号或反向耦合信号,实现了多个频段射频信号的耦合切换,减小了占用封装的面积,同时也降低了成本。同时,在该射频pa mid器件10中仅设置一个耦合输出端口cplout,由于多个频段的射频信号并不是同时发射的,一个耦合输出端口cplout也可以满足通信需求,而且还减少射频pa mid器件10内部的射频走线复杂度,同时也可以提高射频pa mid器件10各走线的隔离度性能。
[0122]
以上实施例仅表达了本技术的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本技术专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本技术构思的前提下,还可以做出若干变形和改进,这些都属于本技术的保护范围。因此,本技术专利的保护范围应以所附权利要求为准。