无线耳机系统及无线耳机的制作方法

文档序号:31995218发布日期:2022-11-02 02:51阅读:105来源:国知局
无线耳机系统及无线耳机的制作方法

1.本技术涉及电子技术领域,尤其涉及一种无线耳机系统及无线耳机。


背景技术:

2.近年来穿戴产品的外观和体验越来越受大家关注,真无线立体声(true wireless stereo,tws)耳机等无线耳机小型化体验述求愈发强烈,耳机与盒体(例如耳机盒)之间的状态关系也越来越多样化。
3.目前,可通过放置一颗单轴霍尔传感器,并在盒体对应位置放置磁铁来检测耳机与盒体之间的状态关系。然而,单轴霍尔传感器只能设置一种门限,多用于检测到磁场的有无,且其磁场门限不可调节。如此,将导致耳机的位置/状态信息单一,只能做到两种状态的切换检测,即出入盒检测。另外,盒体的开合盖状态必须通过盒体来检测及判断,并通过盒体与耳机的电或信号连接机制(例如通信引脚)来通知耳机。如此,一旦盒体出现异常,例如,当盒体出现没电或与耳机电连接的引脚被过度腐蚀时,盒体无法将检测到的开合盖状态及时通知耳机,进而导致耳机的开机变延迟,且在耳机开盖出盒后无法及时连接手机等电子产品,容易引发丢音现象,影响通话,听音乐等用户体验。


技术实现要素:

4.有鉴于此,有必要提供一种无线耳机系统及无线耳机,可以实现耳机独立检测多种位置/状态信息,有效提高用户体验。
5.第一方面,本技术提供一种无线耳机系统。无线耳机系统包括无线耳机和盒体。所述盒体包括下盖、上盖及收纳腔,所述无线耳机可收纳在所述收纳腔内。上盖上设置有第一磁体。无线耳机包括处理器以及与处理器耦接的磁传感器。磁传感器用于检测无线耳机周围的磁场矢量,并将检测到的磁场矢量传输至处理器。处理器根据接收到的磁场矢量判断无线耳机的状态,其中,无线耳机的状态至少包括合盖入盒状态,开盖入盒状态及出盒状态。显然,该无线耳机可检测多种耳机相对盒体的位置/状态信息(例如至少上述三种状态信息),且其检测可独立于盒体。如此,可避免由于盒体出现异常而无法及时通知耳机,进而导致耳机在开盖出盒后不能及时连接手机等电子产品,影响通话,听音乐等用户体验。通过本技术实施例的方案,可使得无线耳机对自身状态的判断做到独立,不需要依赖与盒体的通信,进而有效提高用户体验。
6.在一种可能的设计中,无线耳机还可根据磁传感器检测到的磁场矢量控制及实现无线耳机的开关机。其中,无线耳机对自身开关机和状态的判断做到独立,不需要依赖与盒体的通信,进而有效提高用户体验。
7.在一种可能的设计中,所述下盖上设置有第二磁体。显然,该设计中,通过在下盖上增加磁铁,例如第二磁体,在开盒、关盒、耳机出盒等情况下可使得磁传感器检测到的磁场矢量的差异更加明显,进而有效增加无线耳机状态检测的精确度,即使得无线耳机具有状态检测更精确的效果。进一步的,若上盖与下盖上的磁铁(例如第一磁体及第二磁体)的
磁体方向相同,亦可使得上盖与下盖在一定距离范围内快速闭合、用户需克服上盖与下盖之间的吸附力才能顺利开启盒体,增加用户打开、关闭盒体时的手感。
8.在一种可能的设计中,上盖上设置有第三磁体,用以将无线耳机吸附在上盖上。显然,通过设置第三磁体于上盖上,可实现将无线耳机有效吸附在上盖上。
9.在一种可能的设计中,无线耳机的状态还包括开盖入盒在上盖状态。处理器能够根据所述磁场矢量判断出无线耳机处于开盖入盒在上盖状态。显然,通过设置第三磁体于上盖上,使得无线耳机可检测更多的位置/状态信息,例如开盖入盒在上盖状态。该检测可做到独立而不需要依赖与盒体的通信,进而有效提高用户体验。
10.在一种可能的设计中,第三磁体与第一磁体间隔设置,或者,第三磁体与第一磁体连接在一起。显然,第一磁体与第三磁体可以是独立的磁体,两者间隔设置。当然,也可将第一磁体及第三磁体设置(或连接)在一起,以构成一个整体,即形成一个大的磁体。或者,也可不设置第三磁体,而直接调节第一磁体的大小,以构成一个大的磁体。也就是说,本技术实施例中,通过设置至少两个磁体,亦可实现至少四种状态的检测。
11.在一种可能的设计中,磁传感器是三轴霍尔传感器。显然,通过设置三轴霍尔传感器,使得耳机能够读取x,y,z三轴方向上磁场大小,不仅可以应用于无线耳机至少三种位置/状态信息(例如耳机出盒、耳机入盒合盖、耳机入盒开盖)的检测,且对多种状态的扩展同样具备可量产性,做到多种状态检测于一身,可扩展性强。另外,结合当前电、无线通信机制交互(如开关机、电量、双耳交互、左右耳识别等),可以实现更加可靠更加多样化的状态检测。再者,本技术通过设置三轴霍尔传感器,其抗干扰能力强,可以允许外界环境有更恶劣的磁场环境,而产品可以使用磁场环境获得更好的用户体验。
12.在一种可能的设计中,磁传感器设置于无线耳机的中心轴位置。显然,通过将磁传感器设置于无线耳机的中心轴位置,可做到无需区分耳机摆放方向,无需区分左右耳便能准确检测多种位置/状态信息,解决了现有技术中仅能单一方向检测,且仅能检测耳机出入盒的弊端,实现360度旋转无死角检测。
13.在一种可能的设计中,无线耳机可在所述收纳腔内自由转动。无线耳机可自由转动是指无线耳机可在收纳腔内以一定角度(例如45度)转动或实现360度转动。
14.在一种可能的设计中,无线耳机还包括用于吸附盒体,使得无线耳机收纳于盒体内的磁体。显然,本技术通过设置磁传感器,其抗干扰能力强,可以允许外界环境有更恶劣的磁场环境,而产品可以使用磁场环境获得更好的用户体验。
15.在一种可能的设计中,盒体上还设置有吸附磁体,用于实现盒体的下盖与上盖的闭合吸附。吸附磁体远离无线耳机设置。显然,本技术通过设置磁传感器,其抗干扰能力强,可以允许外界环境有更恶劣的磁场环境,而产品可以使用磁场环境获得更好的用户体验。再者,通过将吸附磁体远离无线耳机设置,可有效防止吸附磁体产生的磁场对耳机本体的磁传感器采集的磁感应强度进行干扰。
16.在一种可能的设计中,所述盒体为耳机盒。
17.在一种可能的设计中,所述盒体为承载体,所述承载体为手表,眼镜,项链,手镯,手环,戒指,充电宝,适配器,手提包,行李箱,头戴装置,领带,手机,饮水杯,鼠标,笔,记事本,球拍,球,自行车其中之一,所述承载体与所述无线耳机构成融合类产品。显然,本技术中的无线耳机可适应于tws耳机形态,同时对耳机和手表,耳机和项链,耳机盒眼镜等业界
已有和未实现的融合类产品均适用。另外,针对不同形态的产品,还可以实现多层级磁环境检测。再者,通过盒体的磁体配合,可以通过优化磁体的充磁方向,使得检测更加准确。
18.第二方面,本技术实施例还提供一种无线耳机。无线耳机可收纳于盒体的收纳腔内。无线耳机包括处理器以及与所述处理器耦接的磁传感器;所述磁传感器用于检测所述无线耳机周围的磁场矢量,并将检测到的磁场矢量传输至所述处理器;所述处理器根据接收所述磁场矢量判断所述无线耳机的状态,其中,所述无线耳机的状态至少包括合盖入盒状态,开盖入盒状态及出盒状态。
19.在一种可能的设计中,磁传感器是三轴霍尔传感器。
20.在一种可能的设计中,磁传感器设置于所述无线耳机的中心轴位置。
21.在一种可能的设计中,无线耳机可在所述收纳腔内自由转动。
22.在一种可能的设计中,无线耳机的形状为圆柱形、类圆柱形。
23.在一种可能的设计中,无线耳机还包括用于吸附所述盒体,使得所述无线耳机收纳于所述盒体内的磁体。
24.第二方面所带来的技术效果可参见上述第一方面涉及的无线耳机系统相关的描述,此处不再赘述。
附图说明
25.图1a及图1b为本技术实施例提供的一种无线耳机的位置/状态信息检测示意图;
26.图2a为本技术实施例提供的一种无线耳机和盒体的产品形态示意图;
27.图2b为本技术实施例提供的另一种无线耳机和盒体的产品形态示意图;
28.图3为本技术实施例提供的一种无线耳机的耳机本体的硬件结构示意图;
29.图4为本技术实施例提供的一种无线耳机应用的盒体的产品形态示意图;
30.图5a为本技术实施例提供的一种无线耳机处于合盖入盒状态时的示意图;
31.图5b为本技术实施例提供的一种无线耳机于另一角度下处于合盖入盒状态时的示意图;
32.图5c为本技术实施例提供的一种无线耳机的耳机本体的硬件结构示意图;
33.图5d为本技术实施例提供的一种无线耳机处于开盖入盒状态时的示意图;
34.图5e为本技术实施例提供的一种无线耳机处于出盒状态时的示意图;
35.图5f为本技术实施例提供的一种无线耳机中磁传感器的位置示意图;
36.图6a为本技术实施例提供的另一种无线耳机处于合盖入盒状态时的示意图;
37.图6b为本技术实施例提供的另一种无线耳机于另一角度下处于合盖入盒状态时的示意图;
38.图6c为本技术实施例提供的另一种无线耳机处于开盖入盒在上盖状态时的示意图;
39.图6d为本技术实施例提供的另一种无线耳机处于开盖入盒在下盖状态时的示意图;
40.图6e为本技术实施例提供的另一种无线耳机处于出盒状态时的示意图;
41.图7为本技术实施例提供的一种获取矢量门限的流程示意图;
42.图8为本技术实施例提供的一种无线耳机的位置/状态信息检测方法流程图。
43.主要元件符号说明
[0044][0045][0046]
如下具体实施方式将结合上述附图进一步说明本技术。
具体实施方式
[0047]
下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。
[0048]
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
[0049]
在本技术的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;对于本领域的普通技术人员而言,可以具体情况理解上述术语在本技术中的具体含义。
[0050]
近年来穿戴产品的外观和体验越来越受大家关注,真无线立体声(true wireless stereo,tws)耳机等无线耳机小型化体验述求愈发强烈,耳机与盒体(例如耳机盒)之间的
状态关系也越来越多样化。
[0051]
目前,可通过放置一颗单轴霍尔传感器,并在盒体对应位置放置磁铁来检测耳机与盒体之间的状态关系。示例的,请一并参阅图1a,在第一种场景下,当用户开盖时,盒体可判断开盒事件,并唤醒耳机,此时耳机处于开盖入盒状态。接着,当用户取出耳机时,耳机判断出盒事件,此时耳机处于出盒状态。
[0052]
请一并参阅图1b,在第二种场景下,当用户放入耳机时,耳机判断入盒事件,此时耳机处于开盖入盒状态。接着,当用户合盖时,盒体判断合盖事件并通知耳机,此时耳机处于合盖入盒状态。同时盒体通知或控制耳机关机,以节省耳机的电量。
[0053]
显然,上述方案中,耳机的开机状态受限于盒体,即需要盒体判断开盒事件,且通过电连接机制(例如充电引脚)唤醒耳机。一旦盒体异常,例如,当盒体出现没电或与耳机电连接的引脚被过度腐蚀时,盒体无法将检测到的开盒状态及时通知耳机,进而导致耳机的开机变延迟。如此,耳机在开盖出盒后无法及时连接手机等电子产品,进而容易引发丢音现象,影响通话,听音乐等用户体验。再者,耳机的状态判断无法独立于盒体。耳机开机后,需要获取盒体状态(例如开合盖),且必须通过电连接机制(例如充电引脚)与盒体交互,即耳机状态判断依赖于盒体的电连接通信机制。另外,随着用户对体验的关注,很多产品为追求更优质的体验,会增加相应的磁铁,如此将导致磁场环境日趋复杂,这对单轴霍尔传感器的挑战倍增。因此,对于磁场环境复杂的项目/产品,现有的耳机位置/状态信息检测方案难以满足产品功能的开发。
[0054]
因此,本技术实施例提供一种无线耳机及无线耳机系统,该无线耳机可检测多种耳机相对盒体的位置/状态信息,且其检测可独立于盒体。如此,可避免由于盒体出现异常而无法及时通知耳机,进而导致耳机在开盖出盒后不能及时连接手机等电子产品,影响通话,听音乐等用户体验。通过本技术实施例的方案,可使得耳机对自身状态的判断做到独立,不需要依赖与盒体的通信,进而有效提高用户体验。再者,本技术实施例中的无线耳机可以降低耳机对盒体的磁环境和电环境的要求,从而简化产品设计难度,可靠检测多种耳机相对盒体的状态。
[0055]
请参阅图2a,其示出本技术实施例提供的一种无线耳机系统的示意图。如图2a所示,无线耳机系统100可以包括无线耳机11和盒体12。
[0056]
其中,无线耳机11包括可以配合用户的左、右耳使用的一对耳机本体,如一对耳机本体111。无线耳机11具体可以为耳塞式,挂耳式或入耳式耳机等。示例的,无线耳机101可以是真无线立体声(true wireless stereo,tws)耳机。示例的,盒体12为耳机盒,用于收纳耳机本体111。例如,盒体12包括两个收纳腔121。收纳腔121用于收纳耳机本体111。
[0057]
需要说明的是,图2a仅以举例方式给出无线耳机系统的一种产品形态实例示意图,本技术实施例提供的无线耳机包括,但不限于,图2a所示的无线耳机11,盒体包括但不限于图2a所示的盒体12。例如,本技术实施例提供的无线耳机系统还可以是图2b所示的无线耳机系统200。如图2b所示,无线耳机系统200包括无线耳机21和盒体22。无线耳机21包括两个耳机本体211。盒体22包括用于收纳耳机本体211的收纳腔221。当然,在一些实施例中,无线耳机也可以仅包括一个耳机本体,本技术实施例这里不予一一介绍。
[0058]
请参阅图3,图3示出了一种无线耳机的耳机本体300的结构示意图。耳机本体300可通过盒体进行收纳。耳机本体300可以包括处理器301、存储器302、传感器模块303、无线
通信模块304、音频模块305、电源模块306、多个输入/输出接口307等。
[0059]
其中,处理器301可以包括一个或多个接口,用于与耳机本体300的其他部件相连。示例的,该一个或多个接口可以包括:io接口(也称为io引脚)、中断引脚和数据总线接口等。其中,数据总线接口可以包括:spi接口、i2c接口和i3c接口中的一个或多个。例如,本技术实施例中,处理器301可以通过io引脚、中断引脚或数据总线接口连接磁传感器。
[0060]
存储器302可以用于存储程序代码,如用于耳机本体300进行充电,耳机本体300与其他电子设备进行无线配对连接,或耳机本体300与电子设备进行无线通信的程序代码等。存储器302中还可以存储有用于唯一标识无线耳机的蓝牙地址。另外,该存储器302中还可以存储有与无线耳机之前成功配对过的电子设备的连接数据。例如,该连接数据可以为与无线耳机成功配对过的电子设备的蓝牙地址。基于该连接数据,无线耳机能够与该电子设备自动配对,而不必配置与其之间的连接,如进行合法性验证等。上述蓝牙地址可以为媒体访问控制(media access control,mac)地址。处理器301可以用于执行上述应用程序代码,调用相关模块以实现本技术实施例中耳机本体300的功能。例如,实现耳机本体300的充电功能,无线通信功能,音频数据播放功能,以及位置/状态信息检测功能(例如开合盖和出入盒)等。处理器301可以包括一个或多个处理单元,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器301中。处理器301具体可以是集成的控制芯片,也可以由包括各种有源和/或无源部件的电路组成,且该电路被配置为执行本技术实施例描述的属于处理器301的功能。其中,耳机本体300的处理器可以是微处理器。
[0061]
传感器模块303包括磁传感器303a。磁传感器303a用于检测耳机本体300周围的磁场。处理器301可以执行本技术实施例的方法,根据磁传感器303a检测到的磁场变化,检测耳机本体300的多种状态,例如出入盒,开合盖等。示例的,磁传感器303a是三轴霍尔传感器。
[0062]
应理解的是,在其他实施例中,传感器模块303还可以包括其他传感器,在此不作限定。示例的,传感器模块303还包括距离传感器和/或接近光传感器。其中,处理器301可以根据距离传感器或接近光传感器采集的数据,确定耳机本体300是否被用户佩戴。例如,处理器301可以利用距离传感器来采集的数据检测耳机本体300附近是否有物体,从而确定耳机本体300是否被用户佩戴。在确定耳机本体300被佩戴时,处理器301可以打开耳机本体300的扬声器。又示例的,传感器模块303还可以包括骨传导传感器。耳机本体300结合骨传导传感器构成骨传导耳机。例如,利用骨传导传感器,处理器301可以获取声部振动骨块的振动信号,解析出语音信号,实现语音功能。又示例的,传感器模块303还包括触摸传感器,指纹传感器,环境光传感器和/或其他一些传感器。示例的,触摸传感器设置于耳机本体300的外表面,用于检测用户的触摸操作。指纹传感器用于检测用户指纹,识别用户身份等。环境光传感器可以根据感知的环境光的亮度,自适应调节一些参数(如音量大小)。
[0063]
无线通信模块304可以用于支持耳机本体300与其他电子设备或盒体之间包括蓝牙(bluetooth,bt),全球导航卫星系统(global navigation satellite system,gnss),无线局域网(wireless local area networks,wlan)(如无线保真(wireless fidelity,wi-fi)网络),调频(frequency modulation,fm),近距离无线通信技术(near fieldcommunication,nfc),红外技术(infrared,ir)等无线通信的数据交换。示例的,无线通信模块304可以为蓝牙芯片。耳机本体300可以通过蓝牙芯片与其他电子设备的蓝牙芯片
之间进行配对并建立无线连接,以通过无线连接实现耳机本体300和其他电子设备之间的无线通信。示例的,本技术实施例中,无线通信模块304可以用于在处理器301确定耳机本体300出盒后,向与耳机本体300建立了无线连接(如蓝牙连接)的电子设备发送盒体的剩余电量。
[0064]
另外,无线通信模块304还可以包括天线,无线通信模块304经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器301。无线通信模块304还可以从处理器301接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
[0065]
音频模块305可以用于管理音频数据,实现耳机本体300输入和输出音频信号。例如,音频模块305可以从无线通信模块304获取音频信号,或者向无线通信模块304传递音频信号,实现通过耳机本体300接打电话、播放音乐、启动/关闭与耳机连接的电子设备的语音助手、接收/发送用户的语音数据等功能。音频模块305可以包括用于输出音频信号的扬声器(或称听筒、受话器)组件,麦克风(或称话筒,传声器),与麦克风相配合的麦克收音电路等。扬声器可以用于将音频电信号转换成声音信号并播放。麦克风可以用于将声音信号转换为音频电信号。其中,音频模块305(如扬声器,也称为“喇叭”)中包括磁体(如磁铁)。耳机本体300周围的磁场包括该磁体产生的磁场。该磁体产生的磁场会影响耳机本体300的磁传感器303a采集的磁感应强度的大小。
[0066]
电源模块306可以用于提供耳机本体300的系统电源,为耳机本体300的各模块供电。电源模块306还用以支持耳机本体300接收充电输入等。电源模块306可以包括电源管理单元(power management unit,pmu)和电池(即第一电池)。其中,电源管理单元可以包括充电电路、压降调节电路、保护电路、电量测量电路等。充电电路可以接收外部的充电输入。压降调节电路可以将充电电路输入的电信号变压后输出给电池以完成对电池充电,还可以将电池输入的电信号变压后输出给音频模块305、无线通信模块304等其他模块。保护电路可以用于防止电池过充、过放、短路或过流等。在一些实施例中,电源模块306还可以包括无线充电线圈,用于对耳机本体300进行无线充电。另外,电源管理单元还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。
[0067]
多个输入/输出接口307可以用于提供耳机本体300与盒体之间进行充电或通信的有线连接。示例的,输入/输出接口307可以包括耳机电连接器。耳机电连接器用于导通和传输电流。当耳机本体300放置于盒体的收纳腔内时,耳机本体300可以通过耳机电连接器与盒体中的电连接器建立电连接(例如耳机电连接器与盒体中的电连接器直接接触)。在该电连接建立后,盒体可以通过耳机电连接器和盒体中的电连接器的电流传输功能为耳机本体300中的电池充电。示例的,耳机电连接器可以为pogo pin、弹簧针、弹片、导电块、导电贴片、导电片、插针、插头、接触垫、插孔或插座等,本技术实施例对电连接器的具体类型不予限定。在另一些实施例中,在该电连接建立后,耳机本体300还可以与盒体进行数据通信,例如可以接收来自盒体的配对指令。
[0068]
可以理解的是,本技术实施例示意的结构并不构成对耳机本体300的具体限定。其可以具有比图3示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。示例的,耳机本体300的壳体上还可以设置用于吸附盒体,使得耳机本体300收纳于盒体内的磁体(如磁铁)。耳机本体300周围的磁场包括该磁体产生的磁场。该磁体产生的磁场会影响耳机本体300的磁传感器303a采集的磁场矢量(包括磁场强度/大小和
磁场方向)。又示例的,在耳机本体300的外表面还可以包括按键、指示灯(可以指示电量、呼入/呼出、配对模式等状态)、显示屏(可以提示用户相关信息)、防尘网(可以配合听筒使用)等部件。其中,该按键可以是物理按键或触摸按键(与触摸传感器配合使用)等,用于触发开机、关机、暂停、播放、录音、开始充电、停止充电等操作。
[0069]
请参阅图4,图4示出了一种无线耳机的盒体400的结构示意图。该盒体400可用以收纳耳机本体。盒体400可以包括下盖401及上盖402。下盖401与上盖402可扣接在一起,并收纳耳机本体。示例的,盒体400包括两个收纳腔403a,403b。两个收纳腔403a,403b分别用于收纳相应的耳机本体。
[0070]
可以理解,在一些实施例中,盒体400内部可以具有一个或多个磁体。示例的,一个或多个磁体可以包括第一磁体及第二磁体。第一磁体及第二磁体与无线耳机的磁传感器对应设置,以在无线耳机放入盒内时无线耳机的磁传感器能够感应到由第一磁体和第二磁体产生的矢量。其中,第一磁体设置于上盖402上,第二磁体设置于下盖401上,且均与无线耳机的磁传感器对应。例如,第一磁体及第二磁体分别设置于上盖402和下盖401上,且对应盒体400的收纳腔403a,403b设置。如此,当耳机本体收纳于盒体400的收纳腔403a,403b内时,耳机本体周围的磁场至少包括第一磁体及第二磁体所产生的磁场。第一磁体及第二磁体产生的磁场会影响耳机本体的磁传感器采集的磁场矢量。
[0071]
可以理解,本技术实施例中,并不对第一磁体及第二磁体的数量,形状,尺寸等参数进行限定。示例的,如图4所示,盒体400可针对每个耳机本体均对应设置一个第一磁体及一个第二磁体。例如,针对左侧的收纳腔403a对应的耳机本体设置第一磁体405a及第二磁体404a,针对右侧的收纳腔403b对应的耳机本体设置第一磁体405b及第二磁体404b。当然,盒体400针对每个耳机本体设置的第一磁体及第二磁体的数量可根据具体情况进行调整,仅需确保第一磁体及第二磁体产生的磁场会影响耳机本体的磁传感器采集的磁场矢量即可。例如,在其他实施例中,盒体400可针对每个耳机本体均对应设置两个或多个第一磁体及两个或多个第二磁体。
[0072]
可以理解,本技术实施例中,亦不对第一磁体及第二磁体的具体布设位置进行限定。示例的,第一磁体及第二磁体还可设置于两个收纳腔403a,403b之间,以使得两个耳机本体可共用相同的第一磁体及第二磁体。例如,在其中一个实施例中,可设置一个第一磁体及一个第二磁体。该第一磁体及第二磁体设置于两个耳机本体的中间位置或其他合适位置,以使得两个耳机本体内的磁传感器均能采集到第一磁体及第二磁体产生的磁场。
[0073]
可以理解,本技术实施例中,盒体400可省略第二磁体,即仅于上盖402上设置第一磁体,仅需确保第一磁体产生的磁场会影响耳机本体的磁传感器采集的磁场矢量即可。
[0074]
可以理解,本技术实施例中,盒体400内部还可以具有一个或多个其他磁体。例如,用于吸附无线耳机(如无线耳机的耳机本体),使得无线耳机收纳于收纳腔403a,403b内的磁体;和/或用于盒体400的下盖401与上盖402闭合吸附的磁体等,在此不予限定。
[0075]
可以理解,本技术实施例中,盒体400还可以包括盒电源模块和多个输入/输出接口。其中,盒电源模块可以为盒体400中的电气部件供电,盒电源模块可以包括盒电池(即第二电池)。在一些实施例中,输入/输出接口可以为盒电连接器,该盒电连接器与盒电源模块的电极电连接,可以用于导通和传输电流。示例的,盒体400中可以包括分别与两个耳机本体相对应的两对盒电连接器。当盒体400中的一对盒电连接器分别与耳机本体中的两个耳
机电连接器建立电连接后,盒体400可以通过自身的盒电池为耳机本体中的电池充电。
[0076]
可以理解,在另一些实施例中,盒体400上还可以设置至少一个触摸控件,可以用于触发无线耳机进行配对复位或对无线耳机进行充电等功能。盒体400还可以设置一个或多个电量指示灯,以向用户提示盒体400中电池的电量大小,以及盒体400中每个耳机本体中的电池的电量大小。
[0077]
可以理解,在另一些实施例中,盒体400还可以包括处理器,存储器,充电接口,无线充电线圈等部件,此处不再一一说明。
[0078]
以下实施例中的无线耳机和无线耳机的位置信息检测方法均可以在具有上述硬件结构的无线耳机中实现。示例的,接下来分别以实施例1及实施例2为例,结合附图对本技术实施例的实施方式进行介绍。
[0079]
实施例1:
[0080]
本技术实施例1提供一种无线耳机。请一并参阅图5a至图5f,其中,图5a为无线耳机放入盒体内的示意图。图5b为图5a所示无线耳机放入耳机盒后的沿a-a线的侧面剖视图。图5c为图5a所示无线耳机中的耳机本体的硬件结构示意图。图5d为图5a所示无线耳机处于开盖入盒状态时的示意图。图5e为图5a所示无线耳机处于出盒状态时的示意图。图5f为图5a所示无线耳机中磁传感器的位置示意图。
[0081]
无线耳机包括两个耳机本体500a,500b。两个耳机本体500a,500b收纳于盒体600内。如图5a至图5d所示,盒体600包括下盖601及上盖602。下盖601与上盖602可扣接在一起,并收纳耳机本体500a,500b。例如,盒体600包括两个收纳腔603a,603b。两个收纳腔603a,603b可分别用于收纳相应的耳机本体。例如收纳腔603a用以收纳耳机本体500a,收纳腔603b用以收纳耳机本体500b。
[0082]
示例的,本技术实施例中,盒体600对应每个耳机本体500a,500b均设置有第一磁体及第二磁体。例如,耳机本体500a对应设置有第一磁体605a及第二磁体604a,耳机本体500b对应设置有第一磁体605b及第二磁体604b。可以理解,为了描述方便,以下实施例中,均以左侧的收纳腔603a,耳机本体500a,第一磁体605a及第二磁体604a为例加以说明。
[0083]
其中,第一磁体605a设置于上盖602上,第二磁体604a设置于下盖601上,两者均与耳机本体500a对应。示例的,第一磁体605a及第二磁体604a分别设置于上盖602和下盖601上,且对应盒体600的收纳腔603a设置。如此,当耳机本体500a收纳于收纳腔603a内时,耳机本体500a周围的磁场至少包括第一磁体605a及第二磁体604a所产生的磁场。第一磁体605a及第二磁体604a产生的磁场会影响耳机本体500a的磁传感器(参下详述)采集的磁场矢量。
[0084]
可以理解的是,在本技术实施例中,并不对第一磁体605a,第二磁体604a相对耳机本体500a的位置进行限定。例如,如图5a设置,左侧的第一磁体605a,第二磁体604a可相对左侧的耳机本体500a轴对称设置。
[0085]
又示例的,如图5b所示,盒体600还设置有吸附磁体606。吸附磁体606用于实现盒体600的下盖601与上盖602的闭合吸附。本技术实施例中,并不对吸附磁体606于盒体600上的具体位置进行限定。示例的,吸附磁体606可设置于下盖601或上盖602上。对应的,上盖602或下盖601上设置有相应的磁体、软磁体等,以与吸附磁体606配合实现下盖601与上盖602的闭合吸附。又示例的,吸附磁体606可设置于盒体600远离收纳腔603的位置,以防止吸附磁体606产生的磁场对耳机本体500的磁传感器采集的磁感应强度进行干扰。
[0086]
可以理解,本技术实施例中,并不对耳机本体500a的类型和形状等进行限定。示例的,耳机本体500a可以为耳塞式,挂耳式或入耳式耳机等。又示例的,耳机本体500a的形状可以为圆柱形、类圆柱形(例如类似子弹头)等(参图5b)。可以理解的是,当耳机本体500a的形状为圆柱形、类圆柱形时,其可在盒体600的收纳腔603a内自由转动,耳机本体500a在盒体600的收纳腔603a内转动的位置并不影响耳机本体500a内的三轴霍尔传感器对耳机入盒、出盒、开盖、关盖的状态检测。耳机本体500a可自由转动是指耳机本体500a可在收纳腔603a内以一定角度(例如45度)转动或实现360度转动。
[0087]
请一并参阅图5c,耳机本体500a可以包括磁传感器501和处理器502。磁传感器501与处理器502耦接。可以理解,当耳机本体500a是图3所示的耳机本体300时,磁传感器501可以是图3所示的磁传感器303a,处理器502可以是图3所示的处理器301。其中,磁传感器501与处理器502的功能,连接关系等可参图3所示实施例,在此不再赘述。
[0088]
可以理解,本技术实施例中,磁传感器501是三轴霍尔传感器,其用于检测耳机本体500周围的磁场矢量(例如x,y,z轴磁场大小),并将检测到的磁场矢量传送至处理器502。
[0089]
示例的,当耳机本体500a收纳在盒体600的收纳腔603a内,且盒体600合盖(参见图5a及图5b)时,耳机本体500a周围的磁场至少可以包括:耳机本体500a中的磁体产生的磁场和盒体600产生的磁场,即耳机本体500a中的磁体和盒体600中的磁体产生的合磁场。示例的,耳机本体500a中的磁体产生的磁场可以包括:扬声器(也称为“喇叭”)中的磁体产生的磁场。盒体600产生的磁场至少包括,第一磁体605a产生的磁场及第二磁体604a产生的磁场。
[0090]
可选的,耳机本体500a中的磁体产生的磁场还可以包括:用于吸附盒体600使得耳机本体500a收纳于盒体600的收纳腔603a内的磁体产生的磁场。盒体600产生的磁场还可以包括,用于下盖601与上盖602之间闭合吸附的吸附磁体606产生的磁场。可选的,盒体600产生的磁场还可以包括,用于吸附耳机本体500a,使得耳机本体500a收纳于盒体600的收纳腔603a内的磁体产生的磁场,以及用于增强盒体600与耳机本体500a充电引脚压力的磁体产生的磁场等。其中,盒体600与耳机本体500a的充电引脚可以是盒体600与耳机本体500a的电连接器。
[0091]
同样,请一并参阅图5d,当耳机本体500a收纳在盒体600的收纳腔603a内,且盒体600开盖时,耳机本体500a周围的磁场至少可以包括:耳机本体500a中的磁体产生的磁场和盒体600产生的磁场,即耳机本体500a中的磁体和盒体600中的磁体产生的合磁场。
[0092]
请一并参阅图5e,当耳机本体500a在盒体600之外时,耳机本体500a周围的磁场可以包括:耳机本体500a中的磁体所产生的磁场。
[0093]
当然,当耳机本体500a置于盒体600外,但耳机本体500a与盒体600之间的距离较近时,盒体600中的磁体也会影响耳机本体500a周围的磁场。其中,相比于盒内状态(包括合盖入盒状态及开盖入盒状态),耳机本体500a处于出盒状态时,盒体600中的磁体对耳机本体500a周围的磁场的影响较小,可以忽略不计。本技术实施例中,为了描述方便,当耳机本体500a处于出盒状态时,忽略盒体600中的磁体对耳机本体500a周围的磁场的影响。
[0094]
综上所述,当耳机本体500a处于合盖入盒状态时,磁传感器501可以检测到耳机本体500a中的磁体和盒体600中的磁体所产生的合磁场矢量(下称第一磁场矢量)。当耳机本体500a处于开盖入盒状态时,磁传感器501也可以检测到耳机本体500a中的磁体和盒体600
中的磁体所产生的合磁场矢量(下称第二磁场矢量)。当耳机本体500a处于出盒状态时,磁传感器501可以检测到耳机本体500a中的磁体所产生的磁场矢量(下称第三磁场矢量)。
[0095]
可以理解的是,当耳机本体500a处于开盖入盒状态时,由于上盖602处于打开状态,因此上盖602上的磁体对处于开盖入盒状态的耳机本体500a而言,其影响要小于当耳机本体500a处于合盖入盒状态时上盖602上的磁体对耳机本体500a的影响。即第一磁场矢量与第二磁场矢量并不相同。再者,由于当耳机本体500a处于出盒状态时,磁传感器501仅能检测到耳机本体500a中的磁体所产生的磁场矢量。因此,第三磁场矢量亦与第一磁场矢量,第二磁场矢量不同。
[0096]
由此可见,当耳机本体500a处于不同的状态(如合盖入盒状态,开盖入盒状态,或出盒状态)时,磁传感器501检测到的磁场矢量不同。因此,本技术实施例中,无线耳机可通过磁传感器501检测到相应的磁场矢量,并通过处理器502对上述磁场矢量进行处理,以判断或检测无线耳机的位置信息,例如无线耳机处于合盖入盒状态,开盖入盒状态,或出盒状态等。
[0097]
示例的,通过处理器502对上述磁场矢量进行处理,可以为,但不局限于,处理器502预先设定不同状态对应不同的矢量门限。如此,当处理器502判断磁传感器501感测到的磁场矢量满足预设的矢量门限时,表示耳机本体500a处于对应的状态。例如,可设定当处理器502判断磁传感器501感测到的磁场矢量满足第一矢量门限时,确定耳机本体500a处于合盖入盒状态。当处理器502判断磁传感器501感测到的磁场矢量满足第二矢量门限时,确定耳机本体500a处于开盖入盒状态。当处理器502判断磁传感器501感测到的磁场矢量满足第三矢量门限时,确定耳机本体500a处于出盒状态。
[0098]
可以理解,无线耳机通过设置磁传感器501,磁传感器501为三轴霍尔传感器,其可根据无线耳机各状态下的磁场变化来实现无线耳机合盖入盒,开盖入盒,或处于出盒等多种复杂位置状态的判断,降低无线耳机对盒体600磁环境和电环境的要求,从而简化产品设计难度,可靠检测多种耳机相对盒体的状态。再者,其检测结果不会因为盒体600和耳机本体500a的电连接机制出现问题,或者电连接引脚被腐蚀,而导致无线耳机的各种位置/状态信息的误判。也就是说,上述磁感应强度的检测及位置/状态信息的判断可独立于盒体600,无需依赖盒体600与无线耳机的电连接关系。即使盒体600与无线耳机的电连接机制出现问题,或者电连接引脚被腐蚀时,无线耳机也可及时获得自身的各种位置/状态信息,进而根据该位置/状态信息执行对应的操作,例如控制无线耳机的开关机,控制无线耳机与电子设备的自动配对等。另外,无线耳机在盒外还可以实现抗盒外磁环境的干扰,具有更高的可靠性能。
[0099]
可以理解,在其他实施例中,无线耳机还可根据磁传感器501检测到的磁场矢量控制及实现无线耳机的开关机。其中,无线耳机对自身开关机和状态的判断做到独立,不需要依赖与盒体600的通信,进而有效提高用户体验。
[0100]
可以理解,请一并参阅图5f,示例的,磁传感器501设置于耳机本体500a的中心轴位置。如此,无线耳机可无需区分耳机本体500a的摆放方向,也无需区分左右耳,便能使得磁传感器501实现无线耳机的各种位置/状态信息的检测。再者,通过将磁传感器501设置为三轴霍尔传感器,且将磁传感器501设置于耳机本体500a的中心轴位置,如此,当耳机本体500a在收纳腔603内自由转动时,亦可准确检测出上述位置/状态信息。当然,在其他实施例
中,磁传感器501的位置不限于此,其还可根据实际情况进行调整,在此不予限定。
[0101]
可以理解,本技术实施例中,为了使得耳机本体500a处于不同状态(例如合盖入盒状态,开盖入盒状态,或出盒状态)时,磁传感器501检测到的磁场矢量的差异更加明显。本技术实施例中,可以根据情况调整第一磁体605,第二磁体604的数量,大小等,或者于盒体600中设置多个其他的磁体。
[0102]
可以理解,在其他实施例中,也可根据实际情况省略第二磁体604a。即仅于盒体600的上盖602上设置第一磁体605a。耳机本体500a亦可通过第一磁体605a实现对无线耳机的位置/状态信息的判断或检测。
[0103]
当然,在本技术实施例中,通过在下盖601上增加磁铁,例如第二磁体604a,可使得磁传感器501检测到的磁场矢量的差异更加明显,进而有效增加无线耳机状态检测的精确度,即使得无线耳机具有状态检测更精确的效果。进一步的,参图5b,若上盖602与下盖601上的磁铁(例如第一磁体605a及第二磁体604a)的磁体方向相同,亦可使得上盖602与下盖601有效闭合,即增加手感。
[0104]
实施例2:
[0105]
本技术实施例2提供一种无线耳机。请一并参阅图6a至图6e,无线耳机包括两个耳机本体700a,700b。两个耳机本体700a,700b收纳于盒体800内。
[0106]
可以理解,如图6a至图6e所示,实施例2与实施例1的区别在于,盒体800除了设置第一磁体805a及第二磁体804a之外,其对应耳机本体700a还设置有第三磁体807a。其中,第三磁体807a设置于上盖802上,用以将耳机本体700a吸附在上盖802上。又示例的,第三磁体807a也可与第一磁体805a配合将耳机本体700a吸附在上盖802上。当然,在其他实施例中,无线耳机并不局限于利用第三磁体807a实现对耳机本体700a的吸附,其也可设置其他的吸附结构,以将耳机本体700a吸附在上盖802上。
[0107]
可以理解,相比实施例1,实施例2中,由于盒体800上设置有第三磁体807a。因此,耳机本体700a至少具有四种状态,即合盖入盒状态,开盖入盒状态(包括开盖入盒在下盖状态和开盖入盒在上盖状态),及出盒状态。示例的,如图6a及图6b所示,耳机本体700a处于合盖入盒状态。如图6c所示,耳机本体700a处于开盖入盒在上盖状态。如图6d所示,耳机本体700a处于开盖入盒在下盖状态。如图6e所示,耳机本体700a处于出盒状态。
[0108]
与实施例1类似,当耳机本体700a处于不同的状态(如合盖入盒状态,开盖入盒在下盖状态,开盖入盒在上盖状态,或出盒状态)时,耳机本体700a检测到的磁场矢量不同。因此,实施例2中,无线耳机可通过检测到不同的磁场矢量,并通过对上述磁场矢量进行处理,以判断或检测耳机的位置/状态信息,例如耳机处于合盖入盒状态,开盖入盒在下盖状态,开盖入盒在上盖状态,或出盒状态等。
[0109]
可以理解,上述实施例中,第二磁体804a与第三磁体807a是独立的磁体,两者间隔设置。当然,在其他实施例中,也可将第一磁体805a和第三磁体807a进行合并。例如,如实施例1,可将第一磁体805a及第三磁体807a设置(或连接)在一起,以构成一个整体,即形成一个大的磁体。又示例的,在其他实施例中,也可不设置第三磁体807a,而直接调节第一磁体805a的大小,以将第一磁体805a设置为延伸至图中第三磁体807a的位置,进而构成一个大的磁体。也就是说,本技术实施例中,通过设置至少两个磁体(例如第一磁体及第二磁体),亦可实现至少四种状态的检测。
[0110]
可以理解,实施例2的其他部分与实施例1类似,具体可参阅实施例1,在此不再赘述。
[0111]
可以理解,接下来结合实施例1,实施例2及图7,对上述预设的矢量门限进行说明。
[0112]
请一并参阅图7,首先,可根据项目的需求,整理出无线耳机需要判定的耳机状态关系列表(s701)。
[0113]
示例的,当无线耳机应用至第一类型的盒体(例如盒体600)时,其耳机状态一般为:开盖入盒、合盖入盒、出盒、出盒干扰。又示例的,当无线耳机应用至第二类型的盒体(例如盒体800)时,其耳机状态一般为:开盖入盒在下盖、开盖入盒在上盖、合盖入盒、出盒、出盒干扰。
[0114]
示例的,在其中一个实施例中,可根据盒体是否设置有用以吸附耳机本体于上盖上的第三磁体来判断耳机状态。例如,当盒体未设置用以吸附耳机本体于上盖上的第三磁体时,说明盒体为实施例1所示的第一类型的盒体,无线耳机至少包括上述四种耳机状态。当盒体设置有用以吸附耳机本体于上盖上的第三磁体时,说明盒体为实施例2所示的第二类型的盒体,无线耳机至少包括上述五种耳机状态。
[0115]
当然,可以理解的是,随着将来技术的进一步发展,还可能需要更多关系,比如盒体在无线充电底座上、耳机在无线充电底座上(耳机支持无线充电产品)等等。因此,对于上述融合类产品,根据融合体的形态不同,需要检测的状态更加多元化。比如耳机与项链融合时,需要检测耳机是否在项链上;耳机与头盔融合时,需要检测耳机是否在头盔内;耳机与眼镜融合时,需要检测耳机是否在眼镜上等等。在本技术实施例中,为了简化说明,并不对上述耳机状态予以限定,主要以上述常见的四种或五种耳机状态为例加以说明。
[0116]
接着,根据上述判断出的耳机状态关系,预置不同的磁体,使得不同耳机状态关系下,存在不同磁场(s702)。
[0117]
可以理解,由于项目的复杂程度不同,对应磁体的需求数量也存在差异。示例的,当区分上述四种耳机状态(开盖入盒、合盖入盒、出盒、盒外干扰)时,可将两颗磁体分别置于上盖及下盖(例如,参见实施例1)。当区分上述五种耳机状态(开盖入盒在下盖、开盖入盒在上盖、合盖入盒、出盒、出盒干扰)时,亦可设置至少两颗磁体。当然,为了增强吸附体验,可以适当调整(例如增加)磁体数量(例如,参见实施例2)。又示例的,当需要检查充电底座在位状态时,充电底座也可根据需要增加相应磁体,例如最少磁体需求量为三颗或者更多,具体可根据不同充电底座数量选定。又示例的,融合产品需要针对n种融合体分别在不同融合体上增加不同的磁铁(位置、形状等差异均会带来磁场的不同),以满足多种融合体的检测。可以理解的是,不满足上述状态条件的其他磁场,均可认为是盒外干扰。
[0118]
第三,进行磁仿真,以获取不同磁场下的磁场矢量(s703)。
[0119]
示例的,针对实施例1,可预置第一磁体605a及第二磁体604a,并进行磁仿真,以分别获取不同磁场下(例如无线耳机分别处于合盖入盒状态,开盖入盒状态,及出盒状态)的磁场矢量。又示例的,针对实施例2,可预置第一磁体805a,第二磁体804a,及第三磁体807a,并进行磁仿真,以分别获取不同磁场下(例如无线耳机分别处于合盖入盒状态,开盖吸附在下盖状态,开盖吸附在上盖状态,及出盒状态)的磁场矢量。
[0120]
最后,根据各状态仿真磁场区别,选定不同的矢量门限(s704)。
[0121]
示例的,根据上述描述,可获得各种耳机状态与矢量门限的关系如表1。
[0122]
表1各种状态下的磁场仿真值及门限关系表
[0123][0124][0125]
又示例的,请一并参阅下表2,为当无线耳机应用至第二类型的盒体(例如实施例2中的盒体800)时,进行各个状态下的磁场仿真,并选定或设定的各状态下的矢量门限值。其中,参数a指,假如盒体800设置的第一磁体805a,第二磁体804a及第三磁体807a是形状、尺寸、材料相同且能够产生同样磁场矢量的磁体,在仅设置单个磁体(例如仅设置第一磁体805a,没有设置第二磁体804a和第三磁体807a)的情况下,耳机本体700感测到的磁场矢量。
[0126]
当然,在本技术实施例中,并不对盒体800包括的磁体的大小,形状,材料等参数进行限定。例如,盒体800的第一磁体805a,第二磁体804a和第三磁体807a的大小,形状及材料等参数可设置成一致或根据实际情况进行调整。
[0127]
表2实施例2中各种耳机状态下的磁场仿真值及矢量门限关系表
[0128]
状态磁场(矢量)仿真理论值矢量门限合盖入盒最强2.24a毫特斯拉(mt)矢量和》2a mt开盖吸附在上盖较强1.4a mt1.2a mt《矢量和《2a mt开盖吸附在下盖弱a mt0.5a mt《矢量和《1.2a mt出盒最弱《a mt,约为0矢量和《0.5a mt
[0129]
可以理解,根据表2,耳机本体700a通过磁传感器检测到不同状态下的磁场矢量
和,并将其传送至处理器。处理器再根据接收到的磁场矢量和与预设的矢量门限来判断耳机本体700a的状态。示例的,当处理器判断矢量和满足第一矢量门限(例如矢量和》2a mt)时,判断耳机本体700a处于合盖入盒状态。又示例的,当处理器判断矢量和满足第二矢量门限(例如1.2a mt《矢量和《2a mt)时,判断耳机本体700a处于开盖吸附在上盖状态。又示例的,当处理器判断矢量和满足第三矢量门限(例如0.5a mt《矢量和《1.2a mt)时,判断耳机本体700a处于开盖吸附在下盖状态。又示例的,当处理器判断矢量和满足第四矢量门限(例如矢量和《0.5a mt)时,判断耳机本体700a处于出盒状态。
[0130]
可以理解,上述仿真过程中,是以矢量和(即矢量的绝对值)来设定矢量门限。当然,在其他实施例中,并不局限于矢量和,即亦可根据其他参数,例如矢量方向、三轴投影、三面投影、特定平面投影等来设定门限,在此不作限定。可以理解的是,矢量门限差异越大,用于检测的三轴霍尔传感器的精度越高,则系统稳定性、产品一致性越强。
[0131]
综上,下面以实施例1为例,对磁传感器501与处理器502配合,实现耳机本体500a的各种位置/状态信息(例如三种位置/状态信息)的检测原理进行说明。在实施例1中,磁传感器501可以用于:检测耳机本体500a周围的磁场矢量。处理器502可以用于:响应于磁传感器501传输的磁场矢量,并将磁场矢量与预设的矢量门限进行比较,进而确定耳机本体500a的状态。
[0132]
基于前述图2-图4、图5a-图5f、图6a-图6e、图7所示的一些实施例,下面介绍本技术提供的无线耳机的位置/状态信息检测方法。
[0133]
参见图8,图8示出了本技术实施例提供的一种无线耳机的位置/状态信息检测方法的流程示意图。该方法可以应用于图2-图3,图5a-图5f,图6a-图6e所示的无线耳机(例如,无线耳机的耳机本体500a)。示例的,该耳机本体500a可以包括:磁传感器501和处理器502。当然,耳机本体500a还可以包括其他的器件。例如,该耳机本体500a可以是图3所示的耳机本体300。如图8所示,该方法可以包括:
[0134]
s801,耳机本体检测耳机本体周围的磁场矢量。
[0135]
示例的,参考实施例1,可以由耳机本体500a中的磁传感器501检测耳机本体500a周围的磁场矢量。又示例的,参考实施例2,可以由耳机本体700a中的磁传感器检测耳机本体周围的磁场矢量。
[0136]
s802,耳机本体根据检测到的磁场矢量和预设的矢量门限,确定耳机本体的位置/状态信息。
[0137]
示例的,可以由耳机本体中的磁传感器执行s801,由耳机本体中的处理器执行s802。
[0138]
可以理解,本技术实施例中,磁传感器和处理器配合实现耳机本体的位置/状态信息检测的具体方法,可以参考上述实施例1,实施例2及图7的详细介绍,在此不再赘述。
[0139]
可以理解的是,上述实施例中所示的盒体均为耳机盒。当然,本技术实施例中,并不对盒体的类型进行限定。示例的,盒体还可以为其他可用于收纳无线耳机的机构,如此,盒体与无线耳机可构成各种类型的融合类产品。
[0140]
其中,融合类产品是指无线耳机可以使用在多种随身tws耳机、健康运动易收纳手表、有声眼镜(速拍、录像、有声外放、虚拟3d等)、靓丽智能项链,手镯,手环,戒指,充电宝,适配器,手提包,行李箱,头戴装置,领带,手机,饮水杯,鼠标,笔,记事本,球拍,球,自行车
等形态下。例如,无线耳机与手表可构成蓝牙通话手表,无线耳机与眼镜构成有声眼镜,无线耳机与项链构成智能项链等等。其中,上述产品均包括有用于收纳无线耳机的盒体或承载体(以下称为承载体)。
[0141]
可以理解,对于多融合体的融合产品,其可进行承载体的形态识别。另外,本技术实施例通过设置三轴霍尔传感器,可通过x、y、z磁场大小读取功能,可满足多种产品的状态识别(即第二层级的识别)。也就是说,该融合产品可根据不同形态的识别结果,产生第二层级的识别。例如,当识别到承载体为项链,蓝牙配对后切换为智能项链功能,第二层级识别两种状态(在链、出链)。又如,当识别到承载体为耳机盒,蓝牙连接配对后,切换为tws耳机功能,第二层级识别三种状态(耳机出盒、耳机入盒合盖、耳机入盒开盖)。又如,当识别到承载体为手表,蓝牙连接配对后,切换为智能收纳手表功能,第二层级识别四种状态(耳机出盒、耳机入盒关盖、耳机入盒置于上盖、耳机入盒置于下盖)。当然,上述手表等也可能存在其他不同状态组合,在此不作限定。可以理解,上述承载体的形态识别还可以是交变磁场识别,例如,当承载体磁场感应到设备匹配时,承载体通过电信号调制磁场矢量,完成磁矢量通信,做到设备id识别。
[0142]
综上,本技术至少具有以下有益效果:
[0143]
(1)本技术中的多位置/状态信息检测方法简单易行,其使用至少一个磁铁、至少一个磁传感器(例如三轴霍尔传感器),通过磁传感器读取x,y,z三轴方向上磁场大小的功能,不仅可以应用于当前的tws耳机中至少三种位置/状态信息(例如耳机出盒、耳机入盒合盖、耳机入盒开盖)的检测,且对多种状态的扩展同样具备可量产性,做到多种状态检测于一身,可扩展性强。另外,结合当前电、无线通信机制交互(如开关机、电量、双耳交互、左右耳识别等),可以实现更加可靠更加多样化的状态检测。
[0144]
(2)本技术通过将三轴霍尔传感器设置于耳机本体的中心轴位置,如此可做到无需区分耳机摆放方向,无需区分左右耳便能准确检测多种位置/状态信息,解决了现有技术中仅能单一方向检测,且仅能检测耳机出入盒的弊端,实现360度旋转无死角检测。再者,本技术通过设置所述三轴霍尔传感器,其抗干扰能力强,可以允许外界环境有更恶劣的磁场环境,而产品可以使用磁场环境获得更好的用户体验。
[0145]
(3)本技术中的无线耳机可适应于tws耳机形态,同时对耳机和手表,耳机和项链,耳机盒眼镜等业界已有和未实现的融合类产品均适用。另外,针对不同形态的产品,还可以实现多层级磁环境检测。再者,通过盒体的磁体配合,可以通过优化磁体的充磁方向(例如使得两个磁体的磁体方向相同),使得检测更加准确。
[0146]
(4)本技术中的无线耳机亦可适用于特殊形态的tws耳机或其他融合类产品,例如,可适用于圆柱形、类圆柱形(子弹头)等可以在收纳腔内自由转动的耳机。另外,通过盒体的磁体配合,可以通过优化磁体的充磁方向,使得检测更加准确。
[0147]
应理解,本技术的各实施方式可以任意进行组合,例如可以单独使用,也可以相互结合使用,以实现不同的技术效果,对此不作限定。
[0148]
以上内容,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何在本技术揭露的技术范围内的变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以所述权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1