一种针对PAM4互连系统信道环境损伤影响的检测方法

文档序号:29046672发布日期:2022-02-25 22:16阅读:154来源:国知局
一种针对PAM4互连系统信道环境损伤影响的检测方法
一种针对pam4互连系统信道环境损伤影响的检测方法
技术领域
1.本发明涉及通信电路系统领域,具体是一种针对pam4互连系统信道环境损伤影响的检测方法。


背景技术:

2.随着信息化时代对流量需求的急速增长,人类社会亟待更高数据传输速率的通信系统,在这一发展趋势下,采用nrz作为数字传输信号的传统方式面临的挑战日益增多。pam4信号可以在不增加信道带宽的同时克服物理信道固有的较差的频率传输特性,是当代高速信号互连的热门信号传输技术之一,也是最被看好的高阶调制方式。综上用pam4信号代替nrz信号是提高数据传输速率的有效措施,故oif、cei和ieee 802.3以太网等新兴数据中心标准正在朝着pam4这种多电平信令制式迁移:例如因器件带宽的限制,第四代400gbps的dci就已经开始采用pam4格式。
3.目前,基于pam4信号的通信互连系统的设计技术已趋于成熟,但是大多数设计均是针对于pam4信号的发射端、接收端以及调制解调技术等开展研究的。而信道作为互连系统中最为关键的组成部分之一,却很少有研究者会定量分析信道遭受各类环境损伤后对pam4系统整体性能的影响。上述pam4信号高速数据传输系统设计中存在的问题,便是本方法诞生的初衷和目标,为此本发明提出了一种针对pam4互连系统信道环境损伤影响的检测方法。


技术实现要素:

4.为解决上述现有技术中存在的不足之处,本发明提供一种针对pam4互连系统信道环境损伤影响的检测方法,该方法通过实验测试并结合电路仿真分析,对信道遭遇各类环境损伤后对互连系统性能造成的影响进行了准确的分析,本发明采用的技术方案如下:
5.准备初始的信道样品,并获取在不同种类和不同程度的环境应力下遭受损伤的信道退化试样,之后使用矢网测试各个样品的s参数以及群时延特性。
6.在不考虑信源的内部电路、发射端的预加重去加重技术以及接收端的均衡技术等条件下,以pam4作为传输信号,分别建立直接调制解调和采用16qam调制解调技术的高速互连系统的等效电路模型,同时结合信道和pam4信号的理论特性设置电路模型接收端必需的低通滤波器的相关性能,并根据信道的实验测试数据对输出信号进行必要的补偿。其中:
7.根据信道实测数据所建立的采用直接调制解调技术的高速互连系统的等效电路模型,在经过合理的推导分析后,使用电路分析软件可将其原理框图简化为如下结构:pam4信源、上下变频混频器、信道、两个正弦本振(lo)信号源、低通滤波器(lpf)和接收端。上述结构中关于接收端lpf的参数设置,是以pam4信号的频谱或功率谱来判断的;而应用于上变频混频器的本振信号为c(t)=cos(ω
lo
t),考虑到pam4的直接调制解调技术以及信号补偿的相关原理,应用于下变频混频器的本振信号应当与上混频载波信号存有相位偏移,其可表示为c

(t)=cos(ω
lo
t+φc)。根据信号完整性的相关理论,在时域中可以将理想的pam4
信号视为两个互相独立且不相关的nrz信号之和,而从频域的角度出发,每一个单独的nrz信号都可以分解成无穷多个不同频率的正弦信号的叠加,又根据傅里叶变换的线性性质,pam4信号的频谱同样可以等效为两个nrz信号的频谱之和(各个频率分量在频域相加),所以从时域、频域的角度来看,这样的叠加处理均无不妥。需要注意的是所叠加的两个nrz信号码元速率相同、电平幅度不一,并且此二者时域相加生成的pam4信号虽然波特率与nrz信号相同,但是pam4的每个码元包含2bit的信息。综上,为了定量分析pam4信号的补偿机制,从组成pam4信号的任一nrz信号的众多正弦信号分量中任选一个,在对其幅值和相位进行简化处理后该频率分量可以表示为i(t)=cos(ωit);根据傅里叶变换的相关性质可知,该正弦波信号也是pam4信号的一个频率分量。由于本发明主要针对pam4互连系统中信道对其性能的影响,并在电路模型中对其它可能影响信号传播特性的结构进行了理想化处理,故在信号补偿机制的研究过程中只需考虑信道的影响,同时又根据信道的高频测试特性可知此处的信号补偿机制主要在于相位补偿,结合电磁场的相关理论以及数学推导中的积化和差、辅助角公式等,不难推导出应用于下变频混频器的本振信号与上混频载波信号之间的相移与信道的相关性能参数存在如下的数学关系
8.k=0,
±
1,
±2…
9.在上式中,φ
up
和φ
down
代表信道在ω
lo
+ωi和ω
lo-ωi频点处的相位响应,φc即为上述pam4的一个正弦波频率分量在经过此互连系统后所需要的相位补偿,亦即整个pam4信号在经过此互连系统时需要的相位补偿。
10.而基于16qam调制解调技术的互连系统主要包括:两个pam4信号源、两个上变频混频器、信道、两个下变频混频器、四个正弦本振信号源、两个低通滤波器和接收端等,其中经过理论推导,两个下变频混频器的lo信号对应各自上变频混频器lo信号需要的相位偏移均为
11.k=0,
±
1,
±2…
12.最后依照上述推导内容在实验搭建的电路系统中引入移相器来实现各个本振信号的相移,并测试系统的相关性能,与仿真结果对比后,定量分析总结影响pam4互连系统性能的信道参数及其阈值。
13.本发明提出的针对pam4互连系统信道环境损伤影响的检测方法与现有技术相比,具有以下优点:
14.(1)本发明综合考虑了多种条件下不同退化程度的信道环境损伤。
15.(2)本发明利用pam4信号相对易受干扰和对噪声敏感的特性,针对信道环境损伤对系统性能的影响设计了两种pam4互连系统,一方面是为了提升系统的传输速率,另一方面是利用16qam信号的特性进一步增强互连系统对信道性能变化的灵敏度;同时所设计的电路不包含任何的信道均衡结构等,不仅使模型简单化、实用化,也让模型与实际电路更加贴合,并且更是降低了定量分析影响pam4互连系统性能的信道参数阈值的研究难度;而从另一个角度来看,这样的电路系统也更容易检测出信道是否退化以及退化程度。
附图说明
16.通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
17.图1是本发明一个实施例的具体流程图。
18.图2是本发明直接调制解调的pam4互连系统的原理框图。
19.图3是本发明基于16qam调制解调技术互连系统的原理框图。
20.图4是本发明设计的16qam互连系统的两路输出信号的眼图示例,其中(a)图是i路输出信号的眼图,(b)图是q路输出信号的眼图。
21.图5具体给出了图4(a)中pam4信号眼图对应的两种误码率浴缸曲线。
具体实施方式
22.下面通过附图和实施例,对本发明进行详细阐述。
23.图1为本发明一个实施例的具体流程,主要包括以下步骤。
24.步骤101:搭建实验平台,利用矢网测试在不同种类和不同程度的环境应力下遭受损伤的各个信道退化试样以及原始信道的s参数和群时延特性。
25.步骤102:分别以图2和图3所示原理框图为基准,建立传输pam4信号的直接调制解调以及采用16qam调制解调技术的高速互连系统的等效电路模型;其中根据数学推导结合电磁场理论,对于同一信道样品,图2中下变频的本振信号c

(t)相对于上变频本振信号c(t)存在相移φc,而图3中下变频的两个本振信号也拥有相同的相位偏移量φc,结合信道的群时延测试特性,φc可以近似等于信道在ωc频点处的相位响应。图2、3是本发明经过简化实用处理后的系统原理框图,图3中的设计更是去除了传统16qam调制解调中串并变换、载波恢复等复杂的电路结构,这样的处理可以更快捷的分析信道损伤对系统的影响。
26.步骤103:将测量得到的每个信道的数据分别导入电路模型中,仿真高速互连系统的输入输出波形、眼图及其相关参数、误码率浴缸曲线等必要结果。
27.步骤104:分别根据图2、图3的原理框图搭建实验电路系统并进行实际测试,关于仿真电路中本振信号的相移问题,可以通过添加移相器来实现。
28.步骤105:结合测试结果和仿真数据,定量分析研究影响pam4互连系统性能的信道参数及其阈值。图4和图5给出了16qam互连系统输出数据中最为直观、全面、有效的结果分析示例,根据这些结果可以最为快捷准确地判断出各个信道样品对系统的影响程度。
29.应当指出的是,以上所述仅为本发明的一个实施例而已,并不用以限制本发明;在不脱离本发明构思的前提下,凡在本发明的精神和原则之内,任何人员所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1