多换能器芯片超声装置的制作方法

文档序号:35286792发布日期:2023-09-01 07:59阅读:88来源:国知局
多换能器芯片超声装置的制作方法
多换能器芯片超声装置
1.背景
2.本公开涉及用于对人体或动物身体的体内组织、骨骼、血流或器官或其他感兴趣的对象(例如玩具或运输包装)成像并显示图像的非侵入式成像系统和/或探头。这种系统和/或探头通常需要将信号传输到身体中,并从被成像的身体部位接收发射的或反射的信号。典型地,在成像系统中使用的换能器被称为收发器,并且一些收发器基于光声和/或超声波效应。通常,收发器被用于成像,但不一定限于成像。例如,举几个示例,收发器可以被用于医学成像、管道中的流量测量、扬声器和麦克风阵列、碎石术、用于治疗的局部组织加热或用于外科手术的高强度聚焦超声(hifu)等。
3.传统的超声换能器通常由块体压电(pzt)材料制成,并且通常需要非常高的电压脉冲来产生传输信号,通常为100v或更高。该高电压可能导致高功率耗散,因为换能器中的功耗/耗散与驱动电压的平方成比例。探头表面的温度通常也有限制,且这限制了探头可消耗多少功率,因为所消耗的功率与探头所产生的热量成比例。在传统系统中,热量的产生使得一些探头的冷却布置成为必要,这增加了探头的制造成本和重量。通常,传统的探头的重量也是一个问题,因为已知大量使用这些探头的超声医师患有肌肉损伤。
4.用于医学成像的传统的超声探头通常使用pzt材料或其他压电陶瓷和聚合物复合材料。探头通常容纳换能器和一些其他电子器件,这些电子器件具有使图像被显示在显示单元上的装置。为了制造用于换能器的传统块体pzt元件,可以简单地将厚压电材料板切割成大的矩形pzt元件。这些矩形pzt元件的构建非常昂贵,因为制造工艺涉及精确切割矩形厚pzt或陶瓷材料和以精确间隔安装在基板上。此外,换能器的阻抗远高于换能器的发射/接收电子器件的阻抗。
5.在传统系统中,换能器的发射/接收电子器件通常位于远离探头的地方,需要在换能器和电子器件之间使用微型同轴电缆。一般来说,电缆需要有精确的长度用于延迟和阻抗匹配,并且通常需要额外的阻抗匹配网络来通过电缆将换能器有效地连接到电子器件。
6.微加工技术的进步使得传感器和致动器(例如电容性微加工超声换能器(cmut)和压电微加工超声换能器(pmut))可以有效地被形成在(硅)基板上。与具有块体压电材料的传统换能器相比,mut体积更小,且制造成本更低,同时它们在电子器件和换能器之间具有更简单和更高性能的互连,在操作频率方面提供更大的灵活性,并具有产生更高质量图像的潜力。
7.尽管这些换能器的基本概念在20世纪90年代早期已经被公开,但是这些概念的商业实施遇到了许多挑战。例如,传统的cmut传感器特别容易出现故障或性能漂移,这是由于高电压操作期间的电荷积累、难以在较低频率下产生足够高的声压以及固有的非线性。传统的pmut已经成为一种有希望的替代方案,但是存在与发射和接收效率低、仍然需要相对高的操作电压并且具有有限的带宽相关的问题。因此,存在对具有增强的效率、可以在较低电压下操作并表现出高带宽的改进的mut的需求。
8.公开概述
9.本公开提供了一种超声装置,该超声装置可以包括互连成阵列的多个换能器芯
片。换能器芯片可以包括与专用集成电路(asic)通信的微机电系统(mems)部件。asic芯片可以耦合到所述mems部件的许多超声元件,并且通过引线键合组件或硅通孔(tsv)封装件与控制芯片电互连。在一些实施例中,换能器芯片可以被组装在阵列上,且间隔距离可以小于操作超声波长,这可导致成像孔径的重叠,这可以导致成像面积和横向分辨率的增加。
10.在一个方面,本公开提供了一种用于各种类型的成像的超声装置。在一些实施例中,该超声装置可以包括电路基板和耦合到该电路基板的多个换能器芯片。在一些实施例中,该电路基板可以包括金属基板,例如印刷电路板(pcb)。在一些实施例中,每个换能器芯片可以包括微机电系统(mems)部件、专用集成电路(asic)和控制单元,该微机电系统(mems)部件可以包括彼此紧密堆积在一起的多个超声元件,该专用集成电路可以可操作地耦合到所述mems部件的多个超声元件,该控制单元可以电耦合到多个换能器芯片的每个asic以对多个换能器芯片的每个asic进行控制。在一些实施例中,多个换能器芯片中的至少两个换能器芯片可以被放置在电路基板上,且间隔距离可以小于所述至少两个换能器芯片的mems部件的超声元件的操作波长。
11.在另一方面,一种超声装置包括电路基板、以及耦合到该电路基板的多个换能器芯片。在一些情况下,每个换能器芯片包括微机电系统(mems)部件和专用集成电路(asic),该微机电系统部件包括彼此紧密堆积在一起的多个超声元件,该专用集成电路可操作地耦合到所述mems部件的多个超声元件。在一些实施例中,该超声装置包括电耦合到多个换能器芯片的每个asic以对多个换能器芯片的每个asic进行控制的控制单元,其中,多个换能器芯片中的至少两个换能器芯片被放置在电路基板上且间隔距离小于所述至少两个换能器芯片的mems部件的超声元件的操作波长。在一些实施例中,该超声装置包括电路基板,该电路基板包括标准印刷电路板(pcb)或柔性印刷电路板(柔性板)。在一些实施例中,所述柔性板具有固定的曲率。在一些实施例中,所述柔性板具有变化的以实时符合进行成像的目标表面的曲率。
12.在一些实施例中,换能器芯片具有特定的操作波长。在一些实施例中,任何相邻换能器芯片之间的间隔距离针对相邻换能器芯片的特定操作波长进行优化。在一些实施例中,所述至少两个换能器芯片之间的间隔距离为20μm或更小。在一些实施例中,至少两个换能器芯片以共面方式被放置在电路基板上。在一些实施例中,至少两个换能器芯片以弯曲的方式被放置在电路基板上。在一些实施例中,该多个换能器芯片中的第一换能器芯片具有独立于该多个换能器芯片中的随后的第二换能器芯片的操作频率的一个或更多个操作频率。在一些实施例中,任一换能器芯片中的相邻超声元件之间的间隔距离针对该换能器芯片的特定操作波长进行优化。在一些实施例中,超声装置可以包括耦合到多个换能器芯片的一个或更多个声透镜。在一些实施例中,一个或更多个声透镜包括耦合到第一换能器芯片的第一声透镜和耦合到第二换能器芯片的第二声透镜,并且其中,第一声透镜和第二声透镜具有曲率。在一些实施例中,每个换能器芯片通过三维互连机构耦合到电路基板。在一些实施例中,三维互连机构包括引线键合。
13.在一些实施例中,三维互连机构包括穿过所述换能器芯片中asic的整个厚度的硅通孔(tsv)。在一些实施例中,控制单元具有将所述控制单元耦合到电路基板的三维互连机构。在一些实施例中,控制单元耦合到电路基板。在一些实施例中,控制单元耦合到与电路基板分离的pcb。在一些实施例中,所述控制单元利用时序控制来协调多个换能器芯片的独
立和同步的操作。在一些实施例中,所述超声装置组件包括使用tsv的二维配置。在一些实施例中,通过所述tsv实现在mems表面上方至多200μm的透镜高度。在一些实施例中,所述tsv具有小于10ph的电感水平。在一些实施例中,所述tsv是tsv-last组件。在一些实施例中,所述tsv-last组件具有至少35μm的直径。在一些实施例中,所述tsv-last组件具有比直径大至少20μm的焊盘尺寸(pad size)。在一些实施例中,所述tsv-last组件具有比焊盘尺寸大至少15μm的间距。在一些实施例中,所述tsv-last组件所具有的深度与直径的比至多为3:1。在一些实施例中,所述tsv是tsv-mid组件。在一些实施例中,所述tsv-mid组件具有至少2μm的直径。在一些实施例中,所述tsv-mid组件具有比直径大至少10μm的焊盘尺寸。在一些实施例中,所述tsv-mid组件具有比焊盘尺寸大至少20μm的间距。在一些实施例中,所述tsv-mid组件所具有的深度与直径的比至多为10:1。在一些实施例中,一个或更多个mems部件包括压电微加工超声换能器(pmut)。在一些实施例中,一个或更多个mems部件包括电容性微加工超声换能器(cmut)。在一些实施例中,所述至少两个换能器芯片的mems部件的操作波长在0.1mm到3mm的范围内。
14.从以下详细描述,本公开的另外的方面和优势对本领域技术人员而言将变得明显,详细描述中仅示出和描述了本公开的说明性实施例。如将会意识到的,本公开能够具有其他和不同的实施例,并且其若干细节能够在多种明显的方面进行修改,所有这些都不偏离本公开。因此,附图和描述被认为是本质上是说明性的而不是限制性的。
15.通过引用并入
16.本说明书中提及的所有出版物、专利和专利申请通过引用并入本文,其程度如同每一个单独的出版物、专利或专利申请被具体和单独地指明通过引用并入。如果通过引用并入的出版物和专利或专利申请与本说明书中包含的公开内容相矛盾,本说明书旨在取代和/或优先于任何此类矛盾材料。
17.附图简述
18.本公开的新颖的特征特别地在所附权利要求中进行阐述。通过参考以下阐述其中利用本公开的原理的说明性实施例的详细描述,以及附图(在本文也称为“图(figure)”和“图(fig.)”),将获得对本公开的特征和优点的更好理解,其中:
19.图1示出了根据本公开的实施例的成像系统。
20.图2示出了根据本公开的实施例的示例性超声成像器的框图。
21.图3a1示出了根据本公开的实施例的弯曲布置的示例性换能器芯片的侧视图。
22.图3a2示出了根据本公开的实施例的平面布置的示例性换能器芯片的侧视图。
23.图3b示出了根据本公开的实施例的示例性mems管芯的简化俯视图。
24.图4示出了根据本公开的实施例的超声元件的示意性横截面图。
25.图5a示出了根据本公开的实施例的cmos晶片上的倒装组装的超声元件管芯的俯视图。
26.图5b示出了根据本公开的实施例的在图5中的倒装组件沿方向5-5截取的横截面图。
27.图6示出了根据本公开的实施例的包括mems管芯和cmos管芯的单一倒装组件的横截面图。
28.图7示出了根据本公开的实施例的mems-cmos组件的横截面图。
29.图8示出了根据本公开的实施例的mems-cmos组件的横截面图。
30.图9示出了根据本公开的实施例的mems-cmos组件的横截面图。
31.图10示出了根据本公开的实施例的mems-cmos组件的示例性示意图。
32.图11示出了根据本公开的实施例的使用tsv的换能器芯片阵列组件的俯视图。
33.图12示出了根据本公开的实施例的引线键合的换能器芯片阵列组件的俯视图。
34.图13示出了根据本公开的实施例的在分离的印刷电路板(pcb)上具有控制芯片的换能器芯片阵列组件的俯视图。
35.图14示出了根据本公开的实施例的在相邻超声元件之间具有可变间距的换能器芯片阵列组件的俯视图。
36.详细描述
37.虽然本文已经显示和描述了本公开的多个实施例,但对于本领域技术人员将明显的是,这些实施例仅通过示例的方式被提供。在不偏离本发明的情况下,本领域技术人员可以想到许多变化、改变和替换。应当理解的是,可以采用本文描述的本公开的实施例的各种替代方案。
38.每当术语“至少”、“大于”或“大于或等于”在一系列两个或更多个数值中的第一个数值之前时,术语“至少”、“大于”或“大于或等于”适用于该系列数值中的每个数值。例如,大于或等于1、2、或3等同于大于或等于1、大于或等于2、或大于或等于3。
39.每当术语“不超过”、“小于”或“小于或等于”在一系列两个或更多个数值中的第一个数值之前时,术语“不超过”、“小于”或“小于或等于”适用于该系列数值中的每个数值。例如,小于或等于3、2、或1等于小于或等同于3、小于或等于2、或小于或等于1。
40.本文的某些发明实施例设想了数值范围。当范围存在时,范围包括范围端点。此外,该范围内的每个子范围和值就像是明确写出来的那样。术语“大约”或“近似”可以表示在特定值的可接受误差范围内,这将部分取决于如何测量或确定该值,例如测量系统的限制。例如,根据本领域的实践,“大约”可以意味着在1个或1个以上的标准偏差内。可替代地,“大约”可以表示给定值的最大20%、最大10%、最大5%、或最大1%的范围。除非另有说明,当在本技术和权利要求书中描述特定值时,应该假定术语“大约”指的是特定值的可接受的误差范围内。
41.在下面的描述中,出于解释的目的,阐述了具体细节,以便提供对本公开的理解。然而,对于本领域技术人员来说,将明显的是,本公开可以在没有这些细节的情况下实施。此外,本领域技术人员将认识到,下文描述的本公开的实施例可以以多种方式实现,例如过程、设备、系统、装置或在有形的计算机可读介质上的方法。
42.本领域技术人员应认识到:(1)可以可选地执行某些制造步骤;(2)步骤可不限于本文阐述的特定顺序;以及(3)某些步骤可以以不同的顺序被执行,包括同时被执行的那些步骤。
43.图中所示的元件/部件是本公开的示例性实施例的说明,并且旨在避免模糊本公开。说明书中对“一个实施例”、“优选实施例”、“实施例”或“多个实施例”的提及意味着结合该实施例描述的特定特征、结构、特性或功能被包括在本公开的至少一个实施例中,并且可以在一个以上的实施例中。在说明书的不同地方出现的短语“在一个实施例中”、“在实施例中”或“在多个实施例中”不一定都是指相同的一个或更多个实施例。术语“包括
(include)”、“包括(including)”、“包括(comprise)”和“包括(comprising)”应被理解为开放术语,并且随附的任何列表都是示例,并不意味着仅限于所列项目。本文使用的任何标题仅用于组织目的,且不应被用于限制说明书或权利要求的范围。此外,在说明书的不同地方对某些术语的使用是为了说明,且不应被解释为限制。
44.在实施例中,pmut/cmut(超声元件)和换能器组件/封装可用于对人/动物身体的体内器官成像以及其中使用超声波束加热组织以进行愈合或聚焦高功率超声波束以进行显微外科手术的其他治疗应用。在实施例中,超声元件和换能器组件/封装也可用于超声层析成像应用。
45.在实施例中,可以通过应用现代半导体和晶片加工技术来降低超声元件的制造成本。在实施例中,薄膜压电层可以旋涂或溅射到半导体晶片上,且然后被图案化以产生均具有两个或更多个电极的压电换能器。在实施例中,每个超声元件可以被设计成具有在特定频率范围发射或接收信号的能力。在下文中,术语压电元件、超声元件、压电传感器、压电换能器、压电收发器和单位像素可互换地使用。
46.图1示出了根据本公开的实施例的成像系统100的示意图。如图所示,系统100可以包括:成像装置(或简称为成像器)120,该成像装置在发射模式/过程中产生压力波122并向体内器官112(例如心脏、肺或肾脏)发射压力波122,并接收从体内器官反射的压力波;以及计算装置(或简称为装置)102,该计算装置通过通信信道130和/或线缆131向成像器发送信号和接收信号。在实施例中,体内器官112可以向成像器120反射压力波122的一部分,并且成像器120可以在接收模式/过程中捕获反射的压力波并产生电信号。成像器120可以将电信号传送到装置102,并且装置102可以使用电信号在显示器/屏幕104上显示器官或目标的图像。在一些实施例中,成像器120可以封装装置102,并且成像器120可以在内部将电信号传送到装置102,并且装置102可以使用电信号在显示器/屏幕104上显示器官或目标的图像
47.在实施例中,成像器120可用于执行一维成像(也称为a扫描)、二维成像(也称为b扫描)、三维成像(有时也称为c扫描)、四维成像和多普勒成像。此外,成像器可以在程序控制下切换到各种成像模式。在一些实施例中,成像器120可以是手持的或者具有另外的形状因子,例如传感器贴片。
48.在实施例中,成像器120也可以被用于获取动物的体内器官的图像。成像器120还可以被用于确定动脉和静脉中血流的方向和速度(如在多普勒模式成像中),并且还测量组织硬度。在实施例中,压力波122可以是声波,其可以穿过人/动物身体并被体内器官、组织或动脉和静脉反射。
49.在实施例中,成像器120可以是便携式装置,并且通过通信信道与装置102无线130(使用协议,例如802.11协议)传送信号。在实施例中,装置102可以是移动装置(例如蜂窝电话或ipad)或者是可以向用户显示图像的固定计算装置。
50.在实施例中,可以使用一个以上的成像器来显影目标器官的图像。例如,第一成像器可以向目标器官发送压力波,而第二成像器可以接收从目标器官反射的压力波,并响应于接收的波产生(develop)电荷。
51.图2示出了根据本公开的实施例的示例性成像器120的示意图。在实施例中,成像器120可以与成像器120相同。注意,成像器120可以具有比图2中所示的部件更多或更少的部件。
52.在实施例中,成像器120可以是超声成像器。如图2所示,成像器201可以包括:用于发射和接收压力波的换能器芯片210;涂层212,该涂层作为用于设置压力波的传播方向和/或聚焦压力波的透镜来操作,并且还用作换能器芯片和人体110之间的声阻抗界面;用于控制换能器芯片210并通过凸块耦合到换能器芯片210的控制单元202,例如asic芯片(或简称为asic);用于控制成像器120的部件的现场可编程门阵列(fpga)214;用于处理/调节信号的电路215,例如模拟前端(afe);用于吸收由换能器芯片210产生并朝向电路215传播的波的吸声(acoustic absorber)层203;用于通过一个或更多个端口216与诸如装置102的外部装置传送数据的通信单元208;用于存储数据的存储器218;用于向成像器的部件提供电功率的电池206;以及可选地,用于显示目标器官的图像的显示器217。在一些实施例中,移动装置可以向成像器120供电。
53.在实施例中,装置102可以具有显示器/屏幕。在这种情况下,显示器可以不被包括在成像器120中。在实施例中,成像器120可以通过端口216中的一个端口从装置102接收电功率。在这种情况下,成像器120可以不包括电池206。注意,成像器120的一个或更多个部件可以被组合成一个整体电气元件。同样,成像器120的每个部件可以在一个或更多个电气元件中被实现。
54.在实施例中,用户可以在身体110与涂层212直接接触之前将凝胶涂覆在人体110的皮肤上,从而可以改善涂层212和人体110之间的界面处的阻抗匹配,即,在界面处压力波122的损失减少,并且在界面处朝向成像器120行进的反射波的损失也减少。在实施例中,换能器芯片210可以被安装在(电路)基板上,并且可以被附接到吸声层。该层吸收以相反方向发射的任何超声信号,否则这些信号可能会被反射并干扰图像的质量。
55.如下所述,涂层212可以仅仅是平坦的匹配层,以最大化声信号从换能器到身体的传输,反之亦然。在这种情况下不需要波束聚焦,因为它可以在控制单元202中以电子方式实现。成像器120可以使用反射信号来创建器官112的图像,并且结果可以以各种格式被显示在屏幕上,例如显示有器官112的图像或没有器官112的图像的图表、绘图和统计数据。
56.在实施例中,诸如asic的控制单元202可以与换能器芯片一起被组装为一个单元。在其他实施例中,控制单元202可以位于成像器120的外部,并且经由线缆电耦合到换能器芯片210。在实施例中,成像器120可以包括封闭部件202-215的外壳和用于耗散由部件产生的热能的散热机构。
57.图3a1和图3a2示出了根据本公开的实施例的具有三个换能器芯片210的示例性收发器阵列的示意图。封装件可以在平面布置上,如图3a2所示,或者封装件可以在弯曲布置上,如图3a1所示。封装件可以被组装成在至少两个换能器芯片210之间具有小于操作超声波长的间距,操作超声波长通常在5μm-100μm的范围内,例如5μm、20μm或100μm。共面组件可以被用在平面表面上,如图3a2所示,而如图3a1所示,在弯曲表面上,弯曲组件可以被用于换能器芯片210。共面组件可能要求共面性(coplanarity)(相邻换能器芯片的表面水平的垂直差异)小于操作超声波长,例如15μm。如图3a1所示的弯曲组件可以被用于多种可能的探头结构,例如腕带或贴片。
58.图3b示出了根据本公开的实施例的包括一个或更多个超声元件302的单个换能器芯片210的俯视图。如图所示,换能器芯片210可以包括换能器基板304和被布置在换能器基板304上的一个或更多个超声元件302。在一些实施例中,换能器基板304可以包括金属基
板,例如硅。在一些情况下,换能器芯片210可以被组装成使得至少2个换能器芯片210上的边缘列或行之间的间距等于另一个换能器芯片210上的相应列或行之间的间距的倍数,例如2倍。在一些实施例中,该换能器芯片210结构可以简单地进行图像重建。
59.与使用块体超声元件的传统系统不同,在实施例中,超声元件阵列302可以被形成在晶片上,并且晶片可以被切割以形成多个换能器芯片210。该工艺可降低制造成本,因为可以大批量且低成本地制造换能器芯片210。在实施例中,晶片的直径可以在6-12英寸(150mm-300mm)的范围内,并且许多超声元件阵列可以批量制造。用于控制超声元件阵列302的集成电路可以被形成在asic芯片中,使得超声元件阵列302可以紧密地(例如,如果实现诸如au-au、al-al或cu-cu的金属晶片键合,优选地在1μm-20μm内,或者如果实现基于焊料的键合,优选地在25μm-100μm内)连接到匹配的集成电路。例如,换能器芯片210可以具有1024个超声元件302,并且连接到匹配的asic芯片,该匹配的asic芯片具有用于驱动1024个超声元件302的适当数量的电路。
60.图3b示出了根据本公开的实施例的被包括在换能器芯片210中的示例性mems管芯300的俯视图。如图所示,mems管芯300可以包括换能器基板304和在换能器基板304上以一维阵列或二维阵列布置的一个或更多个超声元件302。
61.与使用块体超声元件的传统系统不同,在实施例中,超声元件302可以被形成在晶片上,并且晶片可以被切割以形成mems管芯300。该工艺可降低制造成本,因为mems管芯300可大批量且低成本地被制造。在实施例中,晶片的直径可以在6-12英寸的范围内,并且可以在每个晶片上批量制造许多超声元件阵列。此外,在实施例中,如下所述,用于控制超声元件302的集成电路可以被形成在cmos晶片/管芯(例如asic芯片)中,使得超声元件302可以非常接近地(优选地在25μm-100μm内)连接到匹配的集成电路。在实施例中,可以使用双极互补金属氧化物半导体(bicmos)或任何其他合适的工艺来代替cmos晶片/管芯。
62.在实施例中,每个超声元件302的投影区域可以具有任何合适的形状,例如正方形、矩形和圆形等。在实施例中,两个或更多个超声元件可以被连接以形成更大的像素元件。在实施例中,超声元件302的二维阵列可以在正交方向上进行布置。在实施例中,为了创建线元件,一列n个超声元件302可以并联电连接。然后,该线元件可以提供对超声信号的发射和接收,类似于由长度是每个元件的约n倍大的连续超声元件所实现的发射和接收。
63.为了模仿传统设计的线元件,给定宽度的超声元件的形状可能需要非常高。例如,传统设计的线元件可以是280μm宽和8000μm高,而厚度可以是10μm-1000μm。然而,在mems管芯300上,有利的是使用多个相同的超声元件302来设计线元件,其中每个元件可以具有其特征中心频率。在实施例中,当多个超声元件302连接在一起时,复合结构(即线元件)可以充当具有包括所有元件像素的中心频率的中心频率的一个线元件。在现代半导体工艺中,这些中心频率彼此匹配良好,并且与线元件的中心频率有非常小的偏差。在一些情况下,每个超声元件302可以具有不同的中心频率。
64.在实施例中,超声元件302具有与超声元件302相关联的一个或更多个悬浮膜(suspended membrane),并且当被暴露于以中心频率的刺激时以该频率振动,并且表现得像谐振器。存在与这些谐振器相关联的选择性,称为q因子。在实施例中,对于超声成像器,q通常可以被设计为低(接近1-3或在其附近),并且通过对像素和在实际使用中施加到像素的负载的设计的组合来实现。在实施例中,可以通过将rtv/聚二甲基硅氧烷(pdms)层或其
他匹配材料层施加到超声元件的顶面上来提供负载,其中负载可以促进发射和接收压力波的换能器表面与被成像的人体部位之间更紧密的阻抗匹配。在实施例中,低q和良好匹配的中心频率可以允许线元件基本上像具有基本上一个中心频率的线成像元件一样工作。
65.在实施例中,例如,每个超声元件302可以彼此中心间隔100μm-250μm。进一步简化,假设它们在形状上是正方形。现在我们可以说,为了模仿传统的线元件,一列超声元件302可以彼此连接。例如,一列24个超声元件302可以创建长度约为6mm的线元件,其中每个元件的宽度为0.25mm。在实施例中,这种连接可以使用金属互连层在晶片级实现,或者使用控制单元202中的电路并联连接。
66.对于传统的块体超声元件,顶部电极和底部电极两端的电压电位范围为100v-200v。对于mut,顶部电极和底部电极两端的电压电位可以是上述电压电位的约1/10,以产生相同的声压。在实施例中,为了进一步降低该电压,超声元件302可以包括按比例缩小的薄压电层,并且压电层可以具有大约1μm或更小的厚度。
67.图4示出了根据本公开的实施例的图3b中的示例性超声元件302沿方向4-4截取的示意性横截面图。如图所示,超声元件302可以被设置在由基板430支撑的膜层434上。在实施例中,空腔432可以被形成在基板430中以限定膜,即基板430和膜434可以由单片体形成。在替代实施例中,膜层434可以通过在基板430上沉积sio2来形成。在实施例中,一个或更多个超声元件302可以被设置在膜上。在替代实施例中,每个超声元件302可以被设置在单独的膜上。
68.在实施例中,超声元件302可以包括压电层410和电连接到信号导体(o)404的第一(或底部)电极(o)402。在实施例中,信号导体(o)404可以通过在膜层434上沉积tio2和金属层来形成。在实施例中,压电层410可以通过溅射技术或通过溶胶-凝胶法(sol gel process)形成。
69.在实施例中,第二电极(x)406可以生长在压电层410上方并电连接到第二导体408。第三电极(t)412也可以生长在压电层410上方,并且邻近第二导体412设置,但是与第二导体(x)408电隔离。在实施例中,第二电极(x)406和第三电极(t)412(或者等效地,两个顶部电极)可以通过在压电层410上沉积一个金属层并图案化金属层来形成。在实施例中,电极402、406和412的投影区域可以具有任何合适的形状,例如正方形、矩形、圆形和椭圆形等。
70.在实施例中,第一电极(o)402可以使用金属、过孔(via)和层间电介质电连接到导体(o)404。在实施例中,第一电极(o)402可以与压电层410直接接触。第三导体(t)414可以沉积或生长在压电层410的相对于第一电极(o)402的另一侧上。关于制造超声元件302的步骤的更多信息可以参见2017年11月29日提交的且标题为“low voltage,low power mems transducer with direct interconnect capability”的发布的序列号为us 11,058,396b2的美国专利,该美国专利的全部内容通过引用并入本文。
71.尽管在图4中仅出于说明的目的示出了单晶超声元件,但在实施例中,可以利用包括多个压电子层和电极的多层超声元件。在实施例中,压电层410可以包括以下材料中的至少一种:pzt、knn、pzt-n、pmn-pt、aln、sc—aln、zno、pvdf和linio3。
72.注意,mems管芯300的超声元件可以包括其他合适数量的顶部电极。例如,超声元件可以仅包括一个顶部电极(例如x电极)。在另一示例中,超声元件可包括多于两个顶部电
极。关于顶部电极的数量和与顶部电极的电连接的更多信息可以参见发布的序列号为11,058,396b2的美国专利。
73.注意,图4是示意图,且因此,未示出超声元件的详细结构。例如,电焊盘可以被设置在导体(x)408的一端和电极(x)406之间。而且,mems管芯300可以包括具有与超声元件302不同的结构的超声元件。例如,mems管芯300中的每个超声元件可以仅具有一个顶部电极。因此,对于本领域的普通技术人员来说应该明显的是,超声元件302是可以被包括在mems管芯300中的若干类型的超声元件中的一种类型。
74.图5a示出了根据本公开的实施例的倒装组件500的俯视图,该倒装组件500包括被安装在cmos晶片502上的多个mems管芯(或mems晶片)504。图5b示出了根据本公开的实施例的倒装组件500沿方向5-5截取的横截面图。如图所示,mems管芯504可以通过金属凸块或柱506被安装在cmos晶片502上。在实施例中,cmos晶片502可以包括用于控制mems管芯504中的超声元件的asic。(术语cmos和asic在本文中可以互换使用。)在实施例中,凸块或柱506之间的间距范围可在1μm-200μm之间,使得能够实现适用于具有大型超声元件阵列的mems管芯的高密度互连。在实施例中,具有大量超声元件的mems管芯504可用于二维成像、三维成像和四维成像。在一些实施例中,mems晶片504可以键合到asic。在一些情况下,mems管芯504可以通过mems凸块506键合到asic管芯。在一些实施例中,mems管芯504可以被制造到asic的部件上。
75.图6示出了根据本公开的实施例的单个倒装组件的横截面图,该单个倒装组件包括被安装在cmos管芯618上的mems管芯610。在实施例中,mems管芯610可以类似于mems管芯504。在实施例中,可以制造具有多个mems管芯的mems晶片并将其切割成单个芯片。类似地,在实施例中,可以制造具有多个asic芯片的cmos晶片并将其切割成单个芯片。然后,如图6所示,mems管芯610可以通过多个凸块或柱616安装在cmos管芯618上。
76.在实施例中,单个mems管芯可以被安装在cmos晶片上。在实施例中,倒装组件可以通过管芯对管芯键合、晶片对管芯键合或晶片对晶片键合来创建。在实施例中,晶片对晶片键合工艺可导致成品率倍增效应,即,集成(组装)管芯成品率可为mems晶片成品率乘以cmos晶片成品率的乘积。在实施例中,已知合格管芯对管芯键合工艺或已知合格管芯在已知合格晶片上的位点键合(site bonding)工艺可消除当mems晶片被键合到cmos晶片时可能存在的成品率倍增效应。
77.图7示出了根据本公开的实施例的mems-cmos组件700的横截面图。如图所示,mems-cmos组件700可以包括:mems管芯702;通过凸块或柱712电耦合到mems管芯的cmos管芯704;以及通过粘合剂层710固定到cmos管芯的封装件706。在实施例中,cmos管芯704可以通过一根或更多根导线708电耦合到封装件706。在实施例中,每根导线708的末端可以通过引线键合技术耦合到cmos管芯704和封装件706。
78.在实施例中,mems管芯702可类似于图3b中的mems管芯300,可以包括超声元件720的阵列,其中每个超声元件可以类似于图4中的超声元件400。在实施例中,每个超声元件720可以包括被形成在基板726上的膜722和包括底部电极、压电层和一个或更多个顶部电极的叠层728。在实施例中,可以通过在基板726中蚀刻空腔来形成膜722,即,可以蚀刻单片体以形成空腔,使得未蚀刻部分成为基板,而经蚀刻部分限定膜。在替代实施例中,膜722可以由不同于基板726的材料形成。在实施例中,mems管芯702可以包括一个或更多个膜722。
79.在实施例中,mems管芯702的多个部分可以被直接附接到凸块712以提供与cmos管芯704的电连接。在实施例中,至少一个金属层可以被沉积在mems管芯的底表面上并被图案化以由此形成电连接(例如导线和/或迹线),其中一些电连接可以与凸块712直接接触以与cmos管芯704电连通。例如,可类似于导体(o)404的导体可以是通过在mems管芯702的底表面上沉积和图案化金属层而形成的电线(或迹线)。
80.如果mems-cmos组件700随意落在坚硬表面上,则该冲击可产生约10000g的冲击,其可能使凸块或柱712断裂。在实施例中,mems管芯702和cmos管芯704之间的空间可以用底部填充(underfill)材料730填充,底部填充材料730可以减少外部应力冲击并保护对冲击应力敏感的部件(例如凸块712)。此外,底部填充材料(层)730可以机械地将mems管芯702固定到cmos管芯704。在实施例中,底部填充材料730可另外具有声学阻尼特性以吸收穿过底部填充材料730的压力波。
81.在实施例中,超声元件720可以通过合适的电导体(例如404、408和414)电耦合到凸块或柱712。在实施例中,电连接可以包括被形成在膜722的底表面上和叠层728上的金属迹线(和过孔)。
82.在实施例中,cmos管芯704可以包括用于感测和驱动超声元件720的电路,使得超声元件可以在发射模式/过程期间产生压力波,并且在接收模式/过程期间产生电荷。在发射模式期间,cmos管芯704中的驱动电路可以经由凸块712向超声元件720发送电脉冲,并且响应于脉冲,超声元件可以在垂直方向上振动膜722以产生压力波730。在接收模式期间,从目标器官反射的压力波可使膜722变形,进而在超声元件720中产生电荷。电荷可以经由凸块712被发送到cmos管芯704中的电路以用于进一步处理。
83.在发射模式期间,由膜722产生的压力波的一部分可以朝着cmos管芯704传播。由于这些压力波可以从cmos管芯704和/或封装件706反射以干扰从目标器官反射的压力波,这些压力波可负面地影响图像质量。在实施例中,粘合剂材料730可以由声学阻尼材料形成,其可以吸收不期望的压力波并消散成热能。
84.在实施例中,封装件706可以通过一根或更多根导线708将电信号连接到cmos管芯704或从cmos管芯704连接电信号。在实施例中,cmos管芯704的asic位点可以稍微大于mems管芯704,以使得能够在asic位点和封装件706之间进行引线键合。
85.如上所述,朝向封装件706传播的压力波可能是不希望的,因为它们可能是从封装件706反射的并干扰从目标器官反射的压力波。在实施例中,粘合剂层710可以由声学阻尼材料形成,使得穿过粘合剂层710的压力波可以被吸收并消散成热能。
86.图8示出了根据本公开的实施例的mems-cmos组件800的横截面图。如图所示,mems-cmos组件800可以包括:mems管芯802;通过凸块或柱812电耦合到mems管芯的cmos管芯804;通过粘合剂层810固定到cmos管芯804的封装件806;以及可以将封装件806电耦合到cmos管芯804的一根或更多根导线808。在实施例中,mems管芯802、cmos管芯804和封装件806可以具有与它们在mems-cmos组件700中的对应物相似的结构和功能。
87.如结合图7所讨论的,膜822可以在发射模式期间产生压力波,并且压力波的一部分可以朝向cmos管芯804传播。为了降低(或去除)这种不希望的压力波的强度,mems-cmos组件800可以包括密封环832,密封环832可以被设置在mems管芯802的周边周围,并且由密封环封闭的空间830可以被保持在真空中或在非常低的压力中,从而减少/阻止压力波通过
空间的传播。例如,空间830可以以预设压力(优选低于大气压)填充惰性气体或空气。
88.在实施例中,覆盖层824可以围绕mems管芯802面向人体的一侧设置。覆盖层824可以用作mems管芯802和人体之间的阻抗匹配层,以增强界面处的声学阻抗匹配,并且还可以用作保护机构,提供抗外部冲击/撞击的保护,并防止mems管芯直接接触人体皮肤,从而提供抗磨损的保护。
89.图9示出了根据本公开的实施例的mems-cmos组件900的横截面图。如图所示,mems-cmos组件900类似于mems组件700,不同之处在于cmos管芯904可以通过硅通孔(tsv)914和凸块或柱或焊盘916电耦合到封装件906。在实施例中,tsv 914可以通过合适的晶片加工技术,例如蚀刻通孔并用导电材料沉积/填充孔,而形成在cmos管芯904中。在实施例中,tsv 914可以是tsv-last结构或tsv-mid结构。tsv-last结构或tsv-mid结构可以具有asic,其中tsv 914位于凸块或柱或焊盘916之下。tsv-last结构可以具有至少35μm的直径和至少tsvlast直径加20μm的焊盘尺寸。tsv-mid结构可以具有至少2μm的直径,并且焊盘尺寸至少为tsv-mid直径加上10μm。在实施例中,tsv间距(pitch)和深度可取决于所使用的tsv结构,例如tsv-mid或tsv-last。多个mems-cmos组件900的二维配置可通过tsv 914实现。在实施例中,可在cmos管芯904或封装件906上形成附加凸块或柱或焊盘916,从而在cmos管芯904和封装件906之间提供电连接。在实施例中,封装件906可以通过tsv 914和凸块或柱或焊盘916将电信号传送到cmos 904。注意,粘合剂层910可以由声学阻尼材料形成,使得压力波可以被吸收并消散成热能。在一些实施例中,mems-cmos组件900还可以使tsv 914将cmos管芯904的一侧上的电极连接到相对侧,连接到asic。
90.注意,与覆盖层824类似的覆盖层可以被设置在mems管芯902周围,如图8所示。此外,应当注意,mems组件900可以包括类似于密封环832的密封环,使得由密封环包围的空间可以被保持在真空中,以防止压力波朝向cmos管芯904传播。此外,在实施例中,mems管芯902和cmos管芯904之间的空间可以用类似于材料730的底部填充材料填充。
91.图10示出了根据本公开的实施例的mems-cmos组件(或简称为组件)1000的示例性示意图。在实施例中,mems管芯1002和cmos管芯(或asic芯片)1004可以分别类似于mems管芯702(802和902)和cmos管芯704(804和904)。在传统系统中,用于驱动压电换能器的电子器件通常位于远离压电换能器的位置,并且使用同轴电缆连接到压电换能器。一般来说,同轴电缆会增加电子器件上的寄生负载,例如额外的电容,并且额外的电容会导致更多的热量和电功率的损失。相反,如图10所示,一个或多个发射驱动器(或等效电路)1012a-1012n(或统称为1012)可以使用低阻抗二维(2d)互连机构(如箭头1020所示)(例如cu柱或焊料凸块1032(其可以类似于凸块712、812或912))或晶片键合或类似方法直接连接到超声元件(或等效像素)1006a-1006n+i(或统称为1006)。在实施例中,在将mems管芯1002集成到cmos管芯1004时,电路1012可以位于垂直距离超声元件1006(或大约)小于100μm的位置。在实施例中,可以不需要用于驱动器电路1012和超声元件1006之间的阻抗匹配的任何传统装置,从而进一步简化组件1000的设计并提高功率效率。电路1012的阻抗可以被设计成匹配超声元件1006的要求。
92.注意,如果超声元件具有两个以上的顶部电极,则每个超声元件可以通过三个以上的凸块耦合到相对应的驱动电路。此外,如下所述,每个超声元件可以通过少于三个凸块耦合到相对应的驱动电路。因此,对于本领域的普通技术人员来说应该明显的是,图10示出
了mems管芯和cmos管芯之间的示例性连接机构。
93.在实施例中,每个超声元件1006可以具有由x、t和o表示的三条引线。来自每个超声元件的引线可以通过凸块1032电连接到位于cmos管芯1004中的相对应一个电路1012。在实施例中,诸如1006n+1-1006n+i的一连串超声元件可以电耦合到一个公共电路1012n。在实施例中,发射驱动器电路1012n可以包括在发射模式期间产生到超声元件的发射信号的一个发射驱动器。在替代实施例中,mems或asic上的连接迹线可以使用例如10μm的厚金属而不是约1μm的典型金属化来制造。
94.对于本领域普通技术人员来说,明显的是,cmos管芯1004可以具有任何合适数量的类似于电路1012n的电路。在实施例中,控制单元1042可以具有在二维像素阵列中水平或垂直地配置超声元件、配置它们的长度并将它们置于发射或接收或极化模式(poling mode)或空闲模式的能力。在实施例中,控制单元1042可以在mems管芯1002通过凸块1032与cmos管芯1004组合之后执行极化过程。在实施例中,在mems管芯1002通过凸块1032与cmos管芯1004组合之后,控制单元1042可以利用时序控制来执行协调或独立操作。关于组件1000的更多信息可以参见2017年11月29日提交的且标题为“configurable ultrasonic imager”的发布的序列号为10,835,209b2的美国专利,该美国专利的全部内容通过引用并入本文。
95.在实施例中,至少一个金属层可以被沉积在mems管芯1002的表面上并被图案化以由此形成电线(或迹线)1034,其中一些电线可以与凸块1032直接接触以与cmos管芯1004电连通。电线1034也可以被用于在超声元件1006之间传送信号。在实施例中,至少一个金属层可以被沉积在cmos管芯1004的表面上并被图案化以由此形成电线(或迹线)1036,其中一些电线可以与凸块1032直接接触以与mems管芯1002电连通。电线1036还可以用于在cmos管芯1004中的电部件之间传送信号。在实施例中,可以在mems管芯和/或cmos管芯上沉积和图案化多个金属层和过孔,以形成多层电线(迹线)。
96.如结合图7-图9所讨论的,在实施例中,mems管芯1002和cmos管芯1004可以单独制造,并通过2d互连技术(例如使用凸块1032的金属互连技术)相互组合。在实施例中,互连技术可以消除晶片与晶片集成的低成品率倍增效应,这降低了部件的成品率。在实施例中,图10中的mems管芯可以具有与图7-图9中的mems管芯相似的结构和功能,并且图10中的cmos管芯可以具有与图7-图9中的mems管芯相似的结构和功能。
97.图11示出了根据本公开的实施例的使用tsv的换能器芯片阵列组件1100的俯视图。在实施例中,mems管芯1150和asic芯片(或cmos管芯)1140可以分别类似于mems管芯702(802和902)和cmos管芯704(804和904)。在实施例中,换能器芯片组件1100可以由控制芯片1110协调。控制芯片1110可用于控制多个换能器芯片1120,以利用时序控制(例如,同步)来进行协调或独立操作。在实施例中,换能器芯片1120可以包括mems管芯1150和asic芯片1140,并且可以与pcb 1130互连。在一些实施例中,pcb 1130可以是刚性电路板。在一些情况下,pcb 1130可以是柔性电路板,实现弯曲的成像区域1130。在实施例中,控制芯片1110可以互连到pcb 1130的正面或背面。
98.图12示出了根据本公开的实施例的引线键合的换能器芯片阵列组件1200的俯视图。在实施例中,mems管芯1250和asic芯片(或cmos管芯)1240可以分别类似于mems管芯702(802和902)和cmos管芯704(804和904)。在实施例中,换能器芯片组件1200可以由控制芯片
1210协调。控制芯片1210可用于控制多个换能器芯片1220,以利用时序控制(例如,同步)来进行协调或独立操作。在实施例中,换能器芯片1220可以包括mems管芯1250和asic芯片1240,并且可以与pcb 1230互连。在实施例中,控制芯片1210可以通过导线互连到pcb 1230的正面或背面。
99.在实施例中,使用tsv互连换能器芯片阵列组件1100可以允许多个换能器芯片1110在任何二维阵列中无缝地彼此相邻地进行组装。在实施例中,与图12中描述的实施例相比,这种无缝连接可以显著增加和改善维度。图12中描述的实施例可能仅能够在一个方向上形成换能器芯片的无缝组装,而图11中描述的实施例可以能够在多个方向上形成换能器芯片的无缝组装。在组装阵列之前,可以对各个换能器芯片阵列进行质量控制,而图12中的实施例可以要求在评估质量之前组装阵列。
100.在实施例中,与图12中描述的实施例(其中引线键合环高度及其与透镜表面的间隙可以设置透镜高度的最小值)相比,使用tsv互连换能器芯片阵列组件1100可以允许更薄的透镜高度,尤其是围绕透镜的边缘的透镜高度,这可以导致若干形式的成像可能需要的更低的衰减和更连续的波长(cw)。在实施例中,与图12中描述的实施例相比,使用tsv互连换能器芯片阵列组件1100可以允许更高的操作频率,因为使用tsv代替引线键合的组件可以导致更低的电感,并因此增加了操作效率。在实施例中,与图12中描述的实施例相比,使用tsv互连换能器芯片阵列组件1100可以通过减少换能器芯片阵列内所需的间距量来实现更大的操作用途。间距的减小可以允许成像孔径重叠,增加单帧相干图像的总成像面积并增加横向分辨率(横向分辨率与有效孔径大小成反比)。在一些实施例中,成像面积和横向分辨率的增加可以允许成像系统被形成为圆柱形探头或具有弯曲的超声成像区域的大贴片。在一些实施例中,具有弯曲的超声成像区域的大贴片可以允许换能器芯片阵列具有固定的或变化的曲率,以实时符合被成像的表面。
101.在一些实施例中,超声装置可以具有耦合到分离的pcb的控制单元。在某些情况下,分离的pcb可能与电路基板分开。在一些实施例中,分离的pcb可以单独容纳控制芯片,或者也可以容纳多个控制芯片,与容纳多个传感器芯片的pcb分离。
102.图13示出了根据本公开的实施例的换能器芯片阵列组件1300的俯视图,该换能器芯片阵列组件1300具有位于分离的印刷电路板(pcb)1340上的控制芯片。在一些实施例中,控制芯片1320可以耦合到分离的pcb 1340。在一些实施例中,mems 1310和asic 1330可以耦合到单独的电路基板1350。电路基板1350可以包括金属基板,例如印刷电路板(pcb)。在一些情况下,分离的pcb 1340和控制芯片1320可以经由互连机构1360连接到mems 1310、asic 1330和电路基板1350。在一些实施例中,分离的pcb 1340可以是刚性结构。在一些情况下,分离的pcb 1340可以是柔性结构。在一些实施例中,电路基板1350可以是刚性结构。在一些情况下,电路基板1350可以是柔性结构。在一些实施例中,互连机构1360可以包括线缆、导线或电可连通材料。
103.在一些实施例中,换能器芯片可以具有特定的操作波长。在一些情况下,相邻换能器芯片之间的间隔距离可以是彼此不同的值。该间隔距离值可针对该间隔距离周围的相邻换能器芯片的特定操作波长进行优化。在一些实施例中,在低频(例如小于2mhz)下,操作波长可以相对较大,例如大于3mm。
104.在一些实施例中,相邻换能器芯片之间的间隔距离和一个换能器芯片内相邻超声
元件之间的间隔距离可以比在高频时大得多。在某些情况下,这可以使换能器芯片阵列和超声元件的组件更容易进行制造。
105.图14示出了根据本公开的实施例的在相邻超声元件1450之间具有可变间距的换能器芯片阵列组件1400的俯视图。在一些实施例中,mems 11410相比mems 2 1420或mems 3 1430可以在相邻超声元件1450之间包括不同的间距。在一些情况下,mems 1 1410和mems 2 1420可以在相邻超声元件1450之间包括相同间距,而mems 3 1430在超声元件1450之间具有不同的间距。在一些实施例中,mems 2 1420和mems 3 1430可以在相邻超声元件1450之间包括相同间距,而mems 1 1410在超声元件1450之间具有不同的间距。在一些实施例中,mems 1 1410、mems 2 1420和mems 3 1430可以与asic 1440互连并耦合到电路基板1460。电路基板1460可以包括金属基板,例如印刷电路板(pcb)。在一些情况下,电路基板1460可以包括刚性pcb。在一些实施例中,电路基板1460可以包括柔性pcb。在一些情况下,相邻超声元件1450之间的可变间距可以允许针对相邻换能器芯片阵列1400的特定操作波长进行优化。在一些实施例中,相邻超声元件1450之间的间隔距离在较低频率下可能比在较高频率下更大。
106.虽然本文已经示出和描述了本公开的优选实施例,但对于本领域技术人员将明显的是,此类实施例仅是通过示例的方式被提供。在不脱离本公开的范围的情况下,本领域技术人员现在将想到许多变化、改变和替换方案。应当理解的是,在实践本公开的发明时,可以采用本文描述的本公开的实施例的各种替代方案。随附权利要求旨在界定本发明的范围,并且从而涵盖在这些权利要求范围内的方法和结构及其等同物。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1