一种高速磁悬浮车地通信系统频率自适应信道改善方法

文档序号:31036568发布日期:2022-08-06 03:17阅读:145来源:国知局
一种高速磁悬浮车地通信系统频率自适应信道改善方法

1.本发明属于通信领域,特别涉及一种由多径效应引起接收端合成信号深衰的频率自适应信道改善技术。


背景技术:

2.高速磁悬浮车地通信系统工作在复杂的环境中时由于无线信道中存在车顶、隧道、建筑等环境干扰物,导致到达接收端的信号包括通过直视路径到达的直射信号以及通过不同传播路径到达的反射信号,如图1所示。由于传播路径不同,直射信号和反射信号在幅度和相位上均有不同的变化,当直达信号传播路径d1与反射信号传播路径d2之间满足d
1-d2=(2n+1)λ/2,此时直达信号和反射信号之间相位相反,若它们之间幅度相近,那么这两种信号在接收端按向量叠加后会在幅度上相互抵消而引起接收到的合成信号深衰。
3.要保证高速磁悬浮车地通信系统在运行过程中的稳定,由多径效应引起的接收信号深衰问题需要解决。目前抗多径衰落的方法主要有以下三种:
4.方法一是自适应均衡技术,均衡是指对信道特性的均衡,即接收端的均衡器按照某种算法对其系数进行调整以产生与信道相反的特性,使得收到的信号各部分的衰落趋于平坦、相位趋于线性,用来抵消信道的多径传播特性引起的深衰。但是此种方法其初始收敛速度比较慢,且对信号的谱特性依赖大。某些改进之后的自适应均衡技术尽管在收敛速度上有一定的提升但计算量太大,因而其过多的占用硬件和软件的资源,使之实际应用受到很大的限制;
5.方法二是空间分集接收技术,空间分集接收是利用信号和信道的性质,将接收到的多径信号分离成独立的多路信号,然后将多径衰落信道分散的能量按照一定的规则合并起来,使接收的有用信号能量最大从而达到抗衰落的目的,但空间分集接收技术使用时占用天线、通道等资源多且分集过程中要求多径信号相互独立;
6.方法三是利用正交频分复用(ofdm)系统来抗多径衰落,是将数据流分解成若干个独立的低速比特流,从频域上说就是分成多个子载波,然后并行发送出去。然而ofdm系统对频率偏移造成的线性相位噪声以及压控振荡器非线性造成的相位噪声比较敏感且此方法需要用到多个子载波,增加了系统复杂程度。
7.目前国内与国际上研究高速磁悬浮车地通信系统抗多径衰落的方法比较少,本发明所提出的高速磁悬浮车地通信系统频率自适应信道改善方法,减小了软硬件资源的开销,降低了高速磁悬浮车地通信系统的复杂度,提高了系统的鲁棒性。在高速磁悬浮车地通信领域具有重要的应用价值和工程意义。


技术实现要素:

8.为解决上述技术问题,本发明提出一种高速磁悬浮车地通信系统频率自适应信道改善方法。
9.本发明采用的技术方案为:一种高速磁悬浮车地通信系统频率自适应信道改善方
δf
d_dpl
,f0+δf
u_dpl
)。
35.步骤s4具体包括以下分步骤:
36.s41、根据当前列车行驶位置对应的接收信号功率,预测下一列车行驶位置处的接收信号功率;
37.s42、根据接收端最小可解调信号功率与预留调节次数,计算深衰判断门限;
38.s43、若步骤s41预测的下一列车行驶位置处的接收信号功率小于步骤s42所计算的深衰判断门限,则判断当前列车行驶位置产生深衰;否则未产生深衰。
39.步骤s41的预测过程为:
40.首先计算出:
41.kn=[pr(dn)-pr(d
n-1
)]/[d
n-d
n-1
];
[0042]
其中,kn表示当前位置dn处接收信号功率pr(dn)与上一位置d
n-1
处接收信号功率pr(d
n-1
)之间的斜率;
[0043]
然后根据kn以及pr(dn)来预测下一位置d
n+1
处的接收信号功率:
[0044][0045]
其中,δdn=d
n-d
n-1

[0046]
步骤s42计算深衰判断门限,具体为:
[0047]
p
r_thr
=p
r_min-m
·kn
·
△dn

[0048]
其中,p
r_min
为地面基站接收端最小可解调信号功率,m为预留调节次数。
[0049]
步骤s5具体为:
[0050]
s51、判断当前调节是否为首次调节,若为首次调节则令发送端载波频率为f1=fc+f
step
,其中fc为当前载波频率,f
step
为设置的频率步进值,其计算规则为f
step
=min{
△fd_dpl
,
△fu_dpl
}/m;否则执行步骤s52;
[0051]
s52、判断调节方向是否有效,若有效,则执行步骤s53,否则执行步骤s54;
[0052]
s53、令发送端载波频率往当前方向继续调节一个步进f
step

[0053]
s54、令发送端载波频率向反方向调节m个f
step
,其中m为本次调节的次数;
[0054]
步骤s52通过比较当前位置处接收端接收信号功率实际值pr和预测值的大小来判断调节方向是否有效,若则认为当前调节方向有效,否则认为当前调节方向无效。
[0055]
步骤s43之后还包括:发送端记录当前载波频率与当前位置的对应关系。
[0056]
还包括:根据整条线路上发送端载波频率与行驶位置的对应关系,将线路上发生深衰的各行驶位置记为深衰位置,当到达这些深衰位置,列车根据上次运行得到的载波频率与行驶位置的关系来改变列车车载基站发送端载波频率。
[0057]
本发明的有益效果:本发明实现的高速磁悬浮车地通信系统频率自适应信道改善方法无需对硬件设备进行改动,仅需要对发送端载波频率进行调节即可完成抗多径深衰的功能,降低了高速磁悬浮车地通信系统的复杂度,提高了系统的鲁棒性。本发明中所设置的频率步进值f
step
具有极大的灵活性,可以在满足通信系统误码率要求的频率调节带宽内灵活设置,这使得通信系统可以适用于多种由多径效应引起深衰的场景,解决了当前高速磁悬浮车地通信系统中多径抑制上存在的系统复杂、过多占用硬件和软件资源等问题;
[0058]
同样,本发明所提出的通信系统频率自适应信道改善方法并不仅仅局限于使用在
高速磁悬浮车地通信系统上,在需要处理由多径效应引起接收端合成信号深衰的环境下都可以运用本发明的方法对通信信道进行改善。
附图说明
[0059]
图1为本发明所涉及的车地通信系统直达信号与反射信号传播示意图。
[0060]
图2为本发明所涉及的解调载波频率区间示意图。
[0061]
图3为本发明所涉及的车地通信系统频率自适应信道改善方法流程图。
[0062]
图4为本发明所涉及的接收端接收的合成信号深衰示意图。
[0063]
图5为本发明所涉及的载波频率调节后接收端合成信号功率改变示意图;
[0064]
其中(a)表示不深衰示意图,(b)表示深衰且的示意图,(c)表示深衰且的示意图。
具体实施方式
[0065]
为便于本领域技术人员理解本发明的技术内容,下面结合附图对本发明内容进一步阐释。
[0066]
在图1所示的情况下,当地面基站与列车车载基站相互通信时,在信道内会形成直达信号和多种不同路径传播的反射信号。
[0067]
以列车车载基站作为发送端,地面基站作为接收端为例。列车车载基站发送端初始载波频率于f0=38ghz与地面基站进行通信,传输码元0经过载波调制后的频率f
00
=38.1ghz,码元1经过载波调制后的频率f
01
=38.2ghz。当列车车载基站发出的信号经过信道传输后,其直达信号与反射信号在地面基站接收端合成时满足相位相反和幅度相近就会相互抵消而产生如图4所示的深衰。
[0068]
在误码率不高于10-6
的要求下,通过测试获取能够正确解调出码元0的载波频率区间为(38.090ghz,38.108ghz),能够正确解调出码元1的载波频率区间为(38.193ghz,38.210ghz),如图2所示。
[0069]
根据测试出来的两个解调载波频率区间可以得到4个载波频率偏移量:
[0070]
δf
0d
=10mhz,
[0071]
δf
1d
=7mhz,
[0072]
δf
0u
=8mhz,
[0073]
δf
1u
=10mhz;
[0074]
根据δfd=min{δf
0d
,δf
1d
}、δfu=min{δf
0u
,δf
1u
}得到载波频率最大偏移量为δfd=7mhz、δfu=8mhz;
[0075]
当高速磁悬浮列车以最大速度v=600km/h及初始载波频率f0=38ghz运行时计算得到的多普勒频偏为f
dpl
=(2f0v)/c≈0.04mhz,因此可以得到载波频率可调最大偏移量为δf
d_dpl
=6.96mhz、δf
u_dpl
=7.96mhz。最后得到的载波频率调节区间为(37993.04mhz,38007.96mhz)。
[0076]
在列车和地面基站建立通信链接后,列车车载基站周期性向地面基站发送业务数据,地面基站通过功率检测模块获取接收信号功率pr(dn),dn为当前列车行驶位置,地面基
站将当前接收信号功率信息pr(dn)与业务数据统一组帧后发送给列车车载基站。
[0077]
在列车运行过程中列车车载基站不断获取地面基站发送过来的业务数据,得到其中的pr(dn)并判断dn位置处是否存在接收信号深衰。
[0078]
如图4所示,当列车运行到d8位置时,计算出k8=[pr(d8)-pr(d7)]/[d
8-d7]《0,令m=5,则p
r_thr
=p
r_min-5k8·

d8,显然预测得到的所以判断该位置没有产生接收信号深衰,列车车载基站发送端记录下当前载波频率fc与d8的对应关系,并保持当前载波频率运行;当列车运行到d
11
位置时,计算出k
11
=[pr(d
11
)-pr(d
10
)]/[d
11-d
10
]《0,p
r_thr
=p
r_min-5k
11
·
△d11
,预测得到的所以判断该位置产生了接收信号深衰。
[0079]
当列车运行过程中列车车载基站发送端判断某个位置出现深衰之后,会调节其载波频率。如图4所示,根据m=5可以计算出f
step
=min{
△fd_dpl
,
△fu_dpl
}/m=
△fd_dpl
/m=1.392mhz,当列车运行到d
11
位置时,列车车载基站发送端检测到该位置出现深衰,此时发送端将载波频率调整到f1=f0+f
step
=38000mhz+1.392mhz=38001.392mhz,然后在下一个位置d
12
继续与地面基站通信并判断是否产生接收信号深衰。
[0080]
当列车车载基站发送端在d
11
位置处将载波频率调整到f1后,在下一个位置d
12
处其接收到地面基站发送过来的接收信号功率有可能出现如图5所示的三种情况。若接收端合成信号功率变化如图5中(a)虚线所示,则根据深衰判断条件可以判断在位置d
12
处不存在深衰,此时列车车载基站发送端记录下当前载波频率f1与d
11
、d
12
的对应关系;若接收端合成信号功率变化如图5中(b)和(c)虚线所示,则根据深衰判断条件可以判断在位置d
12
处依然存在深衰,此时需要对列车车载基站发送端载波频率进行第二次调节。在图5中(b),可以看到在位置d
12
处接收端接收信号功率实际值pr(d
12
)要高于预测值因此认为当前调节方向有效,在此次调节中令f2=f1+f
step
=38002.784mhz;在图5(3)中,可以看到pr(d
12
)要低于因此认为当前调节方向无效,在此次调节中令f2=f
1-2f
step
=37998.608mhz。然后在下一个位置d
13
处继续与地面基站通信并判断是否产生接收信号深衰,不断重复直到不再产生深衰为止。
[0081]
在调节发送端载波频率的过程中,若在某一次调节中计算出来的fm已经不属于频率调节区间内时,即fm》38007.96mhz或fm《37993.04mhz,则令fm=f0=38ghz,从初始载波频率开始重新进行频率调节。
[0082]
每当列车车载基站检测到接收信号深衰时,就进行载波频率调节,当列车沿轨道运行完后就可以得到整条运行线路上列车车载基站发送端载波频率f

与d的对应关系。列车控制端可以通过分析f

与d的关系来判断出高速磁悬浮车地通信系统信道质量差的位置,具体通过判断f

是否改变来分析出高速磁悬浮车地通信系统信道质量差的位置。在后续高速磁悬浮列车运行时,当列车车载基站在位置dn处检测到信道质量差时,列车车载基站就可以首先根据上次运行得到的f

与d对应关系,直接调节当前列车车载基站发送端载波频率为f

(dn),而不需要从第一个步进开始重新调节,通过这个方法有效减少了深衰位置处的频率调节次数,提高了系统的效率。
[0083]
当地面基站作为发送端,列车车载基站作为接收端时频率自适应信道改善方法也
与之相同。最后能够得到f

与d对应关系,在后续高速磁悬浮列车运行时,当列车到达信道质量差的位置,地面基站就可以首先根据上次运行得到的f

与d对应关系来改变地面基站发送端载波频率。
[0084]
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1