用于定位配置的变化参考信号的制作方法

文档序号:35685149发布日期:2023-10-09 04:42阅读:71来源:国知局
用于定位配置的变化参考信号的制作方法
用于定位配置的变化参考信号
1.相关申请的交叉引用
2.本专利申请要求于2021年2月18日提交的题为“varying reference signal for positioning configurations(用于定位配置的变化参考信号)”的gr申请no.20210100107的优先权,该gr申请已被转让给本技术受让人并由此通过援引全部明确纳入于此。
3.公开背景
4.1.公开领域
5.本公开的各方面一般涉及无线通信系统,尤其涉及用于定位的变化参考信号(rs-p)配置。
6.2.相关技术描述
7.无线通信系统已经过了数代的发展,包括第一代模拟无线电话服务(1g)、第二代(2g)数字无线电话服务(包括过渡的2.5g和2.75g网络)、第三代(3g)具有因特网能力的高速数据无线服务和第四代(4g)服务(例如,长期演进(lte)或wimax)。目前在用的有许多不同类型的无线通信系统,包括蜂窝以及个人通信服务(pcs)系统。已知蜂窝系统的示例包括蜂窝模拟高级移动电话系统(amps),以及基于码分多址(cdma)、频分多址(fdma)、时分多址(tdma)、全球移动通信系统(gsm)等的数字蜂窝系统。
8.第五代(5g)无线标准(被称为新无线电(nr))要求更高的数据传输速度、更大数目的连接和更好的覆盖、以及其他改进。根据下一代移动网络联盟,5g标准被设计成向成千上万个用户中的每一者提供数十兆比特每秒的数据率,以及向办公楼层里的数十位员工提供1千兆比特每秒的数据率。应当支持几十万个同时连接以支持大型传感器部署。因此,相比于当前的4g标准,5g移动通信的频谱效率应当显著提高。此外,相比于当前标准,信令效率应当提高并且等待时间应当大幅减少。
9.概述
10.以下给出了与本文所公开的一个或多个方面相关的简化概述。由此,以下概述既不应被认为是与所有构想的方面相关的详尽纵览,以下概述也不应被认为标识与所有构想的方面相关的关键性或决定性要素或描绘与任何特定方面相关联的范围。相应地,以下概述的唯一目的是在以下给出的详细描述之前以简化形式呈现与关于本文所公开的机制的一个或多个方面相关的某些概念。
11.在一方面,一种由用户装备(ue)执行的无线通信的方法包括:从网络组件接收第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;根据该第一rs-p配置在第一时间段期间与至少一个基站传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与该至少一个基站传达第二rs-p集合。
12.在一些方面,第一rs-p集合包括由ue向该至少一个基站所传送的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,并且第二rs-p集合包括由ue向该至少一个基站所传送的第二上行链路或侧链路srs-p集合。
13.在一些方面,第一rs-p集合包括ue处从该至少一个基站所接收的第一下行链路定
位参考信号(dl-prs)集合,并且第二rs-p集合包括ue处从该至少一个基站所接收的第二dl-prs集合。
14.在一些方面,该方法包括:在第一时间段之后传送基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后传送基于由ue对第二dl-prs集合的测量的第二测量报告。
15.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
16.在一些方面,该方法包括:从网络组件接收第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
17.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
18.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
19.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
20.在一方面,一种由网络组件执行的无线通信方法包括:确定第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;以及向用户装备(ue)传送第一时变rs-p配置。
21.在一些方面,该方法包括:根据第一rs-p配置在第一时间段期间与ue传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与ue传达第二rs-p集合。
22.在一些方面,第一rs-p集合包括基站处从ue所接收的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,其中第二rs-p集合包括服务基站处从ue所接收的第二上行链路或侧链路srs-p集合。
23.在一些方面,第一rs-p集合包括由基站向ue所传送的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括由基站向ue所传送的第二dl-prs集合。
24.在一些方面,该方法包括:在第一时间段之后接收基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后接收基于由ue对第二dl-prs集合的测量的第二测量报告。
25.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
26.在一些方面,该方法包括:向ue传送第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
27.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
28.在一方面,一种由用户装备(ue)执行的无线通信的方法包括:从网络组件接收第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;根据第一srs-p配置在第一时间段期间向至少一个基站传送第一srs-p集合;基于对事件触发条件的监视来确定要从第一srs-p配置转变到第二srs-p配置;向该至少一个基
站传送对该转变的指示;以及在传送该转变指示之后根据第二srs-p配置在第二时间段期间向该至少一个基站传送第二srs-p集合。
29.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
30.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
31.在一些方面,该方法包括:从网络组件接收第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
32.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
33.在一方面,一种由网络组件执行的无线通信方法包括:确定第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;以及向用户装备(ue)传送第一变化srs-p配置。
34.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。在一些方面,该方法包括:根据第一srs-p配置在第一时间段期间从ue接收第一srs-p集合;从ue接收对从第一srs-p配置转变到第二srs-p配置的指示;以及在接收到该转变指示之后根据第二srs-p配置在第二时间段期间从ue接收第二srs-p集合。
35.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
36.在一些方面,该方法包括:向ue传送第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个srs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
37.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
38.在一方面,一种用户装备(ue)包括:存储器;至少一个收发机;以及通信地耦合到该存储器和该至少一个收发机的至少一个处理器,该至少一个处理器被配置成:从网络组件接收第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;根据该第一rs-p配置在第一时间段期间与至少一个基站传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与该至少一个基站传达第二rs-p集合。
39.在一些方面,第一rs-p集合包括由ue向该至少一个基站所传送的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,并且第二rs-p集合包括由ue向该至少一个基站所传送的第二上行链路或侧链路srs-p集合。
40.在一些方面,第一rs-p集合包括ue处从该至少一个基站所接收的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括ue处从该至少一个基站所接收的第二dl-prs集合。
41.在一些方面,该至少一个处理器被进一步配置成:在第一时间段之后传送基于由
ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后传送基于由ue对第二dl-prs集合的测量的第二测量报告。
42.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
43.在一些方面,该至少一个处理器被进一步配置成:从网络组件接收第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
44.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
45.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
46.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
47.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
48.在一些方面,该至少一个处理器被进一步配置成:向ue传送第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
49.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
50.在一方面,一种网络组件包括:存储器;至少一个收发机;以及通信地耦合到该存储器和该至少一个收发机的至少一个处理器,该至少一个处理器被配置成:确定第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;以及向用户装备(ue)传送第一时变rs-p配置。
51.在一些方面,该至少一个处理器被进一步配置成:根据第一rs-p配置在第一时间段期间与ue传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与ue传达第二rs-p集合。
52.在一些方面,第一rs-p集合包括基站处从ue所接收的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,其中第二rs-p集合包括服务基站处从ue所接收的第二上行链路或侧链路srs-p集合。
53.在一些方面,第一rs-p集合包括由基站向ue所传送的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括由基站向ue所传送的第二dl-prs集合。
54.在一些方面,该至少一个处理器被进一步配置成:在第一时间段之后接收基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后接收基于由ue对第二dl-prs集合的测量的第二测量报告。
55.在一方面,一种ue包括:存储器;至少一个收发机;以及通信地耦合到该存储器和该至少一个收发机的至少一个处理器,该至少一个处理器被配置成:从网络组件接收第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;根据第一srs-p配置在第一时间段期间向至少一个基站传送第一srs-p集合;基于对
事件触发条件的监视来确定要从第一srs-p配置转变到第二srs-p配置;向该至少一个基站传送对该转变的指示;以及在传送该转变指示之后根据第二srs-p配置在第二时间段期间向该至少一个基站传送第二srs-p集合。
56.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
57.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
58.在一些方面,该至少一个处理器被进一步配置成:从网络组件接收第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
59.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
60.在一方面,一种网络组件包括:存储器;至少一个收发机;以及通信地耦合到该存储器和该至少一个收发机的至少一个处理器,该至少一个处理器被配置成:确定第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;以及向用户装备(ue)传送第一变化srs-p配置。
61.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
62.在一些方面,该至少一个处理器被进一步配置成:根据第一srs-p配置在第一时间段期间从ue接收第一srs-p集合;从ue接收对从第一srs-p配置转变到第二srs-p配置的指示;以及在接收到该转变指示之后根据第二srs-p配置在第二时间段期间从ue接收第二srs-p集合。
63.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
64.在一些方面,该至少一个处理器被进一步配置成:向ue传送第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个srs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
65.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
66.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
67.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
68.在一些方面,该方法包括:用于向ue传送第二时变rs-p配置的装置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
69.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
70.在一方面,一种用户装备(ue)包括:用于从网络组件接收第一时变用于定位的参
考信号(rs-p)配置的装置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;用于根据该第一rs-p配置在第一时间段期间与至少一个基站传达第一rs-p集合的装置;以及用于根据第二rs-p配置在第二时间段期间与该至少一个基站传达第二rs-p集合的装置。
71.在一些方面,第一rs-p集合包括由ue向该至少一个基站所传送的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,并且第二rs-p集合包括由ue向该至少一个基站所传送的第二上行链路或侧链路srs-p集合。
72.在一些方面,第一rs-p集合包括ue处从该至少一个基站所接收的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括ue处从该至少一个基站所接收的第二dl-prs集合。
73.在一些方面,该方法包括:用于在第一时间段之后传送基于由ue对第一dl-prs集合的测量的第一测量报告的装置;以及用于在第二时间段之后传送基于由ue对第二dl-prs集合的测量的第二测量报告的装置。
74.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
75.在一些方面,该方法包括:用于从网络组件接收第二时变rs-p配置的装置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
76.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
77.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
78.在一方面,一种网络组件包括:用于确定第一时变用于定位的参考信号(rs-p)配置的装置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;以及用于向用户装备(ue)传送第一时变rs-p配置的装置。
79.在一些方面,该方法包括:用于根据第一rs-p配置在第一时间段期间与ue传达第一rs-p集合的装置;以及用于根据第二rs-p配置在第二时间段期间与ue传达第二rs-p集合的装置。
80.在一些方面,第一rs-p集合包括基站处从ue所接收的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,其中第二rs-p集合包括服务基站处从ue所接收的第二上行链路或侧链路srs-p集合。
81.在一些方面,第一rs-p集合包括由基站向ue所传送的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括由基站向ue所传送的第二dl-prs集合。
82.在一些方面,该方法包括:用于在第一时间段之后接收基于由ue对第一dl-prs集合的测量的第一测量报告的装置;以及用于在第二时间段之后接收基于由ue对第二dl-prs集合的测量的第二测量报告的装置。
83.在一方面,一种ue包括:用于从网络组件接收第一变化用于定位的探通参考信号(srs-p)配置的装置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;用于根据第一srs-p配置在第一时间段期间向至少一个基站传送第一srs-p集合的装置;用于基于对事件触发
条件的监视来确定要从第一srs-p配置转变到第二srs-p配置的装置;用于向该至少一个基站传送对该转变的指示的装置;以及用于在传送该转变指示之后根据第二srs-p配置在第二时间段期间向该至少一个基站传送第二srs-p集合的装置。
84.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
85.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
86.在一些方面,该方法包括:用于从网络组件接收第二变化srs-p配置的装置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
87.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
88.在一方面,一种网络组件包括:用于确定第一变化用于定位的探通参考信号(srs-p)配置的装置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;以及用于向用户装备(ue)传送第一变化srs-p配置的装置。
89.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
90.在一些方面,该方法包括:用于根据第一srs-p配置在第一时间段期间从ue接收第一srs-p集合的装置;用于从ue接收对从第一srs-p配置转变到第二srs-p配置的指示的装置;以及用于在接收到该转变指示之后根据第二srs-p配置在第二时间段期间从ue接收第二srs-p集合的装置。
91.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
92.在一些方面,该方法包括:用于向ue传送第二变化srs-p配置的装置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个srs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
93.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
94.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
95.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
96.在一些方面,该一条或多条指令进一步使该网络组件:向ue传送第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
97.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。在一方面,一种存储指令集的非瞬态计算机可读介质包括一条或多条指令,该一条或多条指令在由用户装备(ue)的一个或多个处理器执行时使该ue:从网络组件接收第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一
时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;根据该第一rs-p配置在第一时间段期间与至少一个基站传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与该至少一个基站传达第二rs-p集合。
98.在一些方面,第一rs-p集合包括由ue向该至少一个基站所传送的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,并且第二rs-p集合包括由ue向该至少一个基站所传送的第二上行链路或侧链路srs-p集合。
99.在一些方面,第一rs-p集合包括ue处从该至少一个基站所接收的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括ue处从该至少一个基站所接收的第二dl-prs集合。
100.在一些方面,该一条或多条指令进一步使该ue:在第一时间段之后传送基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后传送基于由ue对第二dl-prs集合的测量的第二测量报告。
101.在一些方面,该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
102.在一些方面,该一条或多条指令进一步使该ue:从网络组件接收第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
103.在一些方面,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
104.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
105.在一方面,一种存储指令集的非瞬态计算机可读介质,该指令集包括一条或多条指令,该一条或多条指令在由网络组件的一个或多个处理器执行时使该网络组件:确定第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;以及向用户装备(ue)传送第一时变rs-p配置。
106.在一些方面,该一条或多条指令进一步使该网络组件:根据第一rs-p配置在第一时间段期间与ue传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与ue传达第二rs-p集合。
107.在一些方面,第一rs-p集合包括基站处从ue所接收的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,其中第二rs-p集合包括服务基站处从ue所接收的第二上行链路或侧链路srs-p集合。
108.在一些方面,第一rs-p集合包括由基站向ue所传送的第一下行链路定位参考信号(dl-prs)集合,并且第二rs-p集合包括由基站向ue所传送的第二dl-prs集合。
109.在一些方面,该一条或多条指令进一步使该网络组件:在第一时间段之后接收基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后接收基于由ue对第二dl-prs集合的测量的第二测量报告。
110.在一方面,一种存储指令集的非瞬态计算机可读介质包括一条或多条指令,该一条或多条指令在由ue的一个或多个处理器执行时使该ue:从网络组件接收第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配
置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;根据第一srs-p配置在第一时间段期间向至少一个基站传送第一srs-p集合;基于对事件触发条件的监视来确定要从第一srs-p配置转变到第二srs-p配置;向该至少一个基站传送对该转变的指示;以及在传送该转变指示之后根据第二srs-p配置在第二时间段期间向该至少一个基站传送第二srs-p集合。
111.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
112.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
113.在一些方面,该一条或多条指令进一步使该ue:从网络组件接收第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
114.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
115.在一方面,一种存储指令集的非瞬态计算机可读介质,该指令集包括一条或多条指令,该一条或多条指令在由网络组件的一个或多个处理器执行时使该网络组件:确定第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;以及向用户装备(ue)传送第一变化srs-p配置。
116.在一些方面,该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
117.在一些方面,该一条或多条指令进一步使该网络组件:根据第一srs-p配置在第一时间段期间从ue接收第一srs-p集合;从ue接收对从第一srs-p配置转变到第二srs-p配置的指示;以及在接收到该转变指示之后根据第二srs-p配置在第二时间段期间从ue接收第二srs-p集合。
118.在一些方面,该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
119.在一些方面,该一条或多条指令进一步使该网络组件:向ue传送第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个srs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
120.在一些方面,第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
121.基于附图和详细描述,与本文所公开的各方面相关联的其他目标和优点对本领域技术人员而言将是显而易见的。
122.附图简述
123.给出附图以帮助对本公开的各方面进行描述,且提供附图仅用于解说各方面而非对其进行限定。
124.图1解说了根据本公开的各方面的示例无线通信系统。
125.图2a和2b解说了根据本公开的各方面的示例无线网络结构。
126.图3a至3c是可在用户装备(ue)、基站、以及网络实体中分别采用并且被配置成支持如本文所教导的通信的组件的若干样本方面的简化框图。
127.图4a和图4b是解说根据本公开的各方面的帧结构和这些帧结构内的信道的示例的示图。
128.图5解说了用于由无线节点所支持的蜂窝小区的示例性prs配置。
129.图6解说了根据本公开的各个方面的示例性无线通信系统。
130.图7解说了根据本公开的各个方面的示例性无线通信系统。
131.图8a是示出根据本公开的各方面的在接收方处随时间的rf信道响应的图。
132.图8b是解说按aod对群集的这种分离的示图。
133.图9是示出根据本公开的各方面的在基站与ue之间交换的rtt测量信号的示例性定时的示图。
134.图10是示出根据本公开的其他方面的在基站与ue之间交换的rtt测量信号的示例性定时的示图。
135.图11解说了根据本公开的各方面的示例性无线通信系统。
136.图12解说了根据本发明的其他方面的示出在基站(例如,本文中所描述的任何基站)与ue(例如,本文中所描述的任何ue)之间交换的rtt测量信号的示例性定时的示图。
137.图13解说了根据本公开的各方面的示例性无线通信过程。
138.图14解说了根据本公开的各方面的示例性无线通信过程。
139.图15解说了根据本公开的各方面的示例性无线通信过程。
140.图16解说了根据本公开的各方面的示例性无线通信过程。
141.详细描述
142.本公开的各方面在以下针对出于解说目的提供的各种示例的描述和相关附图中提供。可设计替换方面而不脱离本公开的范围。另外,本公开中众所周知的元素将不被详细描述或将被省去以免湮没本公开的相关细节。
143.措辞“示例性”和/或“示例”在本文中用于意指“用作示例、实例或解说”。本文中描述为“示例性”和/或“示例”的任何方面不必被解释为优于或胜过其他方面。同样地,术语“本公开的各方面”不要求本公开的所有方面都包括所讨论的特征、优点或操作模式。
144.本领域技术人员将领会,以下描述的信息和信号可使用各种不同技术和技艺中的任何一种来表示。例如,贯穿以下描述可能被述及的数据、指令、命令、信息、信号、位(比特)、码元以及码片可部分地取决于具体应用、部分地取决于所期望的设计、部分地取决于对应技术等而由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合表示。
145.此外,许多方面以由例如计算设备的元件执行的动作序列的形式来描述。将认识到,本文中所描述的各种动作能由专用电路(例如,专用集成电路(asic))、由正被一个或多个处理器执行的程序指令、或由这两者的组合来执行。另外,本文中所描述的动作序列可被认为是完全体现在任何形式的非瞬态计算机可读存储介质内,该非瞬态计算机可读存储介质中存储有一经执行就将使得或指令设备的相关联处理器执行本文中所描述的功能性的相应计算机指令集。由此,本公开的各个方面可以数种不同形式体现,所有这些形式都已被构想为落在所要求保护的主题内容的范围内。另外,对于本文中所描述的每一方面,任何此类方面的对应形式可在本文中被描述为例如“被配置成执行所描述的动作的逻辑”。
146.如本文中所使用的,术语“用户装备”(ue)和“基站”并非旨在专用于或以其他方式被限定于任何特定的无线电接入技术(rat),除非另有说明。一般而言,ue可以是被用户用来在无线通信网络上进行通信的任何无线通信设备(例如,移动电话、路由器、平板计算机、膝上型计算机、消费者资产跟踪设备、可穿戴设备(例如,智能手表、眼镜、增强现实(ar)/虚拟现实(vr)头戴式设备等)、交通工具(例如,汽车、摩托车、自行车等)、物联网(iot)设备等)。ue可以是移动的或者可以(例如,在某些时间)是驻定的,并且可与无线电接入网(ran)进行通信。如本文中所使用的,术语“ue”可以互换地被称为“接入终端”或“at”、“客户端设备”、“无线设备”、“订户设备”、“订户终端”、“订户站”、“用户终端”或“ut”、“移动设备”、“移动终端”、“移动站”、或其变型。一般而言,ue可以经由ran与核心网进行通信,并且通过核心网,ue可与外部网络(诸如因特网)以及与其他ue连接。当然,连接到核心网和/或因特网的其他机制对于ue而言也是可能的,诸如通过有线接入网、无线局域网(wlan)网络(例如,基于电气与电子工程师协会(ieee)802.11规范等)等等。
147.基站可取决于该基站被部署在其中的网络而根据若干rat之一进行操作来与ue通信,并且可以替换地被称为接入点(ap)、网络节点、b节点、演进型b节点(enb)、下一代enb(ng-enb)、新无线电(nr)b节点(也被称为gnb或gnodeb)等等。基站可主要被用于支持由ue进行的无线接入,包括支持关于所支持ue的数据、语音、和/或信令连接。在一些系统中,基站可提供纯边缘节点信令功能,而在其他系统中,基站可提供附加的控制和/或网络管理功能。ue可籍以向基站发送信号的通信链路被称为上行链路(ul)信道(例如,反向话务信道、反向控制信道、接入信道等)。基站可籍以向ue发送信号的通信链路被称为下行链路(dl)或前向链路信道(例如,寻呼信道、控制信道、广播信道、前向话务信道等)。如本文所使用的,术语话务信道(tch)可以指上行链路/反向话务信道或下行链路/前向话务信道。
148.术语“基站”可以指单个物理传送接收点(trp)或者可以指可能或可能不共置的多个物理trp。例如,在术语“基站”指单个物理trp的情况下,该物理trp可以是与基站的蜂窝小区(或若干个蜂窝小区扇区)相对应的基站天线。在术语“基站”指多个共置的物理trp的情况下,该物理trp可以是基站的天线阵列(例如,如在多输入多输出(mimo)系统中或在基站采用波束成形的情况下)。在术语“基站”指多个非共置的物理trp的情况下,该物理trp可以是分布式天线系统(das)(经由传输介质来连接到共用源的在空间上分离的天线的网络)或远程无线电头端(rrh)(连接到服务基站的远程基站)。替换地,非共置的物理trp可以是从ue接收测量报告的服务基站和该ue正在测量其参考射频(rf)信号的邻居基站。由于trp是基站从其传送和接收无线信号的点,如本文中所使用的,因此对来自基站的传输或在基站处的接收的引用应被理解为引用该基站的特定trp。
149.在支持ue定位的一些实现中,基站可能不支持ue的无线接入(例如,可能不支持关于ue的数据、语音、和/或信令连接),但是可以替代地向ue传送要被ue测量的参考信号、和/或可以接收和测量由ue传送的信号。此类基站可被称为定位塔台(例如,在向ue传送信号的情况下)和/或被称为位置测量单元(例如,在接收和测量来自ue的信号的情况下)。
[0150]“rf信号”包括通过传送方与接收方之间的空间来传输信息的给定频率的电磁波。如本文中所使用的,传送方可向接收方传送单个“rf信号”或多个“rf信号”。然而,由于通过多径信道的各rf信号的传播特性,接收方可接收到与每个所传送rf信号相对应的多个“rf信号”。传送方与接收方之间的不同路径上所传送的相同rf信号可被称为“多径”rf信号。
[0151]
图1解说了示例无线通信系统100。无线通信系统100(也可被称为无线广域网(wwan))可包括各个基站102和各个ue 104。基站102可包括宏蜂窝小区基站(高功率蜂窝基站)和/或小型蜂窝小区基站(低功率蜂窝基站)。在一方面,宏蜂窝小区基站可包括enb和/或ng-enb(其中无线通信系统100对应于lte网络)、或者gnb(其中无线通信系统100对应于nr网络)、或两者的组合,并且小型蜂窝小区基站可包括毫微微蜂窝小区、微微蜂窝小区、微蜂窝小区等等。
[0152]
各基站102可共同形成ran并通过回程链路122与核心网170(例如,演进型分组核心(epc)或5g核心(5gc))对接,并通过核心网170连接到一个或多个位置服务器172(其可以是核心网170的一部分或者可在核心网170外部)。除了其他功能,基站102还可执行与传递用户数据、无线电信道暗码化和暗码解译、完整性保护、报头压缩、移动性控制功能(例如,切换、双连通性)、蜂窝小区间干扰协调、连接设立和释放、负载平衡、非接入阶层(nas)消息的分发、nas节点选择、同步、ran共享、多媒体广播多播服务(mbms)、订户和装备追踪、ran信息管理(rim)、寻呼、定位、以及警报消息的递送中的一者或多者相关的功能。基站102可通过回程链路134(其可以是有线的或无线的)直接或间接地(例如,通过epc/5gc)彼此通信。
[0153]
基站102可与ue 104进行无线通信。每个基站102可为各自相应的地理覆盖区域110提供通信覆盖。在一方面,一个或多个蜂窝小区可由每个地理覆盖区域110中的基站102支持。“蜂窝小区”是用于与基站(例如,在某个频率资源上,被称为载波频率、分量载波、载波、频带等等)进行通信的逻辑通信实体,并且可与标识符(例如,物理蜂窝小区标识符(pci)、虚拟蜂窝小区标识符(vci)、蜂窝小区全局标识符(cgi))相关联以区分经由相同或不同载波频率操作的蜂窝小区。在一些情形中,可根据可为不同类型的ue提供接入的不同协议类型(例如,机器类型通信(mtc)、窄带iot(nb-iot)、增强型移动宽带(embb)或其他)来配置不同蜂窝小区。由于蜂窝小区由特定的基站支持,因此术语“蜂窝小区”可取决于上下文而指代逻辑通信实体和支持该逻辑通信实体的基站中的任一者或两者。在一些情形中,在载波频率可被检测到并且被用于地理覆盖区域110的某个部分内的通信的意义上,术语“蜂窝小区”还可以指基站的地理覆盖区域(例如,扇区)。
[0154]
虽然相邻宏蜂窝小区基站102的各地理覆盖区域110可部分地交叠(例如,在切换区域中),但是一些地理覆盖区域110可能基本上被较大的地理覆盖区域110交叠。例如,小型蜂窝小区(sc)基站102'可具有基本上与一个或多个宏蜂窝小区基站102的地理覆盖区域110交叠的地理覆盖区域110'。包括小型蜂窝小区和宏蜂窝小区基站两者的网络可被称为异构网络。异构网络还可包括家用enb(henb),该henb可向被称为封闭订户群(csg)的受限群提供服务。
[0155]
基站102与ue 104之间的通信链路120可包括从ue 104到基站102的上行链路(亦称为反向链路)传输和/或从基站102到ue 104的下行链路(亦称为前向链路)传输。通信链路120可使用mimo天线技术,包括空间复用、波束成形、和/或发射分集。通信链路120可通过一个或多个载波频率。载波的分配可以关于下行链路和上行链路是非对称的(例如,与上行链路相比可将更多或更少载波分配给下行链路)。
[0156]
无线通信系统100可进一步包括在无执照频谱(例如,5ghz)中经由通信链路154与wlan站(sta)152处于通信的无线局域网(wlan)接入点(ap)150。当在无执照频谱中进行通信时,wlan sta 152和/或wlan ap 150可在进行通信之前执行畅通信道评估(cca)或先听
后讲(lbt)规程以确定信道是否可用。
[0157]
小型蜂窝小区基站102'可在有执照和/或无执照频谱中操作。当在无执照频谱中操作时,小型蜂窝小区基站102'可采用lte或nr技术并且使用与由wlan ap 150使用的频谱相同的5ghz无执照频谱。在无执照频谱中采用lte/5g的小型蜂窝小区基站102'可推升对接入网的覆盖和/或增加接入网的容量。无执照频谱中的nr可被称为nr-u。无执照频谱中的lte可被称为lte-u、有执照辅助式接入(laa)或multefire。
[0158]
无线通信系统100可进一步包括毫米波(mmw)基站180,该mmw基站180可在mmw频率和/或近mmw频率中操作以与ue 182处于通信。极高频(ehf)是电磁频谱中的rf的一部分。ehf具有30ghz到300ghz的范围以及1毫米到10毫米之间的波长。该频带中的无线电波可被称为毫米波。近mmw可向下扩展至具有100毫米波长的3ghz频率。超高频(shf)频带在3ghz到30ghz之间扩展,其还被称为厘米波。使用mmw/近mmw射频频带的通信具有高路径损耗和相对短的射程。mmw基站180和ue 182可利用mmw通信链路184上的波束成形(发射和/或接收)来补偿极高路径损耗和短射程。此外,将领会,在替换配置中,一个或多个基站102还可使用mmw或近mmw以及波束成形来进行传送。相应地,将领会,前述解说仅仅是示例,并且不应当被解读成限定本文中所公开的各个方面。
[0159]
发射波束成形是一种用于将rf信号聚焦在特定方向上的技术。常规地,当网络节点(例如,基站)广播rf信号时,该网络节点在所有方向上(全向地)广播该信号。利用发射波束成形,网络节点确定给定目标设备(例如,ue)(相对于传送方网络节点)位于哪里,并在该特定方向上投射较强下行链路rf信号,从而为接收方设备提供较快(就数据率而言)且较强的rf信号。为了在发射时改变rf信号的方向性,网络节点可在正在广播该rf信号的一个或多个发射机中的每个发射机处控制该rf信号的相位和相对振幅。例如,网络节点可使用产生rf波的波束的天线阵列(被称为“相控阵”或“天线阵列”),rf波的波束能够被“引导”指向不同的方向,而无需实际地移动这些天线。具体地,来自发射机的rf电流以正确的相位关系被馈送到个体天线,以使得来自分开的天线的无线电波在期望方向上相加在一起以增大辐射,而同时在不期望方向上抵消以抑制辐射。
[0160]
发射波束可以是准共置的,这意味着它们在接收方(例如,ue)看来具有相同的参数,而不论该网络节点的发射天线本身是否在物理上是共置的。在nr中,存在四种类型的准共置(qcl)关系。具体而言,给定类型的qcl关系意味着:关于目标波束上的目标参考rf信号的某些参数可以从关于源波束上的源参考rf信号的信息推导出。如果源参考rf信号是qcl类型a,则接收方可以使用源参考rf信号来估计在相同信道上传送的目标参考rf信号的多普勒频移、多普勒扩展、平均延迟、以及延迟扩展。如果源参考rf信号是qcl类型b,则接收方可以使用源参考rf信号来估计在相同信道上传送的目标参考rf信号的多普勒频移和多普勒扩展。如果源参考rf信号是qcl类型c,则接收方可以使用源参考rf信号来估计在相同信道上传送的目标参考rf信号的多普勒频移和平均延迟。如果源参考rf信号是qcl类型d,则接收方可以使用源参考rf信号来估计在相同信道上传送的目标参考rf信号的空间接收参数。
[0161]
在接收波束成形中,接收机使用接收波束来放大在给定信道上检测到的rf信号。例如,接收机可在特定方向上增大天线阵列的增益设置和/或调整天线阵列的相位设置,以放大从该方向接收到的rf信号(例如,增大其增益水平)。由此,当接收机被称为在某个方向
上进行波束成形时,这意味着该方向上的波束增益相对于沿其他方向的波束增益而言是较高的,或者该方向上的波束增益相比于对该接收机可用的所有其他接收波束在该方向上的波束增益而言是最高的。这导致从该方向接收的rf信号有较强的收到信号强度(例如,参考信号收到功率(rsrp)、参考信号收到质量(rsrq)、信号与干扰加噪声比(sinr)等等)。
[0162]
接收波束可以是空间相关的。空间关系意味着用于第二参考信号的发射波束的参数可以从关于第一参考信号的接收波束的信息推导出。例如,ue可使用特定的接收波束从基站接收一个或多个参考下行链路参考信号(例如,定位参考信号(prs)、跟踪参考信号(trs)、相位跟踪参考信号(ptrs)、因蜂窝小区而异的参考信号(crs)、信道状态信息参考信号(csi-rs)、主同步信号(pss)、副同步信号(sss)、同步信号块(ssb)等等)。ue随后可以基于接收波束的参数来形成发射波束以用于向该基站发送一个或多个上行链路参考信号(例如,上行链路定位参考信号(ul-prs)、探通参考信号(srs)、解调参考信号(dmrs)、ptrs等等)。
[0163]
注意,取决于形成“下行链路”波束的实体,该波束可以是发射波束或接收波束。例如,若基站正形成下行链路波束以向ue传送参考信号,则该下行链路波束是发射波束。然而,若ue正形成下行链路波束,则该下行链路波束是用于接收下行链路参考信号的接收波束。类似地,取决于形成“上行链路”波束的实体,该波束可以是发射波束或接收波束。例如,若基站正形成上行链路波束,则该上行链路波束是上行链路接收波束,而若ue正形成上行链路波束,则该上行链路波束是上行链路发射波束。
[0164]
在5g中,无线节点(例如,基站102/180、ue 104/182)在其中操作的频谱被划分成多个频率范围:fr1(从450到6000mhz)、fr2(从24250到52600mhz)、fr3(高于52600mhz)、以及fr4(在fr1与fr2之间)。在多载波系统(诸如5g)中,载波频率之一被称为“主载波”或“锚载波”或“主服务蜂窝小区”或“pcell”,并且剩余载波频率被称为“辅载波”或“副服务蜂窝小区”或“scell”。在载波聚集中,锚载波是在由ue 104/182利用的主频率(例如,fr1)上并且在ue 104/182在其中执行初始无线电资源控制(rrc)连接建立规程或发起rrc连接重建规程的蜂窝小区上操作的载波。主载波携带所有共用控制信道以及因ue而异的控制信道,并且可以是有执照频率中的载波(然而,并不总是这种情形)。辅载波是在第二频率(例如,fr2)上操作的载波,一旦在ue 104与锚载波之间建立了rrc连接就可以配置该载波,并且该载波可被用于提供附加无线电资源。在一些情形中,辅载波可以是无执照频率中的载波。辅载波可仅包含必要的信令信息和信号,例如,因ue而异的信令信息和信号可能不存在于辅载波中,因为主上行链路和下行链路载波两者通常都是因ue而异的。这意味着蜂窝小区中的不同ue 104/182可具有不同下行链路主载波。这对于上行链路主载波而言同样成立。网络能够在任何时间改变任何ue 104/182的主载波。例如,这样做是为了平衡不同载波上的负载。由于“服务蜂窝小区”(无论是pcell还是scell)对应于某个基站正用于进行通信的载波频率/分量载波,因此术语“蜂窝小区”、“服务蜂窝小区”、“分量载波”、“载波频率”等等可被可互换地使用。
[0165]
例如,仍然参照图1,由宏蜂窝小区基站102利用的频率之一可以是锚载波(或“pcell”),并且由该宏蜂窝小区基站102和/或mmw基站180利用的其他频率可以是辅载波(“scell”)。对多个载波的同时传送和/或接收使得ue 104/182能够显著增大其数据传输和/或接收速率。例如,多载波系统中的两个20mhz聚集载波与由单个20mhz载波获得的数据
率相比较而言理论上将导致数据率的两倍增加(即,40mhz)。
[0166]
无线通信系统100可进一步包括ue 164,该ue 164可在通信链路120上与宏蜂窝小区基站102进行通信和/或在mmw通信链路184上与mmw基站180进行通信。例如,宏蜂窝小区基站102可支持pcell和一个或多个scell以用于ue 164,并且mmw基站180可支持一个或多个scell以用于ue 164。
[0167]
在图1的示例中,一个或多个地球轨道卫星定位系统(sps)航天器(sv)112(例如,卫星)可被用作任何所解说ue(为了简单起见在图1中示为单个ue 104)的位置信息的独立源。ue 104可包括一个或多个专用sps接收机,这些专用sps接收机专门设计成从sv 112接收sps信号124以推导地理位置信息。sps通常包括传送方系统(例如,sv 112),其被定位成使得接收方(例如,ue 104)能够至少部分地基于从传送方接收到的信号(例如,sps信号124)来确定这些接收方在地球上或上方的位置。此类传送方通常传送用设定数目个码片的重复伪随机噪声(pn)码来标记的信号。虽然传送方通常位于sv 112中,但是有时也可位于基于地面的控制站、基站102、和/或其他ue 104上。
[0168]
sps信号124的使用能通过各种基于卫星的扩增系统(sbas)来扩增,该sbas可与一个或多个全球性和/或区域性导航卫星系统相关联或者以其他方式被启用以与一个或多个全球性和/或区域性导航卫星系统联用。例如,sbas可包括提供完整性信息、差分校正等的扩增系统,诸如广域扩增系统(waas)、欧洲对地静止导航覆盖服务(egnos)、多功能卫星扩增系统(msas)、全球定位系统(gps)辅助地理扩增导航或gps和地理扩增导航系统(gagan)等等。由此,如本文中所使用的,sps可包括一个或多个全球性和/或区域性导航卫星系统和/或扩增系统的任何组合,并且sps信号124可包括sps、类sps、和/或与此类一个或多个sps相关联的其他信号。
[0169]
无线通信系统100可进一步包括一个或多个ue(诸如ue 190),该一个或多个ue经由一个或多个设备到设备(d2d)对等(p2p)链路(被称为“侧链路”)间接地连接到一个或多个通信网络。在图1的示例中,ue 190具有与连接到一个基站102的一个ue 104的d2d p2p链路192(例如,ue 190可通过其间接地获得蜂窝连通性),以及与连接到wlan ap 150的wlan sta 152的d2d p2p链路194(ue 190可通过其间接地获得基于wlan的因特网连通性)。在一示例中,d2d p2p链路192和194可以使用任何公知的d2d rat(诸如lte直连(lte-d)、wifi直连(wifi-d)、等)来支持。
[0170]
图2a解说了示例无线网络结构200。例如,5gc 210(也被称为下一代核心(ngc))可在功能上被视为控制面功能214(例如,ue注册、认证、网络接入、网关选择等)和用户面功能212(例如,ue网关功能、对数据网络的接入、ip路由等),它们协同地操作以形成核心网。用户面接口(ng-u)213和控制面接口(ng-c)215将gnb 222连接到5gc 210,尤其连接到控制面功能214和用户面功能212。在附加配置中,ng-enb 224也可经由至控制面功能214的ng-c 215以及至用户面功能212的ng-u 213来连接到5gc 210。此外,ng-enb 224可经由回程连接223直接与gnb 222进行通信。在一些配置中,新ran 220可以仅具有一个或多个gnb 222,而其他配置包括一个或多个ng-enb 224和一个或多个gnb 222两者。gnb 222或ng-enb 224可与ue 204(例如,图1中所描绘的任何ue)进行通信。另一可任选方面可包括位置服务器230,位置服务器230可与5gc 210处于通信以为ue 204提供位置辅助。位置服务器230可被实现为多个分开的服务器(例如,物理上分开的服务器、单个服务器上的不同软件模块、跨越多
个物理服务器扩展的不同软件模块等等),或者替换地可各自对应于单个服务器。位置服务器230可被配置成支持用于ue 204的一个或多个位置服务,ue 204能够经由核心网、5gc 210和/或经由因特网(未解说)连接到位置服务器230。此外,位置服务器230可被集成到核心网的组件中,或者替换地可在核心网外部。
[0171]
图2b解说了另一示例无线网络结构250。例如,5gc 260可在功能上被视为控制面功能(由接入和移动性管理功能(amf)264提供)以及用户面功能(由用户面功能(upf)262提供),它们协同地操作以形成核心网(即,5gc 260)。用户面接口263和控制面接口265将ng-enb 224连接到5gc 260,尤其分别连接到upf 262和amf 264。在附加配置中,gnb 222也可经由至amf 264的控制面接口265以及至upf 262的用户面接口263来连接到5gc 260。此外,ng-enb 224可在具有或没有至5gc 260的gnb直接连通性的情况下经由回程连接223直接与gnb 222进行通信。在一些配置中,新ran 220可以仅具有一个或多个gnb 222,而其他配置包括一个或多个ng-enb 224和一个或多个gnb 222两者。gnb 222或ng-enb 224可与ue 204(例如,图1中所描绘的任何ue)进行通信。新ran 220的基站通过n2接口与amf 264进行通信,并且通过n3接口与upf 262进行通信。
[0172]
amf 264的功能包括注册管理、连接管理、可达性管理、移动性管理、合法拦截、在ue 204与会话管理功能(smf)266之间的会话管理(sm)消息的传输、用于路由sm消息的透明代理服务、接入认证和接入授权、在ue 204与短消息服务功能(smsf)(未示出)之间的短消息服务(sms)消息的传输、以及安全锚功能性(seaf)。amf 264还与认证服务器功能(ausf)(未示出)和ue 204交互,并接收作为ue 204认证过程的结果而确立的中间密钥。在基于umts(通用移动电信系统)订户身份模块(usim)来认证的情形中,amf 264从ausf中检索安全材料。amf 264的功能还包括安全上下文管理(scm)。scm从seaf接收密钥,该密钥被scm用来推导因接入网而异的密钥。amf 264的功能性还包括:用于监管服务的位置服务管理、在ue 204与位置管理功能(lmf)270(其充当位置服务器230)之间的位置服务消息的传输、在新ran 220与lmf 270之间的位置服务消息的传输、用于与演进分组系统(eps)互通的eps承载标识符分配、以及ue 204移动性事件通知。另外,amf 264还支持非3gpp(第三代伙伴项目)接入网的功能性。
[0173]
upf 262的功能包括:充当rat内/rat间移动性的锚点(在适用时)、充当互连至数据网络(未示出)的外部协议数据单元(pdu)会话点、提供分组路由和转发、分组检视、用户面策略规则实施(例如,选通、重定向、话务引导)、合法拦截(用户面收集)、话务使用报告、用于用户面的服务质量(qos)处置(例如,上行链路/下行链路速率实施、下行链路中的反射性qos标记)、上行链路话务验证(服务数据流(sdf)到qos流映射)、上行链路和下行链路中的传输级分组标记、下行链路分组缓冲和下行链路数据通知触发、以及向源ran节点发送和转发一个或多个“结束标记”。upf 262还可支持位置服务消息在用户面上在ue 204与位置服务器(诸如安全用户面定位(supl)位置平台(slp)272)之间的传输。
[0174]
smf 266的功能包括会话管理、ue网际协议(ip)地址分配和管理、用户面功能的选择和控制、在upf 262处用于将话务路由到正确目的地的话务引导配置、对策略实施和qos的部分控制、以及下行链路数据通知。smf 266用于与amf 264进行通信的接口被称为n11接口。
[0175]
另一可任选方面可包括lmf 270,lmf 270可与5gc 260处于通信以为ue 204提供
位置辅助。lmf 270可被实现为多个分开的服务器(例如,物理上分开的服务器、单个服务器上的不同软件模块、跨越多个物理服务器扩展的不同软件模块等等),或者替换地可各自对应于单个服务器。lmf 270可被配置成支持用于ue 204的一个或多个位置服务,ue 204能够经由核心网、5gc 260和/或经由因特网(未解说)连接到lmf 270。slp 272可支持与lmf 270类似的功能,但是lmf 270可在控制面上(例如,使用旨在传达信令消息而非语音或数据的接口和协议)与amf 264、新ran 220、以及ue 204进行通信,slp 272可在用户面上(例如,使用旨在携带语音和/或数据的协议,如传输控制协议(tcp)和/或ip)与ue 204和外部客户端(图2b中未示出)进行通信。
[0176]
图3a、3b和3c解说了可被纳入ue 302(其可对应于本文中所描述的任何ue)、基站304(其可对应于本文中所描述的任何基站)、以及网络实体306(其可对应于或体现本文中所描述的任何网络功能,包括位置服务器230和lmf 270)中的若干示例组件(由对应的框来表示)以支持如本文所教导的文件传输操作。将领会,这些组件在不同实现中可在不同类型的装置中(例如,在asic中、在片上系统(soc)中等)实现。所解说的组件也可被纳入到通信系统中的其他装置中。例如,系统中的其他装置可包括与所描述的那些组件类似的组件以提供类似的功能性。此外,给定装置可包含这些组件中的一个或多个组件。例如,装置可包括使得该装置能够在多个载波上操作和/或经由不同技术进行通信的多个收发机组件。
[0177]
ue 302和基站304各自分别包括无线广域网(wwan)收发机310和350,从而提供用于经由一个或多个无线通信网络(未示出)(诸如nr网络、lte网络、gsm网络等等)进行通信的装置(例如,用于传送的装置、用于接收的装置、用于测量的装置、用于调谐的装置、用于抑制进行传送的装置等等)。wwan收发机310和350可分别连接到一个或多个天线316和356,以用于经由至少一个指定rat(例如,nr、lte、gsm等)在感兴趣的无线通信介质(例如,特定频谱中的某个时间/频率资源集)上与其他网络节点(诸如其他ue、接入点、基站(例如,enb、gnb)等)进行通信。wwan收发机310和350可根据指定rat以各种方式分别被配置成用于传送和编码信号318和358(例如,消息、指示、信息等),以及反之分别被配置成用于接收和解码信号318和358(例如,消息、指示、信息、导频等)。具体地,wwan收发机310和350分别包括一个或多个发射机314和354以分别用于传送和编码信号318和358,并分别包括一个或多个接收机312和352以分别用于接收和解码信号318和358。
[0178]
至少在一些情形中,ue 302和基站304还分别包括一个或多个短程无线收发机320和360。短程无线收发机320和360可分别连接到一个或多个天线326和366,并且提供用于经由至少一个指定rat(例如,wifi、lte-d、d、pc5、专用短程通信(dsrc)、车载环境无线接入(wave)、近场通信(nfc)等)在感兴趣的无线通信介质上与其他网络节点(诸如其他ue、接入点、基站等)进行通信的装置(例如,用于传送的装置、用于接收的装置、用于测量的装置、用于调谐的装置、用于抑制进行传送的装置等)。短程无线收发机320和360可根据指定rat以各种方式分别被配置成用于传送和编码信号328和368(例如,消息、指示、信息等),以及反之分别被配置成用于接收和解码信号328和368(例如,消息、指示、信息、导频等)。具体地,短程无线收发机320和360分别包括一个或多个发射机324和364以分别用于传送和编码信号328和368,并分别包括一个或多个接收机322和362以分别用于接收和解码信号328和368。作为特定示例,短程无线收发机320和360可以是wifi收发机、
收发机、和/或收发机、nfc收发机、或交通工具到交通工具(v2v)和/或车联网(v2x)收发机。
[0179]
包括至少一个发射机和至少一个接收机的收发机电路系统在一些实现中可包括集成设备(例如,实施为单个通信设备的发射机电路和接收机电路),在一些实现中可包括分开的发射机设备和分开的接收机设备,或者在其他实现中可按其他方式来实施。在一方面,发射机可包括或耦合到诸如天线阵列之类的多个天线(例如,天线316、326、356、366),该多个天线准许该相应装置执行发射“波束成形”,如本文中所描述的。类似地,接收机可包括或耦合到诸如天线阵列之类的多个天线(例如,天线316、326、356、366),该多个天线准许该相应装置执行接收波束成形,如本文中所描述的。在一方面,发射机和接收机可共享相同的多个天线(例如,天线316、326、356、366),以使得该相应装置在给定时间只能进行接收或传送,而不是同时进行两者。ue 302和/或基站304的无线通信设备(例如,收发机310和320中的一者或两者和/或收发机350和360中的一者或两者)还可包括用于执行各种测量的网络监听模块(nlm)等。
[0180]
至少在一些情形中,ue 302和基站304还包括卫星定位系统(sps)接收机330和370。sps接收机330和370可分别连接到一个或多个天线336和376,并且可分别提供用于接收和/或测量sps信号338和378的装置,这些sps信号诸如全球定位系统(gps)信号、全球导航卫星系统(glonass)信号、伽利略信号、北斗信号、印度区域性导航卫星系统(navic)、准天顶卫星系统(qzss)等。sps接收机330和370可分别包括用于接收和处理sps信号338和378的任何合适的硬件和/或软件。sps接收机330和370在适当时向其他系统请求信息和操作,并执行必要的计算以使用由任何合适的sps算法获得的测量来确定ue 302和基站304的定位。
[0181]
基站304和网络实体306各自分别包括至少一个网络接口380和390,从而提供用于与其他网络实体进行通信的装置(例如,用于传送的装置、用于接收的装置等)。例如,网络接口380和390(例如,一个或多个网络接入端口)可被配置成经由基于有线的回程连接或无线回程连接来与一个或多个网络实体通信。在一些方面,网络接口380和390可被实现为被配置成支持基于有线的信号通信或无线信号通信的收发机。该通信可涉及例如发送和接收:消息、参数、和/或其他类型的信息。
[0182]
ue 302、基站304和网络实体306还包括可结合如本文中所公开的操作来使用的其他组件。ue 302包括处理器电路系统,其实现用于提供例如与无线定位有关的功能性、以及用于提供其他处理功能性的处理系统332。基站304包括用于提供例如与如本文中所公开的无线定位有关的功能性、以及用于提供其他处理功能性的处理系统384。网络实体306包括用于提供例如与如本文中所公开的无线定位有关的功能性、以及用于提供其他处理功能性的处理系统394。处理系统332、384和394因此可提供用于处理的装置,诸如用于确定的装置、用于计算的装置、用于接收的装置、用于传送的装置、用于指示的装置等等。在一方面,处理系统332、384和394可包括例如一个或多个处理器,诸如一个或多个通用处理器、多核处理器、asic、数字信号处理器(dsp)、现场可编程门阵列(fpga)、其他可编程逻辑器件或处理电路系统、或其各种组合。
[0183]
ue 302、基站304和网络实体306包括存储器电路系统,其分别实现用于维持信息(例如,指示所保留资源、阈值、参数等等的信息)的存储器组件340、386和396(例如,各自包
括存储器设备)。存储器组件340、386和396因此可提供用于存储的装置、用于检索的装置、用于维持的装置等。在一些情形中,ue 302、基站304和网络实体306可分别包括用于定位模块342、388和398的参考信号。rs-p模块342、388和398分别可以是作为处理系统332、384和394的一部分或与其耦合的硬件电路,这些硬件电路在被执行时使得ue 302、基站304和网络实体306执行本文所描述的功能性。在其他方面,rs-p模块342、388和398可在处理系统332、384和394的外部(例如,调制解调器处理系统的一部分、与另一处理系统集成等等)。替换地,rs-p模块342、388和398分别可以是存储在存储器组件340、386和396中的存储器模块,这些存储器模块在由处理系统332、384和394(或调制解调器处理系统、另一处理系统等)执行时使得ue 302、基站304和网络实体306执行本文所描述的功能性。图3a解说了rs-p模块342的可能位置,该rs-p模块342可以是wwan收发机310、存储器组件340、处理系统332、或其任何组合的一部分,或者可以是自立组件。图3b解说了rs-p模块388的可能位置,该rs-p模块388可以是wwan收发机350、存储器组件386、处理系统384、或其任何组合的一部分,或者可以是自立组件。图3c解说了rs-p模块398的可能位置,该rs-p模块398可以是(诸)网络接口390、存储器组件396、处理系统394、或其任何组合的一部分,或者可以是自立组件。
[0184]
ue 302可包括耦合到处理系统332的一个或多个传感器344,以提供用于感测或检测移动和/或取向信息的装置,该移动和/或取向信息独立于从由wwan收发机310、短程无线收发机320、和/或sps接收机330接收到的信号推导出的运动数据。作为示例,传感器344可包括加速度计(例如,微机电系统(mems)设备)、陀螺仪、地磁传感器(例如,罗盘)、高度计(例如,气压高度计)和/或任何其他类型的移动检测传感器。此外,传感器344可包括多个不同类型的设备并将它们的输出进行组合以提供运动信息。例如,(诸)传感器344可使用多轴加速度计和取向传感器的组合来提供计算2d和/或3d坐标系中的定位的能力。
[0185]
另外,ue 302包括用户接口346,用户接口346提供用于向用户提供指示(例如,可听和/或视觉指示)和/或用于(例如,在用户致动感测设备(诸如按键板、触摸屏、话筒等)之际)接收用户输入的装置。尽管未示出,但基站304和网络实体306也可包括用户接口。
[0186]
更详细地参照处理系统384,在下行链路中,来自网络实体306的ip分组可被提供给处理系统384。处理系统384可以实现用于rrc层、分组数据汇聚协议(pdcp)层、无线电链路控制(rlc)层和媒体接入控制(mac)层的功能性。处理系统384可提供与系统信息(例如,主信息块(mib)、系统信息块(sib))广播、rrc连接控制(例如,rrc连接寻呼、rrc连接建立、rrc连接修改、以及rrc连接释放)、rat间移动性、以及ue测量报告的测量配置相关联的rrc层功能性;与报头压缩/解压缩、安全性(暗码化、暗码解译、完整性保护、完整性验证)、以及切换支持功能相关联的pdcp层功能性;与上层pdu的传递、通过自动重复请求(arq)的纠错、rlc服务数据单元(sdu)的级联、分段和重组、rlc数据pdu的重新分段、以及rlc数据pdu的重新排序相关联的rlc层功能性;以及与逻辑信道与传输信道之间的映射、调度信息报告、纠错、优先级处置、以及逻辑信道优先级排序相关联的mac层功能性。
[0187]
发射机354和接收机352可实现与各种信号处理功能相关联的层1(l1)功能性。包括物理(phy)层的层-1可包括传输信道上的检错、传输信道的前向纠错(fec)译码/解码、交织、速率匹配、映射到物理信道上、物理信道的调制/解调、以及mimo天线处理。发射机354基于各种调制方案(例如,二进制相移键控(bpsk)、正交相移键控(qpsk)、m相移键控(m-psk)、m正交振幅调制(m-qam))来处置至信号星座的映射。经译码和经调制的码元可随后被拆分
成并行流。每个流随后可被映射到正交频分复用(ofdm)副载波,在时域和/或频域中与参考信号(例如,导频)复用,并且随后使用快速傅里叶逆变换(ifft)组合到一起以产生携带时域ofdm码元流的物理信道。该ofdm码元流被空间预编码以产生多个空间流。来自信道估计器的信道估计可被用来确定编码和调制方案以及用于空间处理。信道估计可从由ue 302传送的参考信号和/或信道状况反馈推导出。每个空间流随后可被提供给一个或多个不同的天线356。发射机354可用相应空间流来调制rf载波以供传输。
[0188]
在ue 302,接收机312通过其相应的天线316来接收信号。接收机312恢复调制到rf载波上的信息并将该信息提供给处理系统332。发射机314和接收机312实现与各种信号处理功能相关联的层1功能性。接收机312可对该信息执行空间处理以恢复出以ue 302为目的地的任何空间流。若有多个空间流以ue 302为目的地,则它们可由接收机312组合成单个ofdm码元流。接收机312随后使用快速傅里叶变换(fft)将该ofdm码元流从时域转换到频域。频域信号对ofdm信号的每个副载波包括单独的ofdm码元流。通过确定最有可能由基站304传送的信号星座点来恢复和解调每个副载波上的码元、以及参考信号。这些软判决可基于由信道估计器计算出的信道估计。这些软判决随后被解码和解交织以恢复出原始由基站304在物理信道上传送的数据和控制信号。这些数据和控制信号随后被提供给实现层3(l3)和层2(l2)功能性的处理系统332。
[0189]
在上行链路中,处理系统332提供传输信道与逻辑信道之间的解复用、分组重组、暗码解译、报头解压缩以及控制信号处理以恢复出来自核心网的ip分组。处理系统332还负责检错。
[0190]
类似于结合由基站304进行的下行链路传输所描述的功能性,处理系统332提供与系统信息(例如,mib、sib)捕获、rrc连接、以及测量报告相关联的rrc层功能性;与报头压缩/解压缩和安全性(暗码化、暗码解译、完整性保护、完整性验证)相关联的pdcp层功能性;与上层pdu的传递、通过arq的纠错、rlc sdu的级联、分段和重组、rlc数据pdu的重新分段、以及rlc数据pdu的重新排序相关联的rlc层功能性;以及与逻辑信道与传输信道之间的映射、将mac sdu复用到传输块(tb)上、从tb解复用mac sdu、调度信息报告、通过混合自动重复请求(harq)的纠错、优先级处置、以及逻辑信道优先级排序相关联的mac层功能性。
[0191]
由信道估计器从由基站304传送的参考信号或反馈中推导出的信道估计可由发射机314用来选择恰适的编码和调制方案、以及促成空间处理。由发射机314生成的空间流可被提供给不同天线316。发射机314可用相应空间流来调制rf载波以供传输。
[0192]
在基站304处以与结合ue 302处的接收机功能所描述的方式相类似的方式来处理上行链路传输。接收机352通过其相应的天线356来接收信号。接收机352恢复调制到rf载波上的信息并将该信息提供给处理系统384。
[0193]
在上行链路中,处理系统384提供传输信道与逻辑信道之间的解复用、分组重组、暗码解译、报头解压缩、控制信号处理以恢复出来自ue 302的ip分组。来自处理系统384的ip分组可被提供给核心网。处理系统384还负责检错。
[0194]
为方便起见,ue 302、基站304和/或网络实体306在图3a到3c中被示为包括可根据本文中描述的各种示例来配置的各种组件。然而将领会,所解说的框在不同设计中可具有不同功能性。
[0195]
ue 302、基站304和网络实体306的各种组件可分别在数据总线334、382和392上彼
此通信。图3a-图3c的各组件可按各种方式来实现。在一些实现中,图3a-3c的组件可实现在一个或多个电路(举例而言,诸如一个或多个处理器和/或一个或多个asic(其可包括一个或多个处理器))中。此处,每个电路可使用和/或纳入用于存储由该电路用来提供这一功能性的信息或可执行代码的至少一个存储器组件。例如,由框310至346表示的功能性中的一些或全部功能性可由ue 302的处理器和存储器组件来实现(例如,通过执行恰适的代码和/或通过恰适地配置处理器组件)。类似地,由框350至388表示的功能性中的一些或全部功能性可由基站304的处理器和存储器组件来实现(例如,通过执行恰适的代码和/或通过恰适地配置处理器组件)。此外,由框390至398表示的功能性中的一些或全部功能性可由网络实体306的处理器和存储器组件来实现(例如,通过执行恰适的代码和/或通过恰适地配置处理器组件)。为了简单起见,各种操作、动作和/或功能在本文中被描述为“由ue”、“由基站”、“由网络实体”等来执行。然而,如将领会的,此类操作、动作、和/或功能实际上可由ue 302、基站304、网络实体306等等的特定组件或组件组合来执行,这些组件诸如处理系统332、384、394、收发机310、320、350和360、存储器组件340、386和396、rs-p模块342、388和398等。
[0196]
图4a是解说根据本公开的各方面的dl帧结构的示例的示图400。图4b是解说根据本公开的各方面的dl帧结构内的信道的示例的示图430。其他无线通信技术可具有不同的帧结构和/或不同的信道。
[0197]
lte以及在一些情形中nr在下行链路上利用ofdm并且在上行链路上利用单载波频分复用(sc-fdm)。然而,不同于lte,nr还具有在上行链路上使用ofdm的选项。ofdm和sc-fdm将系统带宽划分成多个(k个)正交副载波,这些副载波也常被称为频调、频槽等。每个副载波可用数据来调制。一般而言,调制码元对于ofdm是在频域中发送的,而对于sc-fdm是在时域中发送的。毗邻副载波之间的间隔可以是固定的,且副载波的总数(k)可取决于系统带宽。例如,副载波的间隔可以是15khz,而最小资源分配(资源块)可以是12个副载波(或即180khz)。因此,对于1.25、2.5、5、10或20兆赫兹(mhz)的系统带宽,标称fft大小可以分别等于128、256、512、1024或2048。系统带宽还可被划分成子带。例如,子带可覆盖1.08mhz(即,6个资源块),并且对于1.25、2.5、5、10或20mhz的系统带宽,可分别有1、2、4、8或16个子带。
[0198]
lte支持单个参数设计(副载波间隔、码元长度等)。相比之下,nr可支持多个参数设计,例如,为15khz、30khz、60khz、120khz、和204khz或更大的副载波间隔可以是可用的。以下提供的表1列出了用于不同nr参数设计的一些各种参数。
[0199][0200]
表1
[0201]
在图4a和4b的示例中,使用15khz的参数设计。由此,在时域中,帧(例如,10ms)被划分成10个相等大小的子帧,每个子帧1ms,并且每个子帧包括一个时隙。在图4a和4b中,水平地(例如,在x轴上)表示时间,其中时间从左至右增加,而垂直地(例如,在y轴上)表示频率,其中频率从下至上增加(或减小)。
[0202]
资源网格可被用于表示时隙,每个时隙包括频域中的一个或多个时间并发的资源块(rb)(亦称为物理rb(prb))。资源网格进一步被划分成多个资源元素(re)。re在时域中可对应于一个码元长度并且在频域中可对应于一个副载波。在图4a和4b的参数设计中,对于正常循环前缀,rb可包含频域中的12个连贯副载波和时域中的7个连贯码元(对于dl,为ofdm码元;对于ul,为sc-fdma码元),总共84个re。对于扩展循环前缀,rb可包含频域中的12个连贯副载波以及时域中的6个连贯码元,总共72个re。由每个re携带的比特数取决于调制方案。
[0203]
如图4a中解说的,一些re携带用于ue处的信道估计的dl参考(导频)信号(dl-rs)。dl-rs可包括解调参考信号(dmrs)和信道状态信息参考信号(csi-rs),其示例性位置在图4a中被标记为“r”。
[0204]
图4b解说帧的dl子帧内的各种信道的示例。物理下行链路控制信道(pdcch)在一个或多个控制信道元素(cce)内携带dl控制信息(dci),每个cce包括九个re群(reg),每个reg包括ofdm码元中的四个连贯re。dci携带关于ul资源分配(持久和非持久)的信息以及关于传送给ue的dl数据的描述。可在pdcch中配置多个(例如,至多达8个)dci,并且这些dci可具有多种格式之一。例如,存在不同的dci格式以用于ul调度、用于非mimo dl调度、用于mimo dl调度、以及用于ul功率控制。
[0205]
主同步信号(pss)被ue用来确定子帧/码元定时和物理层身份。副同步信号(sss)被ue用来确定物理层蜂窝小区身份群号和无线电帧定时。基于物理层身份和物理层蜂窝小区身份群号,ue可以确定pci。基于该pci,ue可以确定前述dl-rs的位置。携带mib的物理广播信道(pbch)可在逻辑上与pss和sss编群在一起以形成ssb(也被称为ss/pbch)。mib提供dl系统带宽中的rb的数目、以及系统帧号(sfn)。物理下行链路共享信道(pdsch)携带用户数据、不通过pbch传送的广播系统信息(诸如系统信息块(sib))、以及寻呼消息。
[0206]
在一些情形中,在图4a中解说的dl rs可以是定位参考信号(prs)。图5解说了由无线节点(诸如基站102)支持的蜂窝小区的示例性prs配置500。图5示出了prs定位时机如何由系统帧号(sfn)、因蜂窝小区而异的子帧偏移(δ
prs
)552和prs周期性(t
prs
)520来确定。通常,因蜂窝小区而异的prs子帧配置由在观察到的抵达时间差(otdoa)辅助数据中包括的“prs配置索引”i
prs
来定义。prs周期性(t
prs
)520和因蜂窝小区而异的子帧偏移(δ
prs
)是基于prs配置索引i
prs
来定义的,如下表2中所解说。
[0207][0208]
表2
[0209]
prs配置是参考传送prs的蜂窝小区的sfn来定义的。针对n
prs
个下行链路子帧中包括第一prs定位时机的第一子帧,prs实例可以满足:
[0210][0211]
其中nf是sfn,其中0≤nf≤1023,ns是由nf定义的无线电帧内的时隙号,其中0≤ns≤19,t
prs
是prs周期性520,并且δ
prs
是因蜂窝小区而异的子帧偏移552。
[0212]
如图5中所示,因蜂窝小区而异的子帧偏移δ
prs 552可以按从系统帧号0(时隙

编号0’,标记为时隙550)开始到第一(后续)prs定位时机的开始传送的子帧数的形式来定义。在图5的示例中,在连贯prs定位时机518a、518b和518c中的每一者中连贯定位子帧数(n
prs
)等于4。即,表示prs定位时机518a、518b和518c的每个阴影块表示四个子帧。
[0213]
在一些方面,当ue在针对特定蜂窝小区的otdoa辅助数据中接收到prs配置索引i
prs
时,ue可以使用表2来确定prs周期性t
prs 520和prs子帧偏移δ
prs
。ue可以随后确定prs在蜂窝小区中被调度时的无线电帧、子帧和时隙(例如,使用等式(1))。otdoa辅助数据可以由例如位置服务器(例如,位置服务器230、lmf 270)来确定,并且包括针对参考蜂窝小区以及由各个基站支持的数个邻居蜂窝小区的辅助数据。
[0214]
通常,来自网络中使用相同频率的所有蜂窝小区的prs时机在时间上对准,并且相对于网络中使用不同频率的其他蜂窝小区可具有固定的已知时间偏移(例如,因蜂窝小区而异的子帧偏移552)。在sfn同步网络中,所有无线节点(例如,基站102)都可以在帧边界和系统帧号两者上对准。因此,在sfn同步网络中,各个无线节点所支持的所有蜂窝小区都可以针对prs传输的任何特定频率使用相同的prs配置索引。另一方面,在sfn异步网络中,各个无线节点可以在帧边界上对准,但不在系统帧号上对准。由此,在sfn异步网络中,针对每个蜂窝小区的prs配置索引可以由网络单独配置,以使得prs时机在时间上对准。
[0215]
如果ue可以获得至少一个蜂窝小区(例如,参考蜂窝小区或服务蜂窝小区)的蜂窝
小区定时(例如,sfn),则ue可以确定用于otdoa定位的参考蜂窝小区和邻居蜂窝小区的prs时机的定时。随后可以由ue例如基于关于来自不同蜂窝小区的prs时机交叠的假定来推导出其他蜂窝小区的定时。
[0216]
被用于传送prs的资源元素集合被称为“prs资源”。该资源元素集合能在频域中跨越多个prb并且能在时域中跨越时隙430内的n个(例如,一个或多个)连贯码元460。在给定ofdm码元460中,prs资源占用连贯prb。prs资源至少由以下参数来描述:prs资源标识符(id)、序列id、梳齿大小n、频域中的资源元素偏移、起始时隙和起始码元、每prs资源的码元数目(即,prs资源的历时)和qcl信息(例如,与其他dl参考信号呈qcl)。在一些设计中,支持一个天线端口。梳齿大小指示在每个码元中携带prs的副载波数目。例如,梳齿-4的梳齿大小意味着给定码元的每第四个副载波携带prs。
[0217]“prs资源集”是被用于传送prs信号的一组prs资源,其中每个prs资源具有prs资源id。另外,prs资源集中的prs资源与相同的传送接收点(trp)相关联。prs资源集中的prs资源id与从单个trp传送的单个波束相关联(其中trp可传送一个或多个波束)。即,prs资源集中的每个prs资源可以在不同的波束上传送,并且如此,“prs资源”还可被称为“波束”。注意到,这不具有对ue是否已知传送prs的trp和波束的任何暗示。“prs时机”是其中预期传送prs的周期性地重复的时间窗口(例如,一个或多个连贯时隙的群)的一个实例。prs时机也可被称为“prs定位时机”、“定位时机”或简称为“时机”。
[0218]
注意,术语“定位参考信号”和“prs”有时可指被用于在lte或nr系统中进行定位的特定参考信号。然而,如本文中所使用的,除非另外指示,否则术语“定位参考信号”和“prs”指能被用于定位的任何类型的参考信号,诸如但不限于:lte或nr中的prs信号、5g中的导航参考信号(nrs)、传送方参考信号(trs)、因蜂窝小区而异的参考信号(crs)、信道状态信息参考信号(csi-rs)、主同步信号(pss)、副同步信号(sss)、ssb等。
[0219]
srs是ue传送以帮助基站获得每个用户的信道状态信息(csi)的仅上行链路信号。信道状态信息描述了rf信号如何从ue传播到基站,并且表示随距离的散射、衰落和功率衰减的组合效应。系统将srs用于资源调度、链路适配、大规模mimo、波束管理等。
[0220]
针对srs的先前定义的若干增强已被提议用于定位的srs(srs-p),诸如srs资源内的新交错模式、srs的新梳齿类型、srs的新序列、每分量载波较大数目的srs资源集、以及每分量载波较大数目的srs资源。此外,参数“spatialrelationinfo(空间关系信息)”和“pathlossreference(路径损耗参考)”要基于来自相邻trp的dl rs来配置。又进一步,一个srs资源可在活跃带宽部分(bwp)之外被传送,并且一个srs资源可跨越多个分量载波。最后,ue可通过相同发射波束从多个srs资源进行传送以用于ul-aoa。所有这些都是当前srs框架之外的特征,该当前srs框架通过rrc较高层信令来配置(并且潜在地通过mac控制元素(ce)或下行链路控制信息(dci)来触发或激活)。
[0221]
如以上所提及,nr中的srs是由ue传送的用于探通上行链路无线电信道目的的因ue而异地配置的参考信号。类似于csi-rs,此类探通提供了各种级别的无线电信道特性知识。在一种极端情况下,srs可在gnb处简单地用于获得信号强度测量,例如,以用于ul波束管理目的。在另一极端情况下,srs可在gnb处被用来获得作为频率、时间和空间的函数的详细幅度和相位估计。在nr中,具有srs的信道探通与lte相比支持更多样化的用例集(例如,用于基于互易的gnb发射波束成形(下行链路mimo)的下行链路csi捕获;用于上行链路mimo
的链路适配和基于码本/非码本的预编码的上行链路csi捕获、上行链路波束管理等)。
[0222]
srs可以使用各种选项来配置。srs资源的时间/频率映射由以下特性来定义:
[0223]
·
时间历时n
码元srs
-srs资源的时间历时可以是时隙内的1、2或4个连贯ofdm码元,这与只允许每时隙单个ofdm码元的lte形成对比。
[0224]
·
起始码元位置l0—srs资源的起始码元可以位于时隙的最后6个ofdm码元内的任何位置,前提是该资源不跨越时隙结束边界。
[0225]
·
重复因子r—对于配置有跳频的srs资源,重复允许在发生下一跳之前在r个连贯ofdm码元中探通相同的副载波集(如本文所使用的,“跳”具体地指频跳)。例如,r的值为1、2、4,其中r≤n
码元srs

[0226]
·
传输梳齿间隔k
tc
和梳齿偏移k
tc
—srs资源可以占用频域梳齿结构的资源元素(re),其中该梳齿间隔是如lte中的2或4个re。此结构允许相同或不同用户在不同梳齿上的不同srs资源的频域复用,其中不同梳齿彼此偏移整数个re。梳齿偏移是关于prb边界定义的,并且可以取0,1,

,k
tc-1个re范围内的值。由此,对于梳齿间隔k
tc
=2,存在2个不同的梳齿可用于复用(若需要),而对于梳齿间隔k
tc
=4,存在4个不同的可用梳齿。
[0227]
·
用于周期性/半持久srs情形的周期性和时隙偏移。
[0228]
·
带宽部分内的探通带宽。
[0229]
对于低等待时间定位,gnb可经由dci来触发ul srs-p(例如,所传送的srs-p可包括重复或波束扫掠以使得若干gnb能够接收该srs-p)。替换地,gnb可以向ue发送关于非周期性prs传输的信息(例如,该配置可以包括来自多个gnb的关于prs的信息,以使得ue能够执行用于定位(基于ue的)或用于报告(ue辅助式)的定时计算)。尽管本公开的各个实施例涉及基于dl prs的定位规程,但此类实施例中的一些或全部还可以应用于基于ul srs-p的定位规程。
[0230]
注意,术语“探通参考信号”、“srs”和“srs-p”有时可指被用于在lte或nr系统中进行定位的特定参考信号。然而,如本文中所使用的,除非另外指示,否则术语“探通参考信号”、“srs”和“srs-p”指能被用于定位的任何类型的参考信号,诸如但不限于:lte或nr中的srs信号、5g中的导航参考信号(nrs)、传送方参考信号(trs)、用于定位的随机接入信道(rach)信号(例如,rach前置码,诸如4步rach规程中的msg-1或2步rach规程中的msg-a)等。
[0231]
3gpp版本16引入的各种nr定位方面涉及提高定位方案的位置精度,这些方案涉及与一个或多个ul或dl prs相关联的(诸)测量(例如,更高带宽(bw)、fr2波束扫掠、基于角度的测量(诸如抵达角(aoa)和出发角(aod)测量)、多蜂窝小区往返时间(rtt)测量等)。如果等待时间减少是优先事项,则通常使用基于ue的定位技术(例如,在没有ul位置测量报告的情况下的仅dl技术)。然而,如果等待时间较为无关紧要,则可以使用ue辅助式定位技术,由此经ue测量的数据被报告给网络实体(例如,位置服务器230、lmf 270等)。通过在ran中实现lmf,可以在一定程度上减少与ue辅助式定位技术相关联的等待时间。
[0232]
层3(l3)信令(例如,rrc或位置定位协议(lpp))通常被用于传送包括与ue辅助式定位技术相关联的基于位置的数据的报告。与层1(l1或phy层)信令或层2(l2或mac层)信令相比,l3信令与相对较高的等待时间(例如,100ms以上)相关联。在一些情形中,可期望ue与ran之间用于基于位置的报告的较低等待时间(例如,小于100ms,小于10ms等)。在此类情形中,l3信令可能无法达到这些较低的等待时间水平。定位测量的l3信令可包括以下任何组
合:
[0233]
·
一个或多个toa、tdoa、rsrp或rx-tx(接收-发射)测量,
[0234]
·
一个或多个aoa/aod(例如,当前仅针对gnb-》lmf报告dl aoa和ul aod商定的)测量,
[0235]
·
一个或多个多径报告测量,例如,每路径toa、rsrp、aoa/aod(例如,当前仅在lte中允许的每路径toa)
[0236]
·
一个或多个运动状态(例如,步行、驾驶等)和轨迹(例如,当前针对ue),和/或
[0237]
·
一个或多个报告质量指示。
[0238]
最近,已经构想了l1和l2信令与基于prs的报告相关联地使用。例如,l1和l2信令当前在一些系统中被用于传输csi报告(例如,信道质量指示(cqi)、预编码矩阵指示符(pmi)、层指示符(li)、l1-rsrp等的报告)。csi报告可包括按预定义次序(例如,由相关标准定义)的字段集合。单个ul传输(例如,在pusch或pucch上)可包括多个报告,在本文中被称为

子报告’,其根据(例如,由相关标准定义的)预定义优先级来布置。在一些设计中,预定义次序可基于相关联的子报告周期性(例如,pusch/pucch上的非周期性/半持久/周期性(a/sp/p))、测量类型(例如,l1-rsrp或非l1-rsrp)、服务蜂窝小区索引(例如,在载波聚集(ca)情形中)、以及报告配置id(reportconfigid)。对于2部分csi报告,所有报告的部分1被编群在一起,并且部分2被分开编群,并且每个群被分开编码(例如,部分1有效载荷大小基于配置参数是固定的,而部分2大小是可变的并且取决于配置参数以及还取决于相关联的部分1内容)。在编码和速率匹配之后要输出的经编码比特/码元的数目是基于输入比特的数目和β因子按相关标准来计算的。在rs的实例被测量与对应报告之间定义了链接(例如,时间偏移)。在一些设计中,可以实现使用l1和l2信令的基于prs的测量数据的类csi报告。
[0239]
图6解说了根据本公开的各个方面的示例性无线通信系统600。在图6的示例中,ue 604(其可以对应于以上关于图1描述的任何ue(例如,ue 104、ue 182、ue 190等))正尝试计算对其定位的估计,或者辅助另一实体(例如,基站或核心网组件、另一ue、位置服务器、第三方应用等)计算对其定位的估计。ue 604可使用rf信号以及用于调制rf信号和交换信息分组的标准化协议来与多个基站602a-d(统称为基站602)进行无线通信,基站602a-d可以对应于图1中的基站102或180和/或wlan ap 150的任何组合。通过从所交换的rf信号中提取不同类型的信息并利用无线通信系统600的布局(即,基站位置、几何形状等),ue 604可确定其定位,或者辅助确定其在预定义的参考坐标系中的定位。在一方面,ue 604可使用二维坐标系来指定其定位;然而,本文中所公开的各方面不限于此,并且还可适用于在期望额外维度的情况下使用三维坐标系来确定定位。附加地,虽然图6解说了一个ue 604和四个基站602,但是如将领会到的,可存在更多ue 604以及更多或更少的基站602。
[0240]
为了支持定位估计,基站602可被配置成向在它们覆盖区域中的各ue 604广播参考rf信号(例如,定位参考信号(prs)、因蜂窝小区而异的参考信号(crs)、信道状态信息参考信号(csi-rs)、同步信号,等等),以使得ue 604能够测量成对的网络节点之间的参考rf信号定时差(例如,otdoa或参考信号时间差(rstd))和/或以标识最佳地激发ue 604与传送方基站602之间的los或最短无线电路径的波束。对标识(诸)los/最短路径波束感兴趣不仅仅因为这些波束随后可被用于一对基站602之间的otdoa测量,还因为标识这些波束可以基于波束方向来直接提供一些定位信息。此外,这些波束随后可被用于需要精准toa的其他定
位估计方法,诸如基于往返时间估计的方法。
[0241]
如本文所使用的,“网络节点”可以是基站602、基站602的蜂窝小区、远程无线电头端、基站602的天线(其中基站602的天线位置不同于基站602自身的位置)或能够传送参考信号的任何其他网络实体。此外,如本文中所使用的,“节点”可以指网络节点或ue。
[0242]
位置服务器(例如,位置服务器230)可以向ue 604发送辅助数据,该辅助数据包括基站602的一个或多个邻居蜂窝小区的标识,以及关于由每个邻居蜂窝小区传送的参考rf信号的配置信息。替换地,辅助数据可直接源自各基站602自身(例如,在周期性地广播的开销消息中,等等)。替换地,ue 604可以在不使用辅助数据的情况下自己检测基站602的邻居蜂窝小区。ue 604(例如,部分地基于辅助数据(若已提供))可以测量以及(可任选地)报告来自个体网络节点的otdoa和/或从各网络节点对接收到的参考rf信号之间的rstd。使用这些测量以及所测量网络节点(即,传送了ue 604测得的参考rf信号的(诸)基站602或(诸)天线)的已知位置,ue 604或位置服务器可以确定该ue 604与所测量网络节点之间的距离,并且由此计算该ue 604的位置。
[0243]
术语“定位估计”在本文中用来指对ue 604的定位的估计,其可以是地理式的(例如,可包括纬度、经度、以及可能的高度)或者是市政式的(例如,可包括街道地址、建筑物名称、或建筑物或街道地址内或附近的精确点或区域(诸如建筑物的特定入口、建筑物中的特定房间或套房)、或地标(诸如市镇广场))。定位估计也可被称为“位置”、“定位”、“锁定”、“定位锁定”、“位置锁定”、“位置估计”、“锁定估计”或某个其他术语。获得位置估计的方式一般地可被称为“定位”、“定址”、或“定位锁定”。用于获得定位估计的特定解决方案可被称为“定位解决方案”。作为定位解决方案的一部分的用于获得定位估计的特定方法可被称为“定位方法”、或称为“位置测定方法”。
[0244]
术语“基站”可以指单个物理传送点或者指可能或可能不共处一地的多个物理传送点。例如,在术语“基站”指单个物理传送点的情况下,该物理传送点可以是与基站(例如,基站602)的蜂窝小区相对应的基站天线。在术语“基站”指多个共置物理传送点的情况下,这些物理传送点可以是基站的天线阵列(例如,如在mimo系统中或在基站采用波束成形的情况下)。在术语“基站”指多个非共置的物理传送点的情况下,这些物理传送点可以是分布式天线系统(das)(经由传输介质来连接到共用源的、在空间上分离的天线的网络)或远程无线电头端(rrh)(连接到服务基站的远程基站)。替换地,这些非共置物理传送点可以是从ue(例如,ue 604)接收测量报告的服务基站和该ue正在测量其参考rf信号的邻居基站。因此,图6解说了其中基站602a和602b形成das/rrh 620的一方面。例如,基站602a可以是ue 604的服务基站,并且基站602b可以是ue 604的邻居基站。如此,基站602b可以是基站602a的rrh。基站602a和602b可以在有线或无线链路622上彼此通信。
[0245]
为了使用从各网络节点对接收到的rf信号之间的otdoa和/或rstd来精确地确定ue 604的定位,该ue 604需要测量在该ue 604与网络节点(例如,基站602、天线)之间的los(视线)路径(或在los路径不可用的情况下最短的nlos(非视线)路径)上接收到的参考rf信号。然而,rf信号不仅仅沿传送方与接收方之间的los/最短路径行进,而且还在数个其他路径上行进,因为rf信号从传送方扩展开并且在这些rf信号去往接收方的路上被其他物体(诸如山丘、建筑物、水等)反射。由此,图6解说了基站602与ue 604之间的数条los路径610和数条nlos路径612。具体地,图6解说了基站602a在los路径610a和nlos路径612a上进行传
送,基站602b在los路径610b和两条nlos路径612b上进行传送,基站602c在los路径610c和nlos路径612c上进行传送,并且基站602d在两条nlos路径612d上进行传送。如图6中所解说的,每条nlos路径612从某一物体630(例如,建筑物)反射。如将领会的,由基站602传送的每条los路径610和nlos路径612可以由基站602的不同天线传送(例如,如在mimo系统中),或者可以由基站602的相同天线传送(从而解说了rf信号的传播)。此外,如本文中所使用的,术语“los路径”指传送方与接收方之间的最短路径,并且可能不是实际los路径而是最短nlos路径。
[0246]
在一方面,一个或多个基站602可被配置成使用波束成形来传送rf信号。在该情形中,一些可用波束可沿los路径610聚焦所传送的rf信号(例如,这些波束沿los路径产生最高天线增益),而其他可用波束可沿nlos路径612聚焦所传送的rf信号。具有沿特定路径的高增益并因此沿该路径聚焦rf信号的波束仍然可使某一rf信号沿其他路径传播;该rf信号的强度自然取决于沿那些其他路径的波束增益。“rf信号”包括通过传送方与接收方之间的空间来传输信息的电磁波。如本文中所使用的,传送方可向接收方传送单个“rf信号”或多个“rf信号”。然而,如以下进一步描述的,由于通过多径信道的各rf信号的传播特性,接收方可接收到与每个所传送rf信号相对应的多个“rf信号”。
[0247]
在基站602使用波束成形来传送rf信号的情况下,用于基站602与ue 604之间的数据通信的感兴趣波束将是携带以最高信号强度(如由例如收到信号收到功率(rsrp)或在存在定向干扰信号的情况下由sinr所指示的)到达ue 604的rf信号的波束,而用于定位估计的感兴趣波束将是携带激发最短路径或los路径(例如,los路径610)的rf信号的波束。在一些频带中且对于通常所使用的天线系统而言,这些波束将是相同波束。然而,在其他频带(诸如mmw)中,在通常可使用大量天线振子来创建窄发射波束的情况下,它们可能不是相同波束。如以下参考图7所描述的,在一些情形中,los路径610上的rf信号的信号强度可能(例如,由于障碍物)比nlos路径612上的rf信号的信号强度弱,rf信号在nlos路径612上由于传播延迟而较晚到达。
[0248]
图7解说了根据本公开的各个方面的示例性无线通信系统700。在图7的示例中,ue 704(其可以对应于图6中的ue 604)正在尝试计算对其定位的估计,或者辅助另一实体(例如,基站或核心网组件、另一ue、位置服务器、第三方应用等)计算对其定位的估计。ue 704可使用rf信号和用于rf信号的调制以及信息分组的交换的标准化协议来与基站702(其可对应于图6中的基站602之一)进行无线通信。
[0249]
如图7中所解说的,基站702正利用波束成形来传送rf信号的多个波束711-715。每个波束711-715可以由基站702的天线阵列来形成和传送。尽管图7解说了基站702传送五个波束711-715,但是如将领会的,可存在多于或少于五个波束,波束形状(诸如峰值增益、宽度和旁瓣增益)在所传送的波束之间可以有所不同,并且这些波束中的一些可由不同的基站来传送。
[0250]
出于将关联于一个波束的rf信号与关联于另一波束的rf信号区分开的目的,波束索引可被指派给该多个波束711-715中的每一者。此外,与该多个波束711-715中的特定波束相关联的rf信号可以携带波束索引指示符。波束索引也可以从rf信号的传输时间(例如帧、时隙和/或ofdm码元号)推导出。波束索引指示符可以是例如用于唯一性地区分至多达八个波束的三比特字段。如果接收到具有不同波束索引的两个不同的rf信号,则这将指示
rf信号是使用不同的波束来传送的。如果两个不同的rf信号共享共用波束索引,则这将指示不同的rf信号是使用相同的波束来传送的。描述两个rf信号是使用相同波束来传送的另一种方式是:用于第一rf信号的传输的(诸)天线端口在空间上与用于第二rf信号的传输的(诸)天线端口准共置。
[0251]
在图7的示例中,ue 704接收在波束713上传送的rf信号的nlos数据流723和在波束714上传送的rf信号的los数据流724。尽管图7将nlos数据流723和los数据流724解说为单条线(分别为虚线和实线),但是如将领会的,nlos数据流723和los数据流724可例如由于rf信号通过多径信道的传播特性而在其到达ue 704的时间各自包括多条射线(即,“群集”)。例如,当电磁波被一对象的多个表面反射并且这些反射从大致相同的角度抵达接收方(例如,ue 704)时,形成rf信号的群集,每个反射比其他反射多或少行进几个波长(例如,厘米)。接收到的rf信号的“群集”一般对应于单个传送的rf信号。
[0252]
在图7的示例中,nlos数据流723最初不指向ue 704,尽管如将领会的,它原可以最初指向ue 704,如在图6中的nlos路径612上的rf信号一样。然而,它被反射物740(例如,建筑物)反射并且无阻碍地到达ue 704,并且因此仍然可以是相对强的rf信号。作为对比,los数据流724指向ue 704但穿过障碍物730(例如,植被、建筑物、山丘、破坏性环境(诸如云或烟)等),这可显著地降级rf信号。如将领会的,尽管los数据流724比nlos数据流723弱,但是los数据流724将在nlos数据流723之前抵达ue 704,因为它遵循从基站702到ue 704的较短路径。
[0253]
如以上提及的,用于基站(例如,基站702)与ue(例如,ue 704)之间的数据通信的感兴趣波束是携带以最高信号强度(例如,最高rsrp或sinr)抵达ue的rf信号的波束,而用于定位估计的感兴趣波束是携带激发los路径且在所有其他波束(例如,波束714)之中具有沿los路径的最高增益的rf信号的波束。也就是说,即使波束713(nlos波束)会微弱地激发los路径(由于rf信号的传播特性,即使没有沿着los路径聚焦),波束713的los路径的弱信号(若有)也可能无法可靠地检测到(与来自波束714的los路径相比),因此导致执行定位测量时的较大误差。
[0254]
尽管用于数据通信的感兴趣波束和用于定位估计的感兴趣波束对于一些频带而言可以是相同的波束,但是对于其他频带(诸如mmw),它们可以不是相同的波束。如此,参照图7,在ue 704参与同基站702的数据通信会话(例如,在基站702是ue 704的服务基站的情况下)且并非简单地尝试测量由基站702传送的参考rf信号的情况下,针对数据通信会话的感兴趣波束可以是波束713,因为它正携带无阻碍的nlos数据流723。然而,用于定位估计的感兴趣波束将是波束714,因为它携带最强的los数据流724,尽管被阻碍。
[0255]
图8a是示出根据本公开的各方面的在接收方(例如,ue 704)处随时间的rf信道响应的图800a。在图8a所解说的信道下,接收方在时间t1处接收在信道抽头上的两个rf信号的第一群集,在时间t2处接收在信道抽头上的五个rf信号的第二群集,在时间t3处接收在信道抽头上的五个rf信号的第三群集,并且在时间t4处接收在信道抽头上的四个rf信号的第四群集。在图8a的示例中,因为第一rf信号群集在时间t1处首先抵达,所以假定它是los数据流(即,在los或最短路径上抵达的数据流),并且可对应于los数据流724。在时间t3处的第三群集由最强rf信号组成,并且可以对应于nlos数据流723。从传送方的一侧看,收到rf信号的每个群集可包括以不同角度传送的rf信号的一部分,并且因此可以说每个群集具
有来自传送方的不同的出发角(aod)。图8b是解说按aod对群集的这种分离的示图800b。在aod范围802a中传送的rf信号可以对应于图8a中的一个群集(例如,“群集1”),并且在aod范围802b中传送的rf信号可以对应于图8a中的一不同群集(例如,“群集3”)。注意,尽管在图8b中所描绘的两个群集的aod范围在空间上是隔离的,但是一些群集的aod范围也可部分交叠,尽管这些群集在时间上分离。例如,这可在来自传送方的相同aod处的两个独立建筑物朝向接收方反射信号时发生。注意,尽管图8a解说了两个至五个信道抽头(或“峰值”)的群集,但是如将领会的,这些群集可具有比所解说的信道抽头数目更多或更少的信道抽头。
[0256]
ran1 nr可以定义对适用于nr定位的dl参考信号(例如,用于服务、参考、和/或相邻蜂窝小区)的ue测量,包括用于nr定位的dl参考信号时间差(rstd)测量、用于nr定位的dl rsrp测量、以及ue rx-tx(例如,从ue接收机处的信号接收至ue发射机处的响应信号传送的硬件群延迟,例如以用于nr定位的时间差测量,诸如rtt)。
[0257]
ran1 nr可以基于适用于nr定位的ul参考信号来定义gnb测量,诸如用于nr定位的相对ul抵达时间(rtoa)、用于nr定位的ul aoa测量(例如,包括方位角和天顶角)、用于nr定位的ul rsrp测量、以及gnb rx-tx(例如,从gnb接收机处的信号接收至gnb发射机处的响应信号传送的硬件群延迟,例如以用于nr定位的时间差测量,诸如rtt)。
[0258]
图9是根据本公开的各方面的示出在基站902(例如,本文中所描述的任何基站)与ue 904(例如,本文中所描述的任何ue)之间交换的rtt测量信号的示例性定时的示图900。在图9的示例中,基站902在时间t1向ue 904发送rtt测量信号910(例如,prs、nrs、crs、csi-rs等)。rtt测量信号910在从基站902行进到ue 904时具有某一传播延迟t
prop
。在时间t2(rtt测量信号910在ue 904处的toa),ue 904接收/测量rtt测量信号910。在某一ue处理时间之后,ue 904在时间t3传送rtt响应信号920。在传播延迟t
prop
之后,基站902在时间t4从ue 904接收/测量rtt响应信号920(rtt响应信号920在基站902处的toa)。
[0259]
为了标识由给定网络节点(例如,基站902)传送的参考信号(例如,rtt测量信号910)的toa(例如,t2),接收方(例如,ue 904)首先联合处理传送方正用于传送参考信号的信道上的所有资源元素(re),并执行傅里叶逆变换以将所接收到的参考信号转换到时域。所接收到的参考信号到时域的转换被称为对信道能量响应(cer)的估计。cer示出信道上随时间变化的峰值,并且因此最早的“显著”峰值应对应于参考信号的toa。一般地,接收方将使用噪声相关质量阈值来滤除虚假局部峰值,由此假设正确地标识信道上的显著峰值。例如,接收方可以选择是cer的最早局部最大值的toa估计,其比cer的中值高至少x db并且比信道上的主峰值低最大y db。接收方确定来自每个传送方的每个参考信号的cer,以便确定来自不同传送方的每个参考信号的toa。
[0260]
在一些设计中,rtt响应信号920可以显式地包括时间t3和时间t2之差(即,t
rx

tx 912)。使用该测量以及时间t4和时间t1之差(即,t
tx

rx 922),基站902(或其他定位实体,诸如位置服务器230、lmf 270)可以如下计算到ue 904的距离:
[0261][0262]
其中c是光速。虽然图9中未明确解说,但是附加延迟或误差源可能是由于用于定位位置的ue和gnb硬件群延迟而引起的。
[0263]
与定位相关联的各种参数可能影响ue处的功耗。此类参数的知识可被用于估计
(或建模)该ue功耗。通过对ue的功耗进行准确建模,可以按预测方式来利用各种功率节省特征和/或性能增强特征,以便改善用户体验。
[0264]
附加延迟或误差源是由于用于位置定位的ue和gnb硬件群延迟而引起的。图10解说了根据本公开的各方面的示出在基站(gnb)(例如,本文中所描述的任何基站)与ue(例如,本文中所描述的任何ue)之间交换的rtt测量信号的示例性定时的示图1000。图10在一些方面与图9类似。然而,在图10中,关于1002-1008示出了ue和gnb硬件群延迟(这主要是由于ue和gnb处的基带(bb)组件和天线(ant)之间的内部硬件延迟而引起的)。应当领会,tx侧和rx侧两者因路径而异的或因波束而异的延迟影响rtt测量。硬件群延迟(诸如1002-1008)会导致定时误差和/或校准误差,这些误差会影响rtt以及其他测量(诸如tdoa、rstd等),进而会影响定位性能。例如,在一些设计中,10纳秒的误差将在最终锁定中引入3米误差。
[0265]
图11解说了根据本公开的各方面的示例性无线通信系统1100。在图11的示例中,ue 1104(其可对应于本文中所描述的任何ue)正在尝试计算对其定位的估计,或者辅助另一实体(例如,基站或核心网组件、另一ue、位置服务器、第三方应用等)经由多rtt定位方案来计算对其定位的估计。ue 1104可使用rf信号以及用于调制rf信号和交换信息分组的标准化协议来与多个基站1102-1、1102-2和1102-3(统称为基站1102,其可对应于本文中所描述的任何基站)进行无线通信。通过从所交换的rf信号中提取不同类型的信息并利用无线通信系统1100的布局(即,基站位置、几何形状等),ue 1104可确定其定位,或者辅助确定其在预定义的参考坐标系中的定位。在一方面,ue 1104可使用二维坐标系来指定其定位;然而,本文中所公开的各方面不限于此,并且还可适用于在期望额外维度的情况下使用三维坐标系来确定定位。附加地,虽然图11解说了一个ue 1104和三个基站1102,但如将领会的,可存在更多ue 1104以及更多的基站1102。
[0266]
为了支持定位估计,基站1102可被配置成向其覆盖区域中的ue 1104广播参考rf信号(例如,prs、nrs、crs、trs、csi-rs、pss、sss等),以使ue 1104能够测量此类参考rf信号的特性。例如,ue 1104可测量由至少三个不同的基站1102传送的特定参考rf信号(例如,prs、nrs、crs、csi-rs等)的toa,并且可使用rtt定位方法将这些toa(和附加信息)报告回服务基站1102或另一定位实体(例如,位置服务器230、lmf 270)。
[0267]
在一方面,尽管被描述为ue 1104测量来自基站1102的参考rf信号,但ue 1104可测量来自由基站1102支持的多个蜂窝小区中的一个蜂窝小区的参考rf信号。其中ue 1104测量由基站1102所支持的蜂窝小区所传送的参考rf信号,由ue 1104为了执行rtt规程而测量的至少两个其他参考rf信号将来自由与第一基站1102不同的基站1102所支持的蜂窝小区并且可能在ue 1104处具有良好的或不良的信号强度。
[0268]
为了确定ue 1104的位置(x,y),确定ue 1104的定位的实体需要知晓基站1102的位置,该基站1102的位置可以在参考坐标系中表示为(xk、yk),其中在图11的示例中,k=1、2、3。如果基站1102(例如,服务基站)或ue 1104中的一者确定ue 1104的位置,则所涉及基站1102的位置可由具有网络几何形状知识的位置服务器(例如,位置服务器230、lmf 270)提供给服务基站1102或ue 1104。替换地,该位置服务器可使用已知的网络几何形状来确定ue 1104的定位。
[0269]
ue 1104或相应基站1102可以确定ue 1104与相应基站1102之间的距离(dk,其中k=1,2,3)。在一方面,确定在ue 1104和任何基站1102之间交换的信号的rtt 1110可被执行
并且被转换为距离(dk)。如下文进一步讨论的,rtt技术可测量发送信令消息(例如,参考rf信号)与接收响应之间的时间。这些方法可利用校准来移除任何处理延迟。在一些环境中,可假定ue 1104和基站1102的处理延迟是相同的。然而,此类假定在实践中可能不成立。
[0270]
一旦确定了每个距离dk,ue 1104、基站1102或位置服务器(例如,位置服务器230、lmf 270)就可通过使用各种各样的已知几何技术(诸如举例而言三边测量)来求解出ue 1104的位置(x,y)。从图11可看到ue 1104的定位理想地位于三个半圆的公共交点,每个半圆由半径dk和中心(xk,yk)来定义,其中k=1,2,3。
[0271]
在一些实例中,可以获得抵达角(aoa)或出发角(aod)形式的附加信息,该aoa或aod定义直线方向(例如,其可以在水平面中、或在三维中)或可能的(例如,从基站1102的位置来看的ue 1104的)方向范围。两个方向在点(x,y)处或附近的交点可提供对ue 1104的位置的另一估计。
[0272]
定位估计(例如,针对ue 1104)可用其他名称来引述,诸如位置估计、位置、定位、定位锁定、锁定等。定位估计可以是大地式的并且包括坐标(例如,纬度、经度和可能的海拔),或者可以是市政式的并且包括街道地址、邮政地址、或某个其他措辞的位置描述。定位估计可进一步相对于某个其他已知位置来定义或以绝对项来定义(例如,使用纬度、经度和可能的海拔)。定位估计可包括预期误差或不确定性(例如,通过包括预期位置将以某个指定或默认的置信度被包含在其内的区域或体积)。
[0273]
图12解说了根据本发明的其他方面的示出在基站(例如,本文中所描述的任何基站)与ue(例如,本文中所描述的任何ue)之间交换的rtt测量信号的示例性定时的示图1200。具体而言,图12的1202-1004表示与分别在gnb和ue处所测得的rx-tx差相关联的帧延迟的部分。
[0274]
如从以上公开将领会的,在5g nr中支持的nr原生定位技术包括仅dl定位方案(例如,dl-tdoa、dl-aod等)、仅ul定位方案(例如,ul-tdoa、ul-aoa)和dl+ul定位方案(例如,与一个或多个相邻基站的rtt或多rtt)。另外,5g nr版本16中支持增强型蜂窝小区id(e-cid)基于无线电资源管理(rrm)的测量。
[0275]
如以上所提及的,prs被定义以用于nr定位,从而使得ue能够检测和测量更多邻居trp。若干prs配置被支持以实现各种prs部署(例如,室内、室外、亚6ghz、mmw)。为了支持prs波束操作,支持针对prs的波束扫掠。在版本16和版本17中支持ue辅助式和基于ue两者的定位计算。此外,在rrc连通、rrc空闲和rrc非活跃模式中支持定位。针对用于定位的参考信号的配置的示例在表3中示出如下:
[0276][0277]
表3:对用于定位的参考信号的配置
[0278]
在nr中,频率层指在相同带宽上具有共享特性(诸如共用scs、循环前缀(cp)等)的频域资源的集合。对于tdoa,跨多个频率层定义单个trp参考。可以在从网络传达到ue的定位辅助数据(ad)中指定该单个trp参考。
[0279]
如以上所提及的,在当前nr规范中,dl-prs和srs-p(例如,ul-prs或侧链路prs(sl-prs))利用诸如资源集、相应资源集内的资源、每个资源的多个实例或重复等的参数以分层方式来定义。在版本16中,在dl-prs资源被配置之后,dl-prs资源不随时间变化,而srs-p资源可以由gnb按需配置和关闭。在版本18中,可以按各种方式来修改dl-prs或srs-p配置。例如,可以打开和关闭dl-prs或srs-p配置,并且可以基于来自应用或位置服务器(例如,lmf)的动态请求来改变dl-prs或srs-p配置的参数。在另一示例中,ue可以向gnb和/或lmf推荐可以使用的增强型参数集(例如,以提高准确性、减少等待时间等)。在又一示例中,可以利用ue配置多于一个dl-prs或srs-p配置,其中特定dl-prs或srs-p配置按需经由来自gnb的信令被激活或禁用。
[0280]
本公开的各方面由此针对包括多个rs-p配置的时变rs-p(例如,dl-prs、或诸如ul-srs-p或sl-srs-p等的srs-p)配置,每个配置与不同的时间段相关联。此类方面可以提供各种技术优势,诸如改进与用于ue定位估计的定位相关联的定位和/或等待时间,尤其是在能可靠地预测不同时间的定位环境的场景中。
[0281]
图13解说了根据本公开的各方面的示例性无线通信过程1300。在一方面,过程1300可以由ue 302执行。
[0282]
在1310,ue 302(例如,接收机312或322等)从网络组件(例如,服务基站、lmf、位置服务器或其组合,例如,ran中的lmf)接收第一时变rs-p配置,其包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置。
[0283]
在1320,ue 302(例如,接收机312或322、发射机314或324等)根据第一rs-p配置在
第一时间段期间与至少一个基站(例如,服务基站和一个或多个邻居基站、与每个相应基站相关联的一个或多个trp等)传达第一rs-p集合。
[0284]
在1330,ue 302(例如,接收机312或322、发射机314或324等)根据第二rs-p配置在第二时间段期间与至少一个基站传达第二rs-p集合。
[0285]
图14解说了根据本公开的各方面的示例性无线通信过程1400。在一方面,过程1400可以由网络组件(例如,诸如bs 304之类的服务基站、lmf、位置服务器或其组合,例如,ran中的lmf)来执行。
[0286]
在1405,网络组件(例如,处理系统384或394、rs-p模块388或398等)确定第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置。
[0287]
在1410,网络组件(例如,(诸)网络接口380或390、数据总线382、发射机354或364等)向ue传送第一时变rs-p配置。
[0288]
在1420,网络组件(例如,接收机352或362、发射机354或364等)可任选地根据第一rs-p配置在第一时间段期间与ue传达第一rs-p集合。1420处的通信是可任选的,并且可以在网络组件对应于基站的场景中来执行。
[0289]
在1430,网络组件(例如,接收机352或362、发射机354或364等)可任选地根据第二rs-p配置在第二时间段期间与ue传达第二rs-p集合。1430处的通信是可任选的,并且可以在网络组件对应于基站的场景中来执行。
[0290]
参照图13-图14,在一些设计中,第一rs-p集合可以对应于由ue向至少一个基站所传送的第一上行链路或侧链路srs-p集合,并且第二rs-p集合可以对应于由ue向该至少一个基站所传送的第二上行链路或侧链路srs-p集合。在其他设计中,第一rs-p集合可以对应于ue处从该至少一个基站所接收的第一dl-prs集合,并且第二rs-p集合可以对应于ue处从该至少一个基站所接收的第二dl-prs集合。在特定于dl-prs场景的示例中,ue可以在第一时间段之后(例如,向服务gnb)传送基于由ue对第一dl-prs集合的测量的第一测量报告,并且ue可以进一步在第二时间段之后传送基于由ue对第二dl-prs集合的测量的第二测量报告。
[0291]
参考图13-图14,在一些设计中,时变rs-p配置可以进一步包括与第三时间段相关联的第三rs-p配置。换言之,每时变rs-p配置的rs-p配置的数目不限于两(2)个,而是可以包括任何数目的rs-p配置。在一些设计中,两个或更多个rs-p配置可能相同,不同之处在于与不同的时间段相关联(例如,时变rs-p配置可以在各rs-p配置之间交替,诸如rs-p#1,随后是rs-p#2,随后是rsp#1,等等)。在一些设计中,第一rs-p配置和第二rs-p配置可以在一个或多个rs-p配置参数(诸如rs-p资源集、rs-p资源、周期性、重复因子或其组合)方面不同。
[0292]
参考图13-图14,在一些设计中,网络(例如,lmf)可以基于预测信息来配置时变rs-p参数,该预测信息指示在第一时间段期间第一rs-p配置将提供优越定位性能(例如,准确性、等待时间等);以及在第二时间段期间第二rs-p配置将提供优越的定位性能(例如,准确性、等待时间等)。在一些情形中,环境(例如,工业环境,诸如工厂)中的周期性和/或可预测运动可改变dl-prs或srs-p参数的最佳参数集。例如,如果ue在传送带上移动需要30秒才能完成一个循环/周期,则ue可以周期性地改变其优选的参数以匹配环境。在本公开的至少
一个方面的上下文中,该网络可以学习此类行为并且能够预测和优化ue配置以匹配此类环境。在另一场景中,ue可以在列车上,并且列车路线中的不同点可具有不同的最佳dl-prs或srs-p配置。在本公开的至少一个方面的上下文中,基于其在相同列车路线上的先前ue的经验,该网络可以为该ue提供时变配置。在另一场景中,可以为道路上的汽车提供大致取决于路线的时变配置(例如,该网络可以优化对已变远的蜂窝小区的搜寻等)。在另一场景中,巨型卫星星座可能正在相对于ue快速移动。在一示例中,可以指示ue监视与来自卫星的模式相对应的信号(例如,从ue的视角来看,此类卫星通常比gps卫星移动得快得多)。由于所涉及的星座的大小,可以经由时变rs-p配置来指令ue以时变方式进行监视,而不指示完整列表。
[0293]
参考图13-图14,在一些设计中,网络(例如,lmf)最初可能不知晓优化的rs-p配置。在该阶段,网络可以将ue配置成根据多个rs-p配置(或最密集的rs-p配置)进行报告,并且随后随时间修改(例如,优化)时变rs-p配置。在一些设计中,该网络还可以从多个ue学习(例如,联合学习)并且将该信息汇集在一起。在一些设计中,即使在网络配置时变rs-p配置之后,该网络也可以(例如,在列车路线的许多周期内)更新时变rs-p配置以匹配变化的周围环境。
[0294]
尽管图13-图14具体涉及时变rs-p配置,但在其他设计中,可以建立变化rs-p配置,由此rs-p配置以事件触发方式而不是时间触发方式被转变。此类方面可以提供各种技术优势,诸如改进与用于ue定位估计的定位相关联的定位和/或等待时间,尤其是在不能可靠地预测不同时间的定位环境的场景中。
[0295]
图15解说了根据本公开的各方面的示例性无线通信过程1500。在一方面,过程1500可以由ue 302执行。
[0296]
在1510,ue 302(例如,接收机312或322等)从网络组件(例如,服务基站、lmf、位置服务器或其组合,例如,ran中的lmf)接收第一变化srs-p配置,其包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件。
[0297]
在1520,ue 302(例如,发射机314或324等)根据第一srs-p配置在第一时间段期间向至少一个基站(例如,服务基站和一个或多个邻居基站、与每个相应基站相关联的一个或多个trp等)传送第一srs-p集合。
[0298]
在1530,ue 302(例如,处理系统332、rs-p模块342等)基于对事件触发条件的监视来确定要从第一srs-p配置转变到第二srs-p配置。该方面可以与某些旧式办法形成对比,在旧式办法中,网络(而不是ue)确定要发起从一个srs-p配置到另一srs-p配置的切换。
[0299]
在1540,ue 302(例如,发射机314或324等)向该至少一个基站传送对该转变的指示。
[0300]
在1550,ue 302(例如,发射机314或324等)在传送转变指示之后根据第二srs-p配置在第二时间段期间向该至少一个基站传送第二srs-p集合。
[0301]
图16解说了根据本公开的各方面的示例性无线通信过程1600。在一方面,过程1400可以由网络组件(例如,诸如bs 304之类的服务基站、lmf、位置服务器或其组合,例如,ran中的lmf)来执行。
[0302]
在1605,网络组件(例如,处理系统384或394、rs-p模块388或398等)确定第一变化
用于定位的探通参考信号(srs-p)配置,其包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件。
[0303]
在1610,网络组件(例如,(诸)网络接口380或390、数据总线382、发射机354或364等)向ue传送第一变化srs-p配置。
[0304]
在1620,网络组件(例如,接收机352或362等)可任选地根据第一srs-p配置在第一时间段期间从ue接收第一srs-p集合。1620处的接收是可任选的,并且可以在网络组件对应于基站的场景中来执行。
[0305]
在1630,网络组件(例如,接收机352或362等)可任选地从ue接收对从第一srs-p配置转变到第二srs-p配置的指示。1630处的接收是可任选的,并且可以在网络组件对应于基站的场景中来执行。
[0306]
在1640,bs 304(例如,接收机352或362等)可任选地在接收到转变指示之后根据第二srs-p配置在第二时间段期间从ue接收第二srs-p集合。1640处的接收是可任选的,并且可以在网络组件对应于基站的场景中来执行。
[0307]
参照图15-16,在一些设计中,该至少一个事件触发条件包括:ue的运动条件(例如,如果ue运动超过阈值,则使用更密集的srs-p配置,并且如果ue运动未超过该阈值,则使用不太密集的srs-p配置),ue的位置,与ue相关联的信道特性(例如,若果ue位于高噪声区域,则使用更密集的srs-p配置,并且如果ue位于低噪声区域,则使用不太密集的ue配置),与ue相关联的导航路线条件(例如,路线的一些部分可被配置有比其他部分更密集的srs-p配置等),与ue相关联的卫星星座条件,或以上各项的组合。
[0308]
参考图15-图16,在一些设计中,bs可以传送第二时变rs-p配置,第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。在一些设计中,第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
[0309]
在以上详细描述中,可以看到在各示例中不同的特征被分组在一起。这种公开方式不应被理解为示例条款具有比每一条款中所明确提及的特征更多的特征的意图。相反,本公开的各个方面可包括少于所公开的个体示例条款的所有特征。因此,所附条款由此应该被认为是被纳入到该描述中,其中每一条款自身可为单独的示例。尽管每个从属条款在各条款中可以引用与其他条款之一的特定组合,但该从属条款的(诸)方面不限于该特定组合。将领会,其他示例条款还可包括从属条款(诸)方面与任何其它从属条款或独立条款的主题内容的组合或者任何特征与其他从属和独立条款的组合。本文所公开的各个方面明确包括这些组合,除非显式地表达或可以容易地推断出并不旨在特定的组合(例如,矛盾的方面,诸如将元件同时定义为绝缘体和导体)。此外,还旨在使条款的各方面可被包括在任何其他独立条款中,即使该条款不直接从属于该独立条款。
[0310]
在以下经编号条款中描述了各实现示例:
[0311]
条款1。一种由用户装备(ue)执行的无线通信的方法,包括:从网络组件接收第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;根据第一rs-p配置在第一时间段期间与至少一个基站传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与该至少一个基站传达第二rs-p集合。
[0312]
条款2。如条款1的方法,其中第一rs-p集合包括由ue向该至少一个基站所传送的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,并且其中第二rs-p集合包括由ue向该至少一个基站所传送的第二上行链路或侧链路srs-p集合。
[0313]
条款3。如条款1至2中的任一者的方法,其中第一rs-p集合包括ue处从该至少一个基站所接收的第一下行链路定位参考信号(dl-prs)集合,并且其中第二rs-p集合包括ue处从该至少一个基站所接收的第二dl-prs集合。
[0314]
条款4。如条款2至3中任一者的方法,进一步包括:在第一时间段之后传送基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后传送基于由ue对第二dl-prs集合的测量的第二测量报告。
[0315]
条款5。如条款1至4中的任一者的方法,其中该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
[0316]
条款6。如条款1至5中任一者的方法,进一步包括:从网络组件接收第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
[0317]
条款7。如条款1至6中的任一者的方法,其中第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
[0318]
条款8。如条款1至7中的任一者的方法,其中该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
[0319]
条款9。一种由网络组件执行的无线通信方法,包括:确定第一时变用于定位的参考信号(rs-p)配置,该第一时变rs-p配置包括与第一时间段相关联的第一rs-p配置和与第二时间段相关联的第二rs-p配置;以及向用户装备(ue)传送第一时变rs-p配置。
[0320]
条款10。如条款1至9中的任一者的方法,其中该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
[0321]
条款11。如条款9至10中任一者的方法,进一步包括:根据第一rs-p配置在第一时间段期间与ue传达第一rs-p集合;以及根据第二rs-p配置在第二时间段期间与ue传达第二rs-p集合。
[0322]
条款12。如条款11的方法,其中第一rs-p集合包括基站处从ue所接收的第一上行链路或侧链路用于定位的探通参考信号(srs-p)集合,其中第二rs-p集合包括服务基站处从ue所接收的第二上行链路或侧链路srs-p集合。
[0323]
条款13。如条款11至12中的任一者的方法,其中第一rs-p集合包括由基站向ue所传送的第一下行链路定位参考信号(dl-prs)集合,并且其中第二rs-p集合包括由基站向ue所传送的第二dl-prs集合。
[0324]
条款14。如条款13的方法,进一步包括:在第一时间段之后接收基于由ue对第一dl-prs集合的测量的第一测量报告;以及在第二时间段之后接收基于由ue对第二dl-prs集合的测量的第二测量报告。
[0325]
条款15。如条款9至14中的任一者的方法,其中该时变rs-p配置进一步包括与第三时间段相关联的第三rs-p配置。
[0326]
条款16。如条款15的方法,进一步包括:向ue传送第二时变rs-p配置,该第二时变rs-p配置相对于第一时变rs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间
段或其组合方面不同。
[0327]
条款17。如条款9至16中的任一者的方法,其中第一rs-p配置和第二rs-p配置在rs-p资源集、rs-p资源、周期性、重复因子或其组合方面不同。
[0328]
条款18。一种由用户装备(ue)执行的无线通信方法,包括:从网络组件接收第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;根据第一srs-p配置在第一时间段期间向至少一个基站传送第一srs-p集合;基于对事件触发条件的监视来确定要从第一srs-p配置转变到第二srs-p配置;向该至少一个基站传送对该转变的指示;以及在传送该转变指示之后根据第二srs-p配置在第二时间段期间向该至少一个基站传送第二srs-p集合。
[0329]
条款19。如条款18的方法,其中该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
[0330]
条款20。如条款18至19中的任一者的方法,其中该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
[0331]
条款21。如条款18至20中任一者的方法,进一步包括:从网络组件接收第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个rs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
[0332]
条款22。如条款18至21中的任一者的方法,其中第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
[0333]
条款23。一种由网络组件执行的无线通信方法,包括:确定第一变化用于定位的探通参考信号(srs-p)配置,该第一变化srs-p配置包括第一srs-p配置、第二srs-p配置、以及用于在第一srs-p配置和第二srs-p配置之间转变的至少一个事件触发条件;以及向用户装备(ue)传送第一变化srs-p配置。
[0334]
条款24。如条款23的方法,其中该网络组件包括服务基站、位置管理功能(lmf)、位置服务器或其组合。
[0335]
条款25。如条款23至24中任一者的方法,进一步包括:根据第一srs-p配置在第一时间段期间从ue接收第一srs-p集合;从ue接收对从第一srs-p配置转变到第二srs-p配置的指示;以及在接收到该转变指示之后根据第二srs-p配置在第二时间段期间从ue接收第二srs-p集合。
[0336]
条款26。如条款23至25中的任一者的方法,其中该至少一个事件触发条件包括ue的运动条件、ue的位置、与ue相关联的信道特性、与ue相关联的导航路线条件、与ue相关联的卫星星座条件或其组合。
[0337]
条款27。如条款23至26中任一者的方法,进一步包括:向ue传送第二变化srs-p配置,该第二变化srs-p配置相对于第一变化srs-p配置在一个或多个srs-p配置参数、一个或多个相关联的时间段或其组合方面不同。
[0338]
条款28。如条款27的方法,其中第一srs-p配置和第二srs-p配置在srs-p资源集、srs-p资源、周期性、重复因子或其组合方面不同。
[0339]
条款29。一种装置,其包括:存储器和通信地耦合到该存储器的至少一个处理器,
该存储器和该至少一个处理器被配置成执行根据条款1到28中任一者的方法。
[0340]
条款30。一种设备,包括用于执行如条款1至28中任一者的方法的装置。
[0341]
条款31。一种存储计算机可执行指令的非瞬态计算机可读介质,这些计算机可执行指令包括用于使得计算机或处理器执行如条款1至28中任一者的方法的至少一条指令。
[0342]
本领域技术人员将领会,信息和信号可使用各种不同技术和技艺中的任何一种来表示。例如,贯穿上面说明始终可能被述及的数据、指令、命令、信息、信号、比特、码元和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
[0343]
此外,本领域技术人员将领会,结合本文中所公开的方面描述的各种解说性逻辑块、模块、电路、和算法步骤可被实现为电子硬件、计算机软件、或两者的组合。为清楚地解说硬件与软件的这一可互换性,各种解说性组件、块、模块、电路、以及步骤在上面是以其功能性的形式作一般化描述的。此类功能性是被实现为硬件还是软件取决于具体应用和施加于整体系统的设计约束。技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本公开的范围。
[0344]
结合本文中公开的各方面所描述的各种解说性逻辑块、模块、以及电路可以用设计成执行本文所描述的功能的通用处理器、dsp、asic、fpga或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,该处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如,dsp与微处理器的组合、多个微处理器、与dsp核心协同的一个或多个微处理器、或任何其他此类配置。
[0345]
结合本文所公开的各方面描述的方法、序列和/或算法可直接在硬件中、在由处理器执行的软件模块中、或在这两者的组合中体现。软件模块可驻留在随机存取存储器(ram)、闪存存储器、只读存储器(rom)、可擦除可编程rom(eprom)、电可擦除可编程rom(eeprom)、寄存器、硬盘、可移动盘、cd-rom或者本领域中所知的任何其他形式的存储介质中。示例存储介质耦合到处理器以使得该处理器能从/向该存储介质读写信息。在替换方案中,存储介质可被整合到处理器。处理器和存储介质可驻留在asic中。asic可驻留在用户终端(例如,ue)中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
[0346]
在一个或多个示例方面,所描述的功能可在硬件、软件、固件或其任何组合中实现。若在软件中实现,则各功能可以作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,此类计算机可读介质可包括ram、rom、eeprom、cd-rom或其他光盘存储、磁盘存储或其他磁存储设备、或能用于携带或存储指令或数据结构形式的期望程序代码且能被计算机访问的任何其他介质。同样,任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(dsl)、或诸如红外、无线电、以及微波之类的无线技术从网站、服务器、或其他远程源传送的,则该同轴电缆、光纤电缆、双绞线、dsl、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文所使用的盘(disk)和碟(disc)包括压缩碟(cd)、激光碟、光碟、数字多用碟(dvd)、软盘和蓝光碟,其中盘(disk)往往以磁的方式再现数据,而碟(disc)用激光以光学方式再现数据。以上的组合应当也被包括在计算机可读介质的范围内。
[0347]
虽然前面的公开示出了本公开的解说性方面,但是应当注意,在其中可作出各种变更和修改而不会脱离如所附权利要求定义的本公开的范围。根据本文中所描述的本公开的各方面的方法权利要求中的功能、步骤和/或动作不必按任何特定次序来执行。此外,尽管本公开的要素可能是以单数来描述或主张权利的,但是复数也是已料想了的,除非显式地声明了限定于单数。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1