一种基于fahp-svm理论的wlan网络负载综合评价方法

文档序号:9289973阅读:456来源:国知局
一种基于fahp-svm理论的wlan网络负载综合评价方法
【技术领域】
[0001] 本发明涉及一种网络负载综合评价方法,更具体地说,涉及一种基于FAHP-SVM理 论的WLAN网络负载综合评价方法。
【背景技术】
[0002] 最近几年,智能终端数量越来越多,移动互联网逐渐兴起,以此带来了WLAN网络 建设规模的持续扩大。相比于传统的有线网络,WLAN网络具有使用更方便、部署成本低、使 用灵活等特点,因此,在很多公共场景,WLAN网络已经开始取代传统的组网方式。目前,各 大城市基本已经建立起了大规模的WLAN网络,但是对WLAN网络的管理以及优化还不是很 成熟。WLAN优化管理面临网络结构复杂、性能指标多、数据海量等问题。
[0003]目前,在各大运营商内部,现有的WLAN网管系统仅仅是对部分关键性能指标进行 监控,但是也仅仅局限于指标的数据采集、监视告警而已。WLAN网络的负载评价往往是通过 网络优化人员的主观评价来得出结果,这样不仅浪费了大量的人力物力,而且无法对WLAN 网络的整体运行状况做出一个客观合理的判断。所以,一种能够综合各个性能指标并且可 以实现自动评价的WLAN网络负载评价方法就显得尤为重要。

【发明内容】

[0004] 为了克服现有技术中存在的不足,本发明目的是提供一种基于FAHP-SVM理论的 WLAN网络负载综合评价方法。该评价方法不仅降低了人工成本,还能够实现自动评价,克服 了现有技术中存在的判断主观性强、人工成本高等缺点,实现了比较全面客观地对WALN网 络进彳丁评估的目的。
[0005] 为了实现上述发明目的,解决现有技术中所存在的问题,本发明采取的技术方案 是:一种基于FAHP-SVM理论的WLAN网络负载综合评价方法,其特征在于包括以下步骤:
[0006] 步骤1、构建WLAN网络负载综合评价指标体系,该指标体系在综合了WLAN网络特 点的基础上,以可行性、代表性、综合性为指标挑选原则,选取CPU利用率、内存利用率、下 挂AP数、DHCP地址池利用率和关联用户数构成WLAN网络负载评价指标体系;
[0007] 步骤2、选择机器学习算法的学习样本,为后续模型的自动评价奠定基础;
[0008] 步骤3、采用层次分析法确定WLAN网络负载评价指标体系中各个指标的权重,根 据专家意见,构造出判断矩阵并以此求得权重向量,具体包括以下子步骤:
[0009]子步骤(a)、采用1-9比例标度法构造判断矩阵C= (Cl])nXni;
[0010] 子步骤(b)、计算判断矩阵C的最大特征值A_及其对应的特征向量I= (Xi,x2,…,xn),将此特征向量进行归一化处理即可得到权重向量A= {a:,a2,…,aj;
[0011] 子步骤(c)、对判断矩阵C进行一致性检验,首先采用公式(1)计算一般一致性指 标Q,
[0012]
i1)
[0013] 式中,表示判断矩阵C的最大特征值,n表示判断矩阵的阶数;其次通过查表 得到平均随机一致性指标&,最后通过公式(2)计算判断矩阵C的一致性比率CR,
[0014]
(2)
[0015] 式中,Q表示一般一致性指标,R:表示平均随机一致性指标,当CR〈0. 1时,可以认 为该判断矩阵C达到了满意的一致性,当CR^ 0. 1时,应该对判断矩阵做出适当的修改,直 至满足CR〈0. 1的条件;
[0016] 步骤4、运用模糊综合评价法确定样本数据的网络负载评价值与负载评价等级,具 体包括以下子步骤:
[0017]子步骤(a)、将WLAN网络负载分成高负载、均衡、低负载三种状态,并以此建立相 应的评价等级集V和相对应的得分向量c;
[0018]V={vj, v2, v3}
[0019] c = (1, 0. 6, 0. 2)
[0020] 其中:Vl表示高负载状态的评价等级,与之相对应的得分向量为1,v2表示均衡状 态的评价等级,与之相对应的得分向量为〇. 6, ^表示低负载状态的评价等级集,与之相对 应的得分向量为0.2;
[0021] 子步骤(b)、明确隶属度矩阵R,根据专家意见,建立学习样本的模糊关系矩阵,求 得学习样本的评价值与评价等级之间的隶属关系,用专家打分的方法,对每一具体指标按 照高负载、均衡、低负载进行等级评价,建立隶属度矩阵R;
[0022] 子步骤(c)、计算模糊综合评价结果向量F和模糊综合评价值y,模糊综合评价结 果向量F通过公式(3)计算,模糊综合评价值y通过公式(4)计算,
[0023] F=AR (3)
[0024] 式中,F表示模糊综合评价向量,A表示指标权重向量,R表示隶属度矩阵;
[0025] y = Fc (4)
[0026] 式中,y表示模糊综合评价值,F表示模糊综合评价向量,c表示负载评价等级对应 的得分向量;
[0027] 子步骤(d)、确定模糊综合评价等级;
[0028] 步骤5、机器学习算法支持向量机模型训练,获得网络负载自动评价模型,具体包 括以下子步骤:
[0029] 子步骤(a)、确定输入输出;
[0030] 子步骤(b)、数据归一化处理;
[0031] 为了防止大数量级数据对小数量级数据的掩盖,需要对训练集输入进行归一化处 理,按照公式(5)处理,使输入值都介于[-1,1]之间,
[0032]
[0033] 式中,x为输入指标值,x_表示输入训练集的最大值,x_表示输入训练集的最小 值,Y为归一化后的输出矩阵,ymax= 1,ymin= -1 ;
[0034] 子步骤(c)、确定核函数以及SVM模型最优参数;
[0035] 子步骤(d)、输出最佳参数,获得SVM模型,输出WLAN网络负载评价模型;
[0036] 步骤6、WLAN网络负载评价模型根据输入的实时WLAN网络性能数据,输出该时刻 网络对应的负载值与负载等级。
[0037] 本发明有益效果是:一种基于FAHP-SVM理论的WLAN网络负载综合评价方法,包括 以下步骤:步骤1、构建WLAN网络负载综合评价指标体系;步骤2、选择机器学习算法的学 习样本,为后续模型的自动评价奠定基础;步骤3、采用层次分析法确定WLAN网络负载评价 指标体系中各个指标的权重;步骤4、运用模糊综合评价法确定样本数据的网络负载评价 值与负载评价等级;步骤5、机器学习算法支持向量机模型训练,获得网络负载自动评价模 型;步骤6、WLAN网络负载评价模型根据输入的实时WLAN网络性能数据,输出该时刻网络对 应的负载值与负载等级。与已有技术相比,本发明既充分利用了专家知识,又不依赖于某个 具体的专家意见,使得评估结果准确客观。该发明方法综合各方面的不同性能指标,能够较 全面地评估WLAN网络性能质量,可以指导运营商网络优化部门有效地进行WLAN网络优化 和负载均衡。另外,该发明方法通过运用机器学习经典算法SVM实现了对WLAN网络负载的 自动评价,大大降低了人工成本和时间成本。
【附图说明】
[0038] 图1为本发明方法流程图。
[0039] 图2为本发明方法评估效果对比图。
【具体实施方式】
[0040] 下面结合附图对本发明作进一步说明。
[0041] 如图1所示,一种基于FAHP-SVM理论的WLAN网络性能综合评价方法,包括以下步 骤:步骤1、构建WLAN网络负载综合评价指标体系,该指标体系在综合了WLAN网络特点的 基础上,以可行性、代表性、综合性为指标挑选原则,选取CPU利用率、内存利用率、下挂AP 数、DHCP地址池利用率和关联用户数构成WLAN网络负载评价指标体系,具体的指标及其指 标的含义如表1所示;
[0042] 步骤2、选择机器学习算法的学习样本,为后续模型的自动评价奠定基础。考虑到 WLAN网络负载评价系统本身,学习样本的输出评价值需要专家大量的工作,样本数量不宜 过大。经过反复试验以及专家讨论,现选取出附录A中30组具有代表性的样本数据,作为 机器学习建模的样本来源。在这30组样本数据中,高负载、均衡、低负载状态的数据各10 组,每种状态的10组数据都均匀分布,避免重复覆盖。
[0043]表1
[0044]
[0045] 步骤3、采用层次分析法确定WLAN网络负载评价指标体系中各个指标的权重,根 据专家意见,构造出判断矩阵并以此求得权重向量,具体包括以下子步骤:
[0046] 步骤(a)、用1-9比例标度法构造判断矩阵C= (Cl])nXni,C具体表示为:
[0047]
[0048] 步骤(b)、计算判断矩阵C的最大特征值及其对应的特征向量| = (Xl,x2,… ,xn),将此特征向量进行归一化处理即可得到权重向量A= {a。a2,…,an};
[0049] 通过特征根法求解判断矩阵可以得出判断矩阵C的最大特征值A_= 5. 0687,经 过计算对应该特征根的特征向量为:
[0050] | = (x"x2,x3,x4,x5) = (-〇? 6405, -〇? 0878, -〇? 6405, -〇? 1303, -〇? 3935)
[0051] 对该特征向量归一化之后即可得到评价指标的权重向量A
[0052]A=(0.3384,0.0464,0.3384,0.0689,0.2079)
[0053] 步骤(c)、对判断矩阵C进行一致性检验,首先采用公式(1)计算一般一致性指标 Q,
[0054]
[0055] 式中,A_表示判断矩阵C的最大特征值,n表示判断矩阵的阶数;其次通过查表 得到平均随机一致性指标馬,最后通过公式(2)计算判断矩阵C的一致性比率CR,
[0056]
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1