一种图像处理中坏点去除的方法
【技术领域】
[0001]本发明涉及半导体技术领域,具体涉及一种图像处理中坏点去除的方法。
【背景技术】
[0002]在图像成像过程中,最先出来的Raw图像数据会存在拥有坏点的现象,坏点将导致整个图像质量下降。因此,需要对图像成像过程中的坏点进行去除。
[0003]通常对整个图像进行校正,面对坏点较集中的区域,校正效果不明显;或者虽然在一定程度上能达到明显的校正效果,但是采用的运算步骤较为复杂,例如,一般采用从多种梯度来对坏点进行判断和校正,其运算过程繁长;此外,该方法对于坏点聚集的区域,会出现校正后的坏点仍然是坏点的问题,校正效果实际上并不理想。
【发明内容】
[0004]为了克服以上问题,本发明提供了一种较为简单的图像处理中坏点去除的方法,以提尚坏点fe正效率。
[0005]为了达到上述目的,本发明提供了一种图像处理中坏点去除的方法,其包括:
[0006]步骤01:采集一张全黑的raw图像;
[0007]步骤02:确认所述raw图像中的坏点;
[0008]步骤03:对坏点进行校正,采用与该坏点相邻最近的同一颜色的非坏点像素来替换该坏点;
[0009]其中,
[0010]步骤02中,针对第一行、第二行、第一列和第二列中每一行或每一列中的所有单号像素和双号像素分别设定像素阈值,并且比较单号像素的值或双号像素的值与所设定的相应像素阈值的大小,当单号像素的值或双号像素的值大于所设定的相应像素阈值时,则该单号像素或双号像素为坏点;从第三行和第三列开始,针对每一个像素设定像素阈值,并且比较每一个像素的值与所设定的相应像素阈值的大小,当某个像素的值大于所设定的相应像素阈值时,则该像素为坏点;并且,从第三行和第三列开始,针对每一个坏点的确认和校正交替进行。
[0011]优选地,针对所述单号像素的坏点确认包括:
[0012]步骤0201:设定一个阈值系数,分别计算出第一行、第二行、第一列和第二列中每一行或每一列中所有单号像素的中值;
[0013]步骤0202:将所述中值和所述阈值系数的乘积作为所述单号像素的像素阈值;
[0014]步骤0203:比较所述单号像素的值与所述单号像素的像素阈值,当所述单号像素的值大于所述单号像素的像素阈值时,则该单号像素为所述每一行或每一列的坏点;
[0015]针对所述双号像素的坏点确认包括:
[0016]步骤0204:设定一个阈值系数,分别计算出第一行、第二行、第一列和第二列中每一行或每一列中所有双号像素的中值;
[0017]步骤0205:将所述中值和所述阈值系数的乘积作为所述双号像素的像素阈值;
[0018]步骤0206:比较所述双号像素的值与所述双号像素的像素阈值,当所述双号像素的值大于所述双号像素的像素阈值时,则该双号像素为所述每一行或每一列的坏点。
[0019]优选地,所述单号像素的中值或所述双号像素的中值的计算包括:将第一行、第二行、第一列和第二列中的每一行的像素值求平均值或每一列的像素值求平均值。
[0020]优选地,从第三行和第三列开始,针对每一个坏点的确认和校正交替进行的过程中,针对坏点的确认过程具体包括:
[0021]若某一个像素P(i,j)为R像素,则设定一个阈值系数,该像素的像素阈值为该阈值系数乘以(P(1-2,j-2)+P(i,j-2)+P(i+2,j-2)+P(1-2,j))/4;比较该像素的值与该像素的像素阈值,当该像素的值大于该像素的像素阈值时,则该像素为坏点;
[0022]若某一个像素P(i,j)为B像素,则设定一个阈值系数,该像素的像素阈值为该阈值系数乘以(P(1-2,j-2)+P(i,j-2)+P(i+2,j-2)+P(1-2,j))/4;比较该像素的值与该像素的像素阈值,当该像素的值大于该像素的像素阈值时,则该像素为坏点;
[0023]若某一个像素P(i,j)为G像素,则设定一个阈值系数,该像素的像素阈值为该阈值系数乘以(P(1-ι,j-1 )+P(i+1,j-ι))/2;比较该像素的值与该像素的像素阈值,当该像素的值大于该像素的像素阈值时,则该像素为坏点。
[0024]优选地,从第三行和第三列开始,针对每一个坏点的确认和校正交替进行的过程中,针对坏点的确认过程还包括:针对最大行或者最大列的像素P(i,j)的坏点确认方法包括:
[0025]若某一像素P(i,j)为R像素,则设定一个阈值系数,该像素的像素阈值为该阈值系数乘以(P (1-2,j-2) +P (i,j-2) +P(1-2,j)) /3;比较该像素的值与该像素的像素阈值,当该像素的值大于该像素的像素阈值时,则该像素为坏点;
[0026]若某一像素P(i,j)为B像素,则设定一个阈值系数,该像素的像素阈值为该阈值系数乘以(P (1-2,j-2) +P (i,j-2) +P(1-2,j)) /3;比较该像素的值与该像素的像素阈值,当该像素的值大于该像素的像素阈值时,则该像素为坏点;
[0027]若某一像素P(i,j)为G像素,则设定一个阈值系数,该像素的像素阈值为该阈值系数乘以(P (1-1,j -1) +P (1-2,j) +P (i,j -2)) /3;比较该像素的值与该像素的像素阈值,当该像素的值大于该像素的像素阈值时,则该像素为坏点。
[0028]优选地,所述阈值系数为I?2.5。
[0029]优选地,所述步骤03包括:
[0030]针对第一行和第二行的校正过程包括:若坏点所在单号像素P(i,j)是独立的,SPP(1-2,j)、P( i+2,j)不为坏点,则令P( i,j) = (P(1-2,j )+P(i+2,j) )/2;若坏点所在的单号像素P(i,j)是连在一起的,即P(i,j),P(i+2,j)都为坏点,则令P(i,j) =P(1-2,j),P(i+2,j)=(?(1,」_)+?(1+4,」_))/2;若坏点所在双号像素?(1,」_)是独立的,8吒(1-2,」_)、卩(1+2,」_)不为坏点,则令P (i,j) = (P (1-2,j) +P (i+2,j)) /2;若坏点所在的双号像素P(i,j)是连在一起的,即P(i,j),P(i+2,j)都为坏点,则令P(i,j)=P(1-2,j),P(i+2,j) = (P(i,j)+P(i+4,j))/2;
[0031]针对第一列和第二列的校正过程包括:若坏点所在单号像素P(i_4,j+4)是独立的,8口?(卜4,」+2)、?(1-4」+6)不为坏点,则令?(1-4」+4) = (?(1-4」+2)+卩(卜4,」+6))/2;若坏点所在的单号像素P( i_4, j+4)是连在一起的,即P( i_4,j+4)与P( i_4,j+2)都为坏点,则令 P(1-4,j+2)=P(1-4,j),P(1-4,j+4) = (P(1-4,j+2)+P(1-4,j+6))/2;若坏点所在双号像素?(卜4,]_+4)是独立的,8吒(丨-4,]_+2)、?(丨-4,]_+6)不为坏点,则令?(丨-4,]_+4) = (?(1-4,j+2)+P(1-4,j+6))/2;若坏点所在的双号像素P(1-4,j+4)是连在一起的,S卩P(1-4,j+4)与P(1-4,j+2)都为坏点,则令P(1-4,j+2)=P(1-4,j),P(1-4,j+4) = (P(1-4,j+2)+P(1-4,j+6))/20
[0032]优选地,从第三行和第三列开始,针对每一个坏点的确认和校正交替进行的过程中,对坏点的校正过程具体包括:
[0033]若某一个坏点P(ij)SR像素,则采用(pGjJj^PajlHPG+SjD+PG-SJ))/^ 来替换该坏点;
[0034]若某一个坏点P(ij)为B像素,则采用(pGjJj^PajlHPG+SjD+PG-SJ))/^ 来替换该坏点;
[0035]若某一个坏点?(1」)为6像素,则采用0(1-1,」-1)+?(1-1,」+1))/2来替换该坏点。
[0036]优选地,从第三行和第三列开始,针对每一个坏点的确认和校正交替进行的过程中,对坏点的校正过程还包括:针对最大行或者最大列的像素P(i,j)的坏点的校正过程,其包括:
[0037]若某一个坏点P(i,j)为R像素,则采用(P(1-2,j-2) +P(i,j-2) +P(1-2,j)) /3替换该坏点;
[0038]若某一个坏点P(i,j)为B像素,则采用(P (1-2,j-2) +P (i,j-2) +P (1-2,j)) /3替换该坏点;
[0039]若某一个坏点?(丨,」)为6像素,则采用(?(丨-1,」-1)+?(丨-2,」)+?(丨,」-2))/3替换该坏点。
[0040 ]优选地,所述全黑的raw图像为理论上整个图像的像素值为O的raw图像。
[0041 ]本发明的图像处理中坏点去除方法,通过逐一查找坏点和逐一校正坏点的方式,采用非坏点来校正坏点,这样在raw图像中能够更准确的计算坏点的位置,对于后续的图像处理,只需要对相同坏点位置进行校正处理即可,而无需再次寻找坏点;本发明的方法运算简单,提高了坏点去除效率;对于坏点较集中的区域,处理效果较好;由于坏点校正时,替换坏点的数值为非坏点数值或校正后的数值,降低了校正后的该坏点位置仍然是坏点的几率;同时由于算法简单,可以采用FPGA简单实现。
【附图说明】
[0042]图1为本发明的一个较佳实施例的图像处理中坏点去除方法的流程示意图
[0043]图2为以R像素为中心的像素区域