本发明涉及冲击吸收结构及具有该冲击吸收结构的车辆用外板构件。
背景技术:
专利文献1公开了一种在纤维增强塑料制的外板与内板之间配置有多个柱状肋部的机罩。该机罩在外板上作用有冲击力时通过破坏多个肋部来吸收能量。
现有技术文献
专利文献
专利文献1:日本特开2012-131335号公报
技术实现要素:
发明要解决的问题
在所述机罩中,虽然通过破坏多个肋部来吸收能量,但是,由于该肋部分别具有柱状的形状,因此,无法增大外板或内板与肋部之间的粘接面积,因此,可能导致机罩的弯曲刚度下降。
本发明的目的在于提供能够提高弯曲刚度、且增大能量吸收量的冲击吸收结构及具有该冲击吸收结构的车辆用外板构件。
用于解决问题的方案
本发明的第1方式为一种冲击吸收结构,该冲击吸收结构包括中间构件,该中间构件沿着由第1纤维增强复合材料形成的表面侧构件和由第2纤维增强复合材料形成的背面侧构件延伸,且被夹在表面侧构件和背面侧构件之间,该中间构件具有比表面侧构件的伸长率低的伸长率,且具有比表面侧构件的强度低的强度。
本发明的第2方式为一种车辆用外板构件,该车辆用外板构件具有所述冲击吸收结构。
发明的效果
在所述冲击吸收结构中,由于中间构件沿着表面侧构件和背面侧构件延伸,且被夹在表面侧构件和背面侧构件之间,因此,相比于仅有表面侧构件和背面侧构件的情况,截面积增大,因而整体的弯曲刚度提高。另外,中间构件具有比表面侧构件的伸长率低的伸长率,且具有比表面侧构件的强度低的强度。因而,在由自表面侧构件朝向背面侧构件输入的冲击载荷的作用下这些构件整体一体地弯曲变形时,表面侧构件、背面侧构件以及中间构件产生伸长变形,但是,此时,由于中间构件的伸长率和强度低于表面侧构件的伸长率和强度,因此,中间构件比表面侧构件先以伸长变形的方式屈服并断裂。即,采用所述冲击吸收结构,从冲击载荷的输入开始到中间构件断裂为止,能够较高地保持整体的弯曲刚度。另外,然后,在中间构件断裂并吸收了能量之后,利用由该表面侧构件、背面侧构件以及中间构件形成的截面积的大小能够保持整体的弯曲刚度,直到表面侧构件或背面侧构件断裂。因此,能够高效地吸收更多的能量。
附图说明
图1是具有本发明的实施方式的冲击吸收结构的机罩的立体图。
图2是具有本发明的第1实施方式的冲击吸收结构的机罩的剖视图。
图3是表示在使冲击器碰撞了具有本发明的第1实施方式的冲击吸收结构的机罩时施加于冲击器的合成加速度的时间变化的曲线图。
图4是说明本发明的第1实施方式的冲击能量吸收过程的图。
图5是具有本发明的第2实施方式的冲击吸收结构的机罩的剖视图。
图6是表示在使冲击器碰撞了具有本发明的第2实施方式的冲击吸收结构的机罩时施加于冲击器的合成加速度的时间变化的曲线图。
图7是说明本发明的第2实施方式的冲击能量吸收过程的图。
具体实施方式
以下,参照附图说明本发明的实施方式。另外,附图是示意性的,存在有各尺寸的关系、比例等与实际的各尺寸的关系、比例等不同的情况。另外,以下的说明中的“上”“下”等表示方向的用语是为了方便说明各部分的位置关系而确定的,并不用于限定实际的安装姿态等。
以下的实施方式是将本发明的冲击吸收结构应用于汽车的引擎罩或发动机机罩(以下简称为机罩)的例子。本发明的冲击吸收结构并不限定于汽车的机罩,还能够适用于车门板、保险杠、行李箱盖、后备箱门、挡泥板、侧车身覆板、车顶板等车辆用外板构件。
第1实施方式
图1是具有本发明的第1实施方式的冲击吸收结构S1的机罩1的立体图,图2是机罩1的剖视图。
如图1所示,机罩1覆盖被设于汽车等车辆2的前部的发动机室等。
如图2所示,作为机罩1的冲击吸收结构S1具有表面侧构件11、与表面侧构件11相对配置的背面侧构件12、配置于表面侧构件11与背面侧构件12之间的中间构件13以及第2中间构件14。
表面侧构件11是构成机罩1的表面层E的碳纤维增强塑料制的薄片状的构件。表面侧构件11的厚度例如能够设定为0.8mm~1.0mm,断裂伸长率(以下也简称为“伸长”或“伸长率”)例如能够设定为1.5%~2.0%。表面侧构件11的抗拉强度例如能够设定为300MPa~1000MPa,压缩强度例如能够设定为240MPa~800MPa。另外,表面侧构件11的厚度、伸长率、强度等并不限定于上述的值,能够通过实验等设定为以下这样的值:如下所述,在冲击器F产生了碰撞时,使表面侧构件11在第2中间构件14充分地压扁变形的时刻断裂。表面侧构件11的外侧表面构成机罩1的外观设计面。
背面侧构件12为构成机罩1的背面层I的碳纤维增强塑料制的薄片状的构件。背面侧构件12的厚度与表面侧构件11的厚度大致相等,例如能够设定为0.8mm~1.0mm。另外,背面侧构件12的伸长率与表面侧构件11的伸长率大致相等,例如能够设定为1.5%~2.0%。另外,背面侧构件12的抗拉强度与表面侧构件11的抗拉强度大致相等,例如能够设定为300MPa~1000MPa,压缩强度与表面侧构件11的压缩强度大致相等,例如能够设定为240MPa~800MPa。另外,背面侧构件12的厚度、伸长率、强度等并不限定于上述的值,能够通过实验等设定为以下这样的值:如下所述,在冲击器F产生了碰撞时,能够使表面侧构件11在第2中间构件14充分地压扁变形的时刻断裂。
中间构件13为构成被夹在机罩1的表面层E和背面层I之间的中间层M(能量吸收层)的一部分的例如环氧树脂制的薄片状的构件。中间构件13沿着表面侧构件11和背面侧构件12延伸,中间构件13的上侧的面与表面侧构件11的下侧的面(背面)面接合。中间构件13的厚度大于表面侧构件11、背面侧构件12的厚度,例如能够设定为2.0mm~3.0mm。另外,中间构件13具有比表面侧构件11的伸长率低的伸长率,且具有比表面侧构件11的强度低的强度。通过在构成中间构件13的环氧树脂中添加40重量%左右的例如滑石等矿物质的粉末,从而能够将中间构件13的伸长率调整为例如小于1.5%。另外,抗拉强度例如能够设定为50MPa~200MPa。由此,在中间构件13与表面侧构件11一体地产生变形时,使中间构件13比表面侧构件11先断裂。另外,中间构件13的厚度、伸长率、强度等并不限定于上述的值,能够通过实验等设定为以下这样的值:如下所述,在冲击器碰撞后初期,使中间构件13保持与表面侧构件11的一体性而有助于整体的刚性,然后,使中间构件13比表面侧构件11先断裂。
第2中间构件14为介于中间构件13与背面侧构件12之间并与中间构件13一起构成机罩1的中间层M(能量吸收层)的一部分的薄片状的缓冲件。第2中间构件14沿着表面侧构件11和背面侧构件12延伸,第2中间构件14的上侧的面与中间构件13的下侧的面面接合,第2中间构件14的下侧的面与背面侧构件12的上侧的面(背面)面接合。第2中间构件14由聚氨酯泡沫等发泡材料、橡胶等形成,具有比表面侧构件11的强度低的强度。例如,第2中间构件14的抗拉强度能够设定为2MPa~70MPa。因此,在表面侧构件11和中间构件13产生变形时,至少从表面侧构件11和中间构件13一体地变形开始,首先,中间构件13断裂,然后,到表面侧构件11断裂为止的期间,第2中间构件14在厚度方向上被压缩(压扁变形),以便接受这些变形。第2中间构件14的厚度大于中间构件13的厚度,例如能够设定为5.0mm~7.0mm。另外,第2中间构件14的强度和厚度等并不限定于上述的值,而能够通过实验等设定为以下这样的值:如下所述,在冲击器F产生了碰撞时,使表面侧构件11在第2中间构件14充分地压扁变形的时刻断裂。即,第2中间构件14的强度和厚度能够设定为即使在由冲击器F的碰撞产生的变形导致表面侧构件11产生的应力达到了与碳纤维增强塑料的抗拉强度或压缩强度相当的应力的情况下,第2中间构件14产生的应力也不会达到强度极限的值。
机罩1能够通过以使粘接剂介于其间的方式依次层叠表面侧构件11、中间构件13、第2中间构件14以及背面侧构件12,并使用热压成型法、高压釜成型法等公知的成型方法一体地成型。另外,还可以利用将成为表面侧构件11和背面侧构件12的基材的纤维预成型坯与中间构件13和第2中间构件14一起封入模具,并向模具内加压注入表面侧构件11和背面侧构件12的基质树脂的方法(树脂传递成型方法)将它们一体成型。
以下,参照图3和图4说明第1实施方式的冲击能量吸收过程。
使国际标准(ISO/SC10/WG2)、EU标准(EEVC/WG10)所规定的行人保护试验中使用的冲击器F以规定的角度和速度与上述这样构成的机罩1相碰撞,并利用设于冲击器F的加速度传感器测量施加于冲击器F的合成加速度。图3是表示测量到的合成加速度的时间变化的曲线图(还称为G-T曲线)。
阶段1
当冲击器F与机罩1的表面相碰撞时,首先,表面侧构件11和中间构件13以在机罩1与冲击器F的接触点(以下为载荷点)P处的位移量成为最大的方式弹性变形。在此期间,由于中间构件13沿着表面侧构件11和背面侧构件12延伸,且被夹在表面侧构件11与背面侧构件12之间,因此,中间构件13与表面侧构件11一体地变形。另一方面,如上所述,由于第2中间构件14具有比表面侧构件11的强度低的强度,因此,第2中间构件14对表面侧构件11和中间构件13施加反弹力并且在厚度方向上压扁变形(在厚度方向上被压缩),以便接受表面侧构件11和中间构件13的变形。在载荷输入开始后初期,载荷点P处的位移量较小,第2中间构件14的反弹力相对较小。因此,在冲击器F上作为反作用力主要施加有表面侧构件11和中间构件13这两者的恢复力(弹性力)。另外,在该时刻,能够保持表面侧构件11、中间构件13、第2中间构件14以及背面侧构件12的一体性,利用由这些表面侧构件11、背面侧构件12、中间构件13以及第2中间构件14形成的截面积的大小,能够保持整体的弯曲刚度。因此,如图3所示,G-T曲线上的加速度表示随着时间的经过(随着表面侧构件11和中间构件13的位移的增加)而单调增加的趋势。
然后,当载荷点P的位移量到达规定的大小时,由于中间构件13具有比表面侧构件11的伸长率低的伸长率且具有比表面侧构件11的强度低的强度,因此,中间构件13比表面侧构件11先以伸长变形的方式屈服并断裂,如图4的(a)所示,中间构件13产生裂纹。该中间构件13的断裂吸收一部分的冲击能量。
阶段2
当中间构件13产生裂纹时,作用于冲击器F的反作用力中的源自中间构件13的弹性力的部分减小。因此,如图3所示,G-T曲线上的加速度在中间构件13产生了裂纹的时刻到达最初的极大值G1,之后随着时间的经过而减少。
另外,当中间构件13产生裂纹时,载荷成为集中于表面侧构件11的趋势,载荷点P的位移量进一步增加。因此,中间构件13之后仍继续产生断裂,如图4的(b)所示,中间构件13的断裂部位进一步增大,而吸收更多的能量。在此期间,作用于冲击器F的反作用力未增加,如图3所示,G-T曲线上的加速度也减少。另外,第2中间构件14进一步在厚度方向上压扁变形(被压缩),以便接受表面侧构件11和中间构件13的变形。
阶段3
然后,当第2中间构件14的变形量增大到一定程度,且其反弹力相对地变大时,自冲击器F输入的载荷的更多的部分还经由表面侧构件11和中间构件13的载荷点P附近部位、和第2中间构件14的压扁变形部被传递至背面侧构件12(参照图4的(b)中的箭头)。因此,在冲击器F上作为反作用力主要作用有表面侧构件11、第2中间构件14以及背面侧构件12这三者的恢复力(弹性力)。
当第2中间构件14的压扁变形量进一步增大时,输入载荷分散到更广的范围并传递至背面侧构件12,从而在冲击器F上作用有背面侧构件12的更广的范围内的恢复力(弹性力)、即更大的反作用力。因此,如图3所示,G-T曲线上的加速度在到达了极小值之后,再次增加。
然后,当变形进一步进行时,在第2中间构件14产生的应力到达强度极限之前,表面侧构件11产生的应力(主要由弯曲载荷产生的应力)到达与碳纤维增强塑料的抗拉强度或压缩强度相当的应力。由此,表面侧构件11断裂,如图4的(c)所示,表面侧构件11产生裂纹。该表面侧构件11的断裂进一步吸收能量。
阶段4
当表面侧构件11产生裂纹时,作用于冲击器F的反作用力中的源自表面侧构件11的弹性力的部分减少。因此,如图3所示,G-T曲线上的加速度在表面侧构件11产生了裂纹的时刻到达第二个极大值G2,之后随着时间的经过而逐渐减少。
以下说明第1实施方式的作用效果。
在本实施方式的冲击吸收结构S1中,由于中间构件13沿着由碳纤维增强塑料(第1纤维增强复合材料)形成的表面侧构件11和由碳纤维增强塑料(第2纤维增强复合材料)形成的背面侧构件12延伸,且被夹在表面侧构件11和背面侧构件12之间,因此,相比于只有表面侧构件11和背面侧构件12的情况,截面积增大,而能够提高冲击吸收结构S1整体的弯曲刚度。另外,中间构件13具有比表面侧构件11的伸长率低的伸长率,且具有比表面侧构件11的强度低的强度。因而,在由自表面侧构件11朝向背面侧构件12输入的冲击载荷的作用下这些构件整体一体地弯曲变形时,表面侧构件11、背面侧构件12以及中间构件13产生伸长变形,此时,由于中间构件13的伸长率和强度低于表面侧构件11的伸长率和强度,因此,中间构件13比表面侧构件11先以伸长变形的方式屈服并断裂。即,采用冲击吸收结构S1,能够从冲击载荷的输入开始到中间构件13断裂为止(阶段1),较高地保持整体的弯曲刚度。然后,在载荷点P的位移量到达了规定的大小的时刻(从阶段1到阶段2的过渡期),在中间构件13断裂并吸收了能量之后,能够利用由这些表面侧构件11、背面侧构件12以及中间构件13形成的截面积的大小保持整体的弯曲刚度,直到表面侧构件11或背面侧构件12断裂为止。因此,采用冲击吸收结构S1,能够高效地吸收更多的能量。
另外,本实施方式的冲击吸收结构S1还包括介于中间构件13与背面侧构件12之间的第2中间构件14。第2中间构件14具有比表面侧构件11的强度低的强度。因此,第2中间构件14在输入到表面侧构件11的冲击载荷的作用下在表面侧构件11断裂之前在厚度方向上被压缩,而吸收一部分的冲击能量。因此,采用冲击吸收结构S1,能够高效地吸收更多的能量。
另外,采用本实施方式的冲击吸收结构S1,由于具有第2中间构件14,其在输入到表面侧构件11的冲击载荷的作用下在厚度方向上被压缩,因此,能够增大变形时的载荷点P的位移量(变形行程),而能够吸收更多的能量,并且,通过确保该结构整体的充分的厚度、即截面积,能够提高整体的弯曲刚度。
然而,如专利文献1所示的机罩那样,对于在外板与内板之间架设有多个柱状的肋部的机罩,在要将外板、内板以及肋部一体成型时,可能产生由收缩而引起的外观不良。另外,在为了防止该情况而分别预先成型了外板和内板的情况下,需要在成型后的外板与内板之间利用粘接等架设肋部,而可能导致生产率下降。在本实施方式的冲击吸收结构S1中,由于表面侧构件11、中间构件13、第2中间构件14以及背面侧构件12互相面接合,因此,不会使表面侧构件11产生外观不良,而能够将表面侧构件11、中间构件13、第2中间构件14以及背面侧构件12一体成型,因此,能够提高生产率。
另外,采用本实施方式的冲击吸收结构S1,由于具有第2中间构件14,其在输入到表面侧构件11的冲击载荷的作用下在厚度方向上被压缩,因此,能够使所输入的冲击载荷分散传递至背面侧构件12,而能够增大G-T曲线上的加速度的第二个极大值G2的大小、或增大第二个极大值G2的大小相对于最初的极大值G1的大小的比(G2/G1)。另外,通过调节第2中间构件14的强度、厚度,能够控制上述第二个极大值G2的大小。
另外,采用本实施方式的冲击吸收结构S1,由于表面侧构件11、中间构件13、第2中间构件14以及背面侧构件12互相面接合,因此,能够进一步提高整体的弯曲刚度。
第2实施方式
接着,说明本发明的第2实施方式。本实施方式的冲击吸收结构S2主要在以下的两个方面与第1实施方式的冲击吸收结构S1不同。即:被夹在机罩1的表面层E和背面层I之间的中间层M(能量吸收层)仅由第1实施方式中的中间构件13构成,而在中间层M中并不存在相当于第2中间构件14的部分;构成机罩1的背面层I的背面侧构件12不是碳纤维增强塑料制而是玻璃纤维增强塑料制,因而背面侧构件12比表面侧构件11容易伸长。其他的结构要素与第1实施方式的相对应的结构要素等同,因此,标注相同的附图标记并省略详细的说明。
图5是具有本实施方式的冲击吸收结构S2的机罩1的剖视图。
如图5所示,作为机罩1的冲击吸收结构S2具有表面侧构件11、与表面侧构件11相对配置的背面侧构件12以及配置于表面侧构件11与背面侧构件12之间的中间构件13。
表面侧构件11为构成机罩1的表面层E的碳纤维增强塑料制的薄片状的构件。表面侧构件11的厚度、伸长率、强度等能够设定为与第1实施方式的表面侧构件11的厚度、伸长率、强度相同的值。另外,这些值没有特殊限定,能够通过实验等设定为以下这样的值:如下所述,在冲击器F产生了碰撞时,使表面侧构件11在中间构件13断裂之后断裂。
背面侧构件12为构成机罩1的背面层I的玻璃纤维增强塑料制的薄片状的构件。背面侧构件12的厚度与表面侧构件11的厚度大致相等,例如能够设定为0.8mm~1.0mm。另一方面,相对于表面侧构件11的伸长率设定为1.5%~2.0%,背面侧构件12的伸长率设定为大于表面侧构件11的伸长率。具体而言,背面侧构件12的伸长率例如能够设定为4.8%~6.1%。背面侧构件12的抗拉强度与表面侧构件11的抗拉强度大致相等,例如能够设定为250MPa~900MPa。另外,背面侧构件12的厚度、伸长率、强度等并不限定于上述的值,能够通过实验等设定为以下这样的值:如下所述,能够使表面侧构件11在由冲击器F的碰撞而导致中间构件13断裂之后断裂。
中间构件13为构成被夹在机罩1的表面层E和背面层I之间的中间层M(能量吸收层)的例如环氧树脂制的薄片状的构件。中间构件13沿着表面侧构件11和背面侧构件12延伸,中间构件13的上侧的面与表面侧构件11的下侧的面(背面)面接合,中间构件13的下侧的面与背面侧构件12的上侧的面(背面)面接合。中间构件13的厚度比表面侧构件11、背面侧构件12的厚度大,例如,能够设定为2.0mm~3.0mm。另外,中间构件13具有比表面侧构件11的伸长率低的伸长率,且具有比表面侧构件11的强度低的强度。通过向构成中间构件13的环氧树脂中添加40重量%左右的例如滑石等的矿物质的粉末,从而能够将中间构件13的伸长率调整为例如小于1.5%。另外,抗拉强度例如能够设定为50MPa~200MPa。由此,在中间构件13与表面侧构件11一体地变形时,使中间构件13比表面侧构件11先断裂。另外,中间构件13的厚度、伸长率、强度等并不限定于上述的值,能够通过实验等设定为以下这样的值:如下所述,在冲击器F的碰撞后初期,使中间构件13保持与表面侧构件11和背面侧构件12的一体性而有助于整体的刚性,并且,在之后使中间构件13比表面侧构件11先断裂。
以下,参照图6和图7,说明第2实施方式的冲击能量吸收过程。
使上述的冲击器F以规定的角度和速度与上述这样构成的机罩1相碰撞,并测量施加于冲击器F的合成加速度。图6是表示测量到的合成加速度的时间变化的曲线图(还称为G-T曲线)。
阶段1
当冲击器F与机罩1的表面相碰撞时,首先,机罩1以与冲击器F的接触点(以下称为载荷点)P处的位移量变得最大的方式弹性变形。在此期间,中间构件13沿着表面侧构件11和背面侧构件12延伸,且保持被夹在表面侧构件11和背面侧构件12之间的状态。即,中间构件13与表面侧构件11和背面侧构件12一体地变形,利用由这些表面侧构件11、背面侧构件12以及中间构件13形成的截面积的大小能够保持整体的弯曲刚度。因此,在冲击器F上作为反作用力而施加有表面侧构件11、中间构件13以及背面侧构件12整体的恢复力(弹性力),如图6所示,G-T曲线上的加速度表示随着时间的经过(随着上述位移的增加)而单调地增加的趋势。
中间构件13具有比表面侧构件11的伸长率低的伸长率,且具有比表面侧构件11的强度低的强度,因此,在载荷点P的位移量到达了规定的大小的时刻,中间构件13比表面侧构件11先以伸长变形的方式屈服并断裂,如图7的(a)所示,中间构件13产生裂纹。该中间构件13的断裂吸收一部分的冲击能量。
阶段2
当中间构件13产生裂纹时,作用于冲击器F的反作用力中的源自中间构件13的弹性力的部分减少。因此,如图6所示,G-T曲线上的加速度在中间构件13产生了裂纹的时刻到达最初的极大值G3,之后随着时间的经过而减少。
另外,当中间构件13产生裂纹时,整体的弯曲刚度下降,另外,由于背面侧构件12的伸长率设定为大于表面侧构件11的伸长率,因此,弯曲载荷成为集中于表面侧构件11的趋势,载荷点P的位移量进一步增加。因此,中间构件13在之后仍继续产生断裂,如图7的(b)所示,中间构件13的断裂部位进一步增加,而能够进一步吸收能量。在此期间,作用于冲击器F的反作用力未增加,如图6所示,G-T曲线上的加速度也减少。
阶段3
当中间构件13继续断裂、载荷点P的变形量增大到一定程度时,表面侧构件11和背面侧构件12各自的恢复力(弹性力)逐渐变大,在冲击器F上作为反作用力而施加有表面侧构件11和背面侧构件12各自的恢复力(弹性力)的合力。因此,如图6所示,G-T曲线上的加速度在到达极小值之后再次随着时间的经过而逐渐增加。
然后,当进一步进行变形时,在背面侧构件12产生的应力到达强度极限之前,表面侧构件11产生的应力(主要由弯曲载荷产生的应力)到达与碳纤维增强塑料的抗拉强度或压缩强度相当的应力。由此,表面侧构件11断裂,如图7的(c)所示,表面侧构件11产生裂纹。该表面侧构件11的断裂进一步吸收能量。
阶段4
当表面侧构件11产生裂纹时,作用于冲击器F的反作用力中的源自表面侧构件11的弹性力的部分减少。因此,如图6所示,G-T曲线上的加速度在表面侧构件11产生了裂纹时刻到达了第二个极大值G4,之后随着时间的经过逐渐减少。
以下说明第2实施方式的作用效果。
在本实施方式的冲击吸收结构S2中,中间构件13沿着由碳纤维增强塑料(第1纤维增强复合材料)形成的表面侧构件11、和由玻璃纤维增强塑料(第2纤维增强复合材料)形成的背面侧构件12延伸,且被夹在表面侧构件11和背面侧构件12之间,因此,相比于仅有表面侧构件11和背面侧构件12的情况,截面积比增大,而能够提高冲击吸收结构S2整体的弯曲刚度。另外,中间构件13具有比表面侧构件11的伸长率低的伸长率,且具有比表面侧构件11的强度低的强度。因而,在由自表面侧构件11朝向背面侧构件12输入的冲击载荷的作用下这些构件整体一体地弯曲变形时,表面侧构件11、背面侧构件12以及中间构件13产生伸长变形,但是,此时,由于中间构件13的伸长率和强度低于表面侧构件11的伸长率和强度,因此,中间构件13比表面侧构件11先以伸长变形的方式屈服并断裂。即,采用冲击吸收结构S2,从冲击载荷的输入开始到中间构件13断裂为止(阶段1),能够较高地保持整体的弯曲刚度。另外,然后,在中间构件13在载荷点P的位移量到达了规定的大小的时刻(从阶段1到阶段2的过渡期)断裂并吸收了能量之后,利用由这些表面侧构件11、背面侧构件12以及中间构件13形成的截面积的大小,能够保持整体的弯曲刚度,直到表面侧构件11或背面侧构件12断裂为止。因此,采用冲击吸收结构S2,能够高效地吸收更多的能量。
另外,在本实施方式的冲击吸收结构S2中,由于表面侧构件11、中间构件13以及背面侧构件12互相面接合,因此,如上所述,不会使表面侧构件11产生外观不良,而能够将表面侧构件11、中间构件13以及背面侧构件12一体成型,因此,能够提高生产率。
另外,在本实施方式的冲击吸收结构S2中,由于背面侧构件12的伸长率大于表面侧构件11的伸长率,因此,在产生了最初的中间构件13的断裂之后,能够使弯曲载荷集中于表面侧构件11。由此,能够继续引起中间构件13的断裂,并且,能够使表面侧构件11在背面侧构件12断裂之前断裂,而能够提高冲击能量吸收的效率。
另外,根据本实施方式的冲击吸收结构S2,由于表面侧构件11、中间构件13以及背面侧构件12互相面接合,因此,能够进一步提高整体的弯曲刚度。
以上,对本发明的实施方式进行了说明,但这些实施方式仅是为了容易理解本发明而说明的简单的例示,本发明并不限定于这些实施方式。本发明的保护范围并不限定于上述实施方式所示的具体的技术事项,还包含能够容易地从上述实施方式导出的各种变形、变更、替代技术等。
例如,在所述实施方式中,示出了将本发明的冲击吸收结构应用于汽车的外板构件的例子,但本发明的冲击吸收结构除了能够应用于在道路、轨道或工厂构架内行驶的车辆以外,还能够应用于船舶、航空器等。
在上述实施方式中,作为表面侧构件11和背面侧构件12的材料,示出了使用碳纤维增强塑料或玻璃纤维增强塑料的例子,但表面侧构件11和背面侧构件12的材料并不限定于此。作为增强纤维,除了碳纤维、玻璃纤维以外,例如能够使用聚芳酰胺纤维、氧化铝纤维、金刚砂纤维(日文:シリコンカーバイド繊維)、硼纤维、碳化硅纤维等。另外,碳纤维例如能够使用聚丙烯腈(PAN系)、沥青类、纤维素类、利用烃的气相生长碳纤维、石墨纤维等。还可以将这些纤维中的两种以上组合使用。另外,增强纤维的形态可以是连续的增强纤维、不连续的增强纤维、或它们的组合,连续的增强纤维可以是单方向并丝而成的增强纤维、织物的增强纤维,但为了获得稳定的冲击吸收性能,更优选使用能够对表面侧构件11和背面侧构件12赋予各向同性的特性的增强纤维。作为基质树脂,能够使用公知的热固化性树脂、热可塑性树脂。具体而言,有环氧树脂、酚醛树脂、不饱和聚酯树脂、乙烯基酯树脂、聚碳酸酯树脂、聚酯树脂、聚酰胺(PA)树脂、液晶聚合物树脂、聚醚砜树脂、聚醚醚酮树脂、聚芳酯树脂、聚苯醚树脂、聚亚苯基硫醚(PPS)树脂、聚缩醛树脂、聚砜树脂、聚酰亚胺树脂、聚醚酰亚胺树脂、聚烯烃树脂、聚苯乙烯树脂、改性聚苯乙烯树脂、AS树脂(丙烯腈和苯乙烯的共聚物)、ABS树脂(丙烯腈、丁二烯和苯乙烯的共聚物)、改性ABS树脂、MBS树脂(甲基丙烯酸甲酯、丁二烯和苯乙烯的共聚物)、改性MBS树脂、聚甲基丙烯酸甲酯(PMMA)树脂、改性聚甲基丙烯酸甲酯树脂等。
在所述实施方式中,作为中间构件13的材料,列举了添加有矿物质的粉末的环氧树脂,但中间构件13的树脂的种类并无特殊限定,例如,还可以是在聚亚苯基硫醚树脂(PPS)、不饱和聚酯树脂等、作为碳纤维增强塑料的基体所使用的一般的热固化性树脂或热可塑性树脂中添加矿物质而成的树脂。
产业上的可利用性
采用本发明,能够提供可提高弯曲刚度、增加能量吸收量的冲击吸收结构及具有该冲击吸收结构的车辆用外板构件。
附图标记说明
S1、S2、冲击吸收结构;11、表面侧构件;12、背面侧构件;13、中间构件;14、第2中间构件。