放射性废液的处理方法及其应用与流程

文档序号:13080578阅读:2244来源:国知局

本发明涉及一种源于核燃料能量循环的放射性废液的处理技术,可应用于放射性废液(lrw)的处理过程,以最大限度的减少其含量,且去除放射性核素以聚集在固定相中。

该方法可用于处理核工业的各个方面的中、低活性的放射性废液,包括核电站;还可以用于处理由废弃的房屋、建筑物、设备和运输系统等形成的废液;用于处理被放射性核素污染的水源。

放射性废液的处理主要达到两个目的:去除大量废物中的放射性废液和将放射性核素集聚在最小体积内。

根据专利第ru2066493号,mpkg21f9/08,11/13/1995,“nnp放射性废液的处理方法”已公开-

该方法包括蒸发得到冷凝物和容器内剩余物,容器内剩余物的一氧化碳和/或二氧化碳处理,液态的容器内剩余物臭氧化,经过催化剂和/或吸附剂除去液体中的放射性核素,形成的放射性沉淀物分离,液态物质进行进一步蒸发浓缩。

这种方法的缺点是,一氧化碳处理过程,不仅形成少量可溶性碳酸钠、钾和碳酸氢钠、钾,还生成难溶性的碳酸钴、镍、锰、铁放射性同位素盐,所以,在对容器内剩余物的一氧化碳处理过程得到的盐的纯度低。因此,得到的非放射性的盐不能考虑。

另外,实施现有方法需要提供大量化学试剂(一氧化碳、二氧化碳、氧化催化剂、收集器,这样将导致增加需要储存或掩埋的废弃物的量)

另一篇现有专利第ru2226726号,mpkg21f9/08,g21f9/12,4/27/2002.“核电站放射性废液转化方法”中的技术方案也公开。

该方法包括初步蒸发得到冷凝物和容器内剩余物,容器内剩余物臭氧化,分离之前形成的放射性沉淀物和深度蒸发浓缩滤液。同时,在溶液初步蒸发后直接进行容器内剩余物的臭氧化。在分离放射性沉淀物之后,滤液通过充装无机吸附剂的过滤器,该无机吸附剂对铯有选择性,然后将已完成过滤的过滤容器直接储存或掩埋。

现有方法的缺陷是,在臭氧化阶段容器内剩余物的纯度低,分离沉淀物,因此高活性溶液添加到带有选择性吸附剂的过滤器内。需要大量的吸附剂纯化溶液。另外,过滤器产生高放射性残留物,需要利用昂贵的、且技术复杂的放射安全措施来处理这些残留物。

与提供的液体放射性废物转化和利用方法最接近的方法是在2014年公开的美国专利第8753518号,b01d35/00中描述的方法。

放射性废水的处理方法及其应用包括废液的氧化、将从液相中分离出沉淀物、胶体和悬浮颗粒(theweighedparticles),为了随后使用,利用选择性吸附剂和过滤器去除液相中的放射性核素。

该方法的主要缺点:

固液组分分离系统非常复杂和昂贵。该设备需要准确调试,因为它没有对工作人员的无辐射防护,需要远程维护;

产生了高活性的转化废物(过滤设备的沉淀物、已执行过吸附的吸附剂或者具有已执行过吸附的吸附剂的容器、和过滤元件)。处理这种废物需要特别昂贵的放射性安全措施和防护的方法,因此,它们的运输、使用和存储(掩埋)将会带来相当大的经济成本。

本发明解决的问题是,在生产过程中,增加了对服务人员的辐射防护,即,在lrw处理过程中,减少员工的承受剂量,简化工序(在操作过程中,消除了放射性废物胶结(cementation)装置的昂贵而复杂的操作之外,减少了其他需要特殊维修的设备数量,且减少二次废物的量),在lrw转化过程中得到的最终产品(块)运行和使用的安全,这不需要特殊的辐射安全措施。

为实现上述目的,放射性废液的转化方法及其利用包括废液的氧化,将液相与沉淀物(sludge)、胶体和悬浮颗粒(theweighedparticles)相分离,为了后续使用,利用选择性吸附剂和过滤器将液相中的放射性核素去除,其特征在于,在将液相与沉淀物、胶体和悬浮颗粒放射性废物分离之前,在搅拌下将粉末状选择性吸附剂加入废液中;然后得到的悬浮液通过泵抽、经至少一个废物处理容器进行过滤,在出口处至少具有一个用于分离液相中不溶物的过滤元件;然后,滤液至少通过一个废物处理容器,所述容器填充着颗粒状选择性吸附剂并放置在混凝土块(concreteblocks)内。

在lrw处理过程中,可以使用一种或多种选择性吸附剂。用于将液相与沉淀物、胶体和悬浮颗粒相分离的容器可以具有两个或多个过滤元件。除去不溶粒子后的纯化液可以通过两个或多个依次连接的设有过滤元件的容器。纯化的放射性核素溶液可以通过两个或多个依次连接的、装有颗粒状选择性吸附剂的容器。

在使用完之后,含有颗粒状选择性吸附剂容器以及含有从液相中分离出的不溶物的容器内倒入高渗透性能(thehigh-getting)的水泥砂浆(cementmortar)。在水泥砂浆胶结前,容器抽真空和/或热空气或惰性气体加热。选择性吸附剂颗粒的粒径大小在1-3毫米。以粉末形式添加的选择性吸附剂的粒径大小在0.1-0.7毫米。

混凝土是lrw转化和利用的最终产物,其内部为装有分离后的放射性沉淀物或者已用过的吸附剂的容器。它们不需要进一步的处理,就能被直接送去掩埋或者被用作仓库建筑物的建筑材料。

图中示出了该实施例的实施方法,它解释了本发明的实质。

图中表示:

1、将lrw与无机选择性吸附剂混合的罐;

2、带有两个过滤元件(50微米和5微米)的corebrick-f;

3、臭氧化单元;

4、带有两个过滤元件(5微米和0.5微米)的corebrick-f;

5、填充有选择性吸附剂的corebrick-c;

6、填充有选择性吸附剂的corebrick-c。

corebrick-f是具有尺寸为1500×1500×1500mm的混凝土块,其内含有200升的空腔,其出口处依次安装着两个过滤元件。

corebrick-c是具有尺寸为1500×1500×1500mm的混凝土块,其内包括圆柱形容器,该容器具有40升容量的选择性吸附剂。

所述的方法中,使用细小分散的选择性粉末(多种粉末混合物),这样解决了几个问题。

从纯化液中除去部分放射性核素、和在过滤器和吸附块上均匀分布活性物;

形成容易从悬浮液和胶体分离开的固相,这样的简化了固相和液体lrw组分的分离过程,并降低了该过程的费用。

如果实施这种方法,带有简单过滤元件(网格、陶瓷过滤器等)的容器置于混凝土壳体内,实际上代表混凝土块,可以排除对工作人员的辐射。经过滤的高放射性沉降物仍然存在于混凝土块内,但是,当采用原型(prototype)和公知的方法清洗过滤元件时,这些沉淀物不会被除去。混凝土块运输和存储安全,可以充当含有特定用途的建筑材料(例如仓库,放射性废物存储库以及其他建筑)。

滤液通过具有颗粒状吸附剂的容器,为了有效的吸附(用于产生溶液和吸附剂的最佳接触时间),吸附剂层的一定高度是必需的。如果使用粉末状吸附剂,则在这种层的情况下,将存在高流体动力学阻力,并且过滤速度可以降低并且接近于零。

通过以下事实证明粉末状吸附剂的粒径在0.1-0.7mm。大于0.7mm的颗粒具有较小的吸附面,并且吸附效率较低,而且更细的吸附剂颗粒(小于0.1mm)很难从溶液中分离。

通过以下事实证明,颗粒状吸附剂的粒径大小为1-3mm。大于3mm的较大颗粒具有较小的吸附表面,并且吸附效果差,并且小颗粒(小于1mm)产生高液压阻力,会降低lrw转化过程的进行。

实施例一

上述方法用于处理lrw(рн=12.1)包含:

干燥剩余部分(在105°c下干燥后)–285g/l

悬浮物(在“蓝带”过滤器分离的)–5.1g/l;

铯-137的比活度–1.1.10–3ci/l;

钴-60的比活度–1.4.10–6ci/l.

5m3的上述组成结放射性废液加入在容器(位置1)中,将5kg包含亚铁氰化镍选择性吸附剂附着在二氧化硅粉末上的组合物和0.5kg作为凝结剂的硫酸镍粉碎后加入放射性废液中,所述的二氧化硅粉末为“sukholozhsky”地区的粒径分布在200至500微米之间的无定形二氧化硅粉末。镍基凝结剂和悬浮的lpw颗粒相互作用下形成的富聚物和无定形二氧化硅的结合,使得在corebrick-f中很容易的将固相和液体分离。

搅拌两小时后,包括吸附剂、lrw中的悬浮颗粒以及凝结剂的悬浮液进入到带有两个过滤元件的corebrick-f(位置2),然后将悬浮液经过纯化得到溶液引至进行臭氧化(位置3),用于破坏有机化合物和络合物。在氧化时形成的悬浮液中加入5kg与罐(位置1)相同的吸附剂,得到的悬浮液送到具有两个过滤元件的corebrick-f(位置4)。纯化悬浮液得到的溶液通过依次连接的corebrick-c(位置5和6),其具有亚铁氰化镍基的粒状选择性吸附剂。将含有少于10bk/l的137cs和60co的纯化溶液进行蒸发和结晶。得到的材料可以放在非放射性废物储液器的面上。

采用高渗透性水泥砂浆将含有沉淀物的corebrick-f内部体积固化为一体。向含有选择性吸附剂的corebrick-c吹入热空气,并且通过高渗透性水泥砂浆的方法转化成一块整料。

从放射性活度上讲,corebrick-f中每人受到5居里(curie),在corebrick-c中第一个9.8居里,第二个0.2居里

实施例二

25m3含有海水的lrw加入在容器中,海水组成如下:

总盐度-30g/l;рн=7.9;铯-137比活度为2.4×105bk/l。

当搅拌过程,将50kg“柏林蓝”(六氰基合铁酸铁钾)基选择性吸附剂加入到lrw,所述选择性吸附剂为粒径分布在0.2-0.5mm的干粉末形式。搅拌混有吸附剂的lrw8小时后,将其转入corebrick-f,其具有大约一个孔径大小为0.1mm的过滤元件。与吸附剂分离出的溶液通过corebrick-c,其中,corebrick-c充有100kg亚铁氰化铁基颗粒状选择性吸附剂,其颗粒大小为1-2mm。去除铯放射性核素之后的海水中包含少于5bk/l的铯-137,可以被排入海洋。在corebrick-c和corebrick-f中使用的吸附剂通过高渗透性水泥砂浆将其固化。

实施例3

通过所述的方法处理lrw的组成:

总盐度-228g/l;рн=10.9;

锶-90的比活度-4.2×104bk/l;

钴-60的比活度-1.5×104bk/l。

12m3具有特定组成的lrw加入到容器中置入,在搅拌过程中,先加入30kg二氧化锰基的选择性吸附剂干粉末,然后加入30kg硫化铜基吸附剂干粉末。吸附剂粉末颗粒大小不超过0.5mm。搅拌lrw3小时后,将其转至具有两个过滤元件的corebrick-f,这两个过滤元件的孔径大小为0.4mm和0.1mm,随后,通过corebrick-c过滤与粉末状吸附剂分离开的溶液,corebrick-c中含有50kg颗粒状二氧化锰基选择性吸附剂。残留在lrw中的同位素的比活度不超过10bk/l。

实施例4

通过所述方法处理lrw的组成:

硼酸10g/l,р=4;

cs-137-5.2×106bk/l;co-60-3.1×104bk/l;

ag-110-8.1×103bk/l;sr-90-1.9×105bk/l。

在已置入容器内的10m3lrw中,不断的搅拌下加入20kg粉末状选择性吸附剂时(用粒径小于0.3mm),其组成:

亚铁氰化铜,磷酸镁,氢氧化锆

搅拌lrw5小时之后,用泵抽出通过两个corebrick-f,其中,先通过具有孔径大小0.2mm的过滤元件,随后再通过孔径大小0.1mm的过滤元件,然后滤液通过三个依次连接的corebrick-c,corebrick-c含有60升的机械混合的选择性吸附剂,其粒径为3mm。

机械混合物由均匀混合的吸附剂组成:

20l亚铁氰化铜(ferrocyanideofcopper),

20l磷酸镁,

20l氢氧化锆。

在处理后的lrw中,同位素的总比活度不超过10bk/l。

使用所提供的的方法,可以减少放射性废液处理过程中的对人员的承受剂量,简化将lrw转化最终产品(块)的转化工程程序,这对于运转来说是安全的,而且不需要特殊的辐射安全措施。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1