本发明属于复合材料领域,更具体地,本发明涉及一种金属纤维复合管材及其制备方法。
背景技术:
目前,随着节能环保要求的提出,采用轻型结构材料不断开发更加节能环保的交通工具是行业发展的必然方向,而纤维增强或织物增强的混合多层复合材料是制造高效轻质结构的主要方向。
但迄今为止,现有金属与碳纤维复合金属主要为两种:一种为板料结构,由金属板层、粘合层、碳纤维网层等复合而成;粘合层自身具有粘性,可以实现金属/碳纤、金属/碳纤/金属、碳纤/金属/碳纤等双层或多层复合,并通过压力压合为一整体。该技术可以提高材料综合力学性能,但仅限于板材料;另一种是在金属管外侧缠绕碳纤维层,该技术可以制成金属/碳纤复合管材,具有重量轻,强度高,抗压能力强,密封性能好等优点。但该技术为金属内芯,碳纤外层,无法实现金属外层,限制了与其它金属部件连接性能使用。
技术实现要素:
本发明旨在针对上述金属纤维复合材料存在的缺陷,提供一种金属外层的金属纤维复合管材。
本发明提供了一种金属纤维复合管材,所述金属纤维复合管材包括第一空心金属管材,设置在第一空心管材内的第二空心金属管材及位于第一空心金属管材和第二空心金属管材之间的纤维层。
本发明还提供一种金属纤维复合管材的制备方法,所述方法包括以下步骤:
s1、将纤维预浸料缠绕第二空心金属管材;
s2、将缠绕有纤维预浸料的第二空心金属管材放入第一空心金属管材的空心内;
s3、向第二空心管材的空心内通入高压气体,使第一空心金属管材与缠绕有纤维预浸料的第二空心金属管材热熔压合。
本发明的金属纤维复合管材,是内芯为纤维的复合材料,该材料综合力学性能优异,有较高的抗拉强度。可以方便与其它金属件通过焊接等常规金属连接方式结合,具有非常好的应用前景。同时该复合材料可以作为外观金属件。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种金属纤维复合管材,所述金属纤维复合管材包括第一空心金属管材,设置在第一空心管材内的第二空心金属管材及位于第一空心金属管材和第二空心金属管材之间的纤维层。
根据本发明所提供的金属纤维复合管材,为了更方便的将第二空心金属管材放入第一空心金属管材内,并保证纤维能够更好的与第一空心金属管材结合,优选地,所述第一空心金属管材的内直径为1-100mm,所述第二空心金属管材的外直径为0.5-100mm,所述第一空心金属管材的内直径大于第二空间金属管材外直径0.2-10mm。
根据本发明所提供的金属纤维复合管材,所述纤维层为纤维预浸布热压成型。
根据本发明所提供的金属纤维复合管材,所述第一空心金属管材和第二空心金属管材没有特别的限制,可以为本领域常用的各种金属材料,优选地,分别为铝合金、镁合金和碳钢的一种。
根据本发明所提供的金属纤维复合管材,所述纤维没有特别的限制,可以为本领域常用的各种纤维,本发明中,优选地所述纤维为碳纤维和/或玻璃纤维。
根据本发明所提供的金属纤维复合管材,所述第一空心金属管材的厚度为0.2-5mm,所述第二空心金属管材的厚度为0.1-5mm,所述纤维层的厚度为0.1-2mm。
本发明还提供了一种金属纤维复合管材的制备方法,所述方法包括以下步骤:
s1、将纤维预浸料缠绕第二空心金属管材;
s2、将缠绕有纤维预浸料的第二空心金属管材放入第一空心金属管材的空心内;
s3、向第二空心管材的空心内通入高压气体,使第一空心金属管材与缠绕有纤维预浸料的第二空心金属管材热熔压合。
根据本发明所提供的制备方法,为了使金属管材与碳纤维的之间有很好的结合力,优选地,所述热熔压合的温度为25-300℃,时间为10-120min,压力为0.1-10mpa。
根据本发明所提供的制备方法,为了进一步提高金属管材与碳纤维之间的结合力,优选地,在步骤s2之前,还包括向纤维预浸料表面涂覆胶水的步骤。所述胶水没有特别的限制,可以为本领域常用的各种胶水,如环氧类、丙烯酸类、聚氨酯类中的一种。
根据本发明所提供的制备方法,所述第一空心金属管材的内直径为1-100mm,所述第二空心金属管材的外直径为0.5-100mm,所述第一空心金属管材的内直径大于第二空间金属管材外直径0.2-10mm。
根据本发明所提供的制备方法,所述第一空心金属管材和第二空心金属管材分别为铝合金、镁合金、碳钢或其它金属管梁中的一种;所述纤维为碳纤维、玻纤、碳纤/玻纤混合纤维中的一种。
根据本发明所提供的制备方法,所述第一空心金属管材的厚度为0.2-5mm,所述第二空心金属管材的厚度为0.1-5mm,所述纤维层的厚度为0.1-2mm。
下面通过具体实施例对本发明进行进一步的详细说明。
实施例1
1、将t700碳纤维用环氧树脂预浸渍,然后用单向环氧预浸布绕在第二空心铝合金管材(6063)的表面,第二空心铝合金管材外径为48mm,厚度为2mm。
2、将步骤1得到的碳纤维预浸料缠绕的第二空心铝合金管材的表面涂胶(后放入第一空心铝合金管材(6063)内,碳纤维预浸料的厚度为1mm,第一空心铝合金管材内直径为50mm,壁厚1mm。
3、向管材内通入压力为10mpa的增压气体,使第一空心铝合金管材与碳纤维预浸料缠绕的第二空心铝合金管材在温度140℃下热熔压合1小时得到铝碳纤维复合管材a1。
实施例2
1、将t700碳纤维用环氧树脂预浸渍,然后用单向环氧预浸布绕在第二空间镁合金管材(az31)的表面,第二空心镁合金的外径为48mm,厚度为2mm。
2、将步骤1得到的碳纤维预浸料缠绕的第二空心镁合金管材表面涂胶后放入第一空心铝合金管材(6063)内,碳纤维预浸料的厚度为1mm,第一空心铝合金管材的内直径为50mm,壁厚为1mm。
3、向第二空心镁合金管材内通入压力为5mpa的增压气体,使第一空心铝管材与碳纤维预浸料的第二空心镁管材在温度150℃下热熔压合2小时得到镁/碳纤维/铝复合管材a2。
实施例3
1、将t700碳纤维用环氧树脂预浸渍,然后用单向环氧预浸布绕在第二空心铝合金管材(6063)的表面,第二空心铝合金管材的外径为48mm,厚度为2mm。
2、将步骤1得到的碳纤维预浸料缠绕第二空心管材表面涂胶后放入第一空心镁合金管材(az31)内,第一空心镁合金管材的内直径为50mm,壁厚为1mm。
3、向第二空心铝合金管材内通入压力为2mpa的增压气体,使第一空心镁合金管材与碳纤维预浸料缠绕的第二空心铝合金管材在温度200℃下热熔压合2小时得到铝/碳纤维/镁复合管材a3。
性能测试
1、抗拉强度测试
参照gb/t228-2002《金属材料室温拉伸试验方法》,分别对6063铝合金、az31镁合金、碳纤维及a1-a3进行拉伸试验。结果见表1。
2、密度测试
参照gb/t1423-1996《贵金属及其合金的密度测试方法》,分别测试6063铝合金、az31镁合金、碳纤维及a1-a3的密度,结果见表1。
表1
从表1中可以看出,用本发明的方法制备得到的复合材料的抗拉强度远远高于铝合金和镁合金的抗拉强度,达到了碳纤维的抗拉强度。且本发明的复合材料的密度介于铝合金与镁合金之间。本发明的复合材料具有高的抗拉强度和低的密度,适合对抗拉强度要求较高且对重量要求较高的领域,如汽车等领域。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。