聚硼硅氧烷‑碳纤维布复合板及其粉体热压制备法的制作方法

文档序号:12442343阅读:409来源:国知局
聚硼硅氧烷‑碳纤维布复合板及其粉体热压制备法的制作方法与工艺

本发明涉及高分子复合材料制备领域,具体涉及一种聚硼硅氧烷-碳纤维布复合板及其粉体热压制备方法。



背景技术:

通常由碳纤维编织而成的碳纤维布具有许多优异的性能,如耐热、耐腐蚀、抗拉抗压等,可应用在许多领域。然而,碳纤维布在各个领域应用中,一个最大的问题就是与其他材料的相容性差,极易导致所得复合材料分层。

纤维的表面活性主要取决于其表面性能、活性官能团的数量和种类、表面微晶结构和酸碱交互作用等因素。从表面形态上看,碳纤维的表面有很多结晶、杂质、凹槽和孔隙,这些对复合材料的粘结性能有很大影响;从化学组成来看,碳纤维整体主要是氢、氮、氧、碳等元素,未经表面处理的碳纤维表面羰基、羟基等极性基团的含量非常少,其与基体树脂的粘结效果不佳。近年来的研究主要集中于提高碳纤维的表面性能,通过各种方法对碳纤维的表面进行处理,提高基体树脂与碳纤维之间的粘结强度,有利于充分发挥碳纤维的力学特性。目前碳纤维表面处理方法很多,都是通过在碳纤维表面发生连续的物理化学反应,以增加影响其表面形貌的极性基团的含量和复杂性,从而增加基体树脂与碳纤维之间的界面性能,进而达到提高复合材料力学性能的目的。例如:气相氧化法、液相氧化法、阳极氧化法、等离子体氧化法和表面涂层改性法等,这些方法虽然在一定程度上改善了碳纤维的可润湿特性,增加碳纤维和树脂等其他材料的粘结性能,但这些方法工艺复杂、操作繁复、使用的强酸等试剂具有腐蚀性、成本高昂。



技术实现要素:

针对上述问题本发明提供了一种聚硼硅氧烷-碳纤维布复合板及其粉体热压制备法。

本发明采用的技术方案是:聚硼硅氧烷-碳纤维布复合板包括由碳纤维布层和聚硼硅氧烷预聚体层相间组成的层状结构。

聚硼硅氧烷-碳纤维布复合板的粉体热压制备法,包括以下步骤:

步骤一碳纤维布的预处理:将碳纤维布裁剪成所需要的尺寸,放入无水乙醇中用超声波浸洗3-5分钟,烘干后放入马弗炉中于4500C煅烧1小时;

步骤二压板的处理:将锡纸制备成无盖的长方形盒放入到模具中,将经过预处理的碳纤维布平铺在锡纸上,在碳纤维布上方再加铺一薄层聚硼硅氧烷预聚体粉末,再依次平铺一层碳纤维布和一薄层聚硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚硼硅氧烷预聚体相间的层状结构,直至达到所需厚度;

步骤三合成板的处理:将步骤二得到的层状结构体利用精密压片机热压成型得到聚硼硅氧烷-碳纤维布复合板。

作为一种优选的技术方案: 聚硼硅氧烷-碳纤维布复合板中聚硼硅氧烷预聚体为聚二苯基硼硅氧烷预聚体,其分子量为500-1000,硅硼摩尔比为3:1-1:1。

作为一种优选的技术方案:聚硼硅氧烷-碳纤维布复合板中碳纤维布可为平纹、斜纹或缎织编纹;碳纤维布的型号为1K、3K、6K或12K;密度为200、240或300g/m3

作为一种优选的技术方案:聚硼硅氧烷-碳纤维布复合板中纤维含量为35%-50%。

作为一种优选的技术方案:聚硼硅氧烷-碳纤维布复合板中碳纤维布包括二维碳纤维布和三维碳纤维布。

作为一种优选的技术方案:聚硼硅氧烷-碳纤维布复合板的粉体热压制备法中,采用精密压片机热压成型时温度为260-3000C,压力为6-9MPa,时间为7-15min。

作为一种优选的技术方案:碳纤维布厚度可为0.22mm或0.25mm;聚硼硅氧烷薄层厚度略小于碳纤维布厚度。

作为一种优选的技术方案:碳纤维布与聚硼硅氧烷预聚体相间的层状结构厚度至少大于1mm。

本发明的有益效果是:本发明通过对碳纤维布进行预处理使碳纤维充分发挥碳纤维的力学性能,提高碳纤维布的粘结强度、相容性,复合板重量轻、耐腐蚀、抗拉且不易分层,同时具有制备方法简单、易于操作、成本低廉等特点。

附图说明

图1所示为聚硼硅氧烷-碳纤维布复合板表面的电镜扫描图;

图2所示为聚硼硅氧烷-碳纤维复合板拉伸断裂后的电镜扫描图。

具体实施方式

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述作简单地介绍,显而易见,下面描述中的附图仅仅是本发明的一些实施例。

实施例1:

将3K平纹编织,密度为240g/m3的碳纤维布裁剪成58mm×45mm尺寸,用无水乙醇超声波浸洗3分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到3mm厚度。采用精密压片机热压成型,温度为2650C,压力为7MPa,时间为10分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比3:2,分子量为800。所制备的碳纤维板中,纤维含量为40%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为268MPa,弹性模量1031MPa。

图1为实施例1聚硼硅氧烷-碳纤维布复合板表面的扫描电镜图,图2为聚硼硅氧烷-碳纤维布复合板拉伸断裂后的扫描电镜图。从图1可以清楚地看到聚硼硅氧烷完全浸渍到碳纤维布的经纬线中,并与碳纤维布紧密粘结在一起,形成了遍布不同层碳纤维布全体的复合板。从图2可以看出,聚硼硅氧烷-碳纤维布复合板纤维间相互交叉和牵制,断裂时只是和拉伸方向平行的纤维断裂,起到粘结作用的聚硼硅氧烷完全断裂成粉状,从而可以提高材料的强度和抗疲劳能力。

实施例2:

将3K平纹编织,密度为240g/m3的碳纤维布裁剪成61mm×40mm尺寸,用无水乙醇超声波浸洗4分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到2.8mm厚度。采用精密压片机热压成型,温度为2800C,压力为7MPa,时间为12分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比3:2,分子量为600。所制备的碳纤维板中,纤维含量为43%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为249MPa,弹性模量922MPa。

实施例3:

将6K平纹编织,密度为240g/m3的碳纤维布裁剪成61mm×41mm尺寸,用无水乙醇超声波浸洗4分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到3.5mm厚度。采用精密压片机热压成型,温度为2800C,压力为6MPa,时间为13分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比3:1,分子量为1000。所制备的碳纤维板中,纤维含量为45%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为292MPa,弹性模量1168MPa。

实施例4:

将1K平纹编织,密度为200g/m3的碳纤维布裁剪成59mm×43mm尺寸,用无水乙醇超声波浸洗4分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到4mm厚度。采用精密压片机热压成型,温度为2850C,压力为8MPa,时间为10分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比2:1,分子量为1000。所制备的碳纤维板中,纤维含量为39%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为299MPa,弹性模量为1251MPa。

实施例5:

将12K平纹编织,密度为300g/m3的碳纤维布裁剪成60mm×41mm尺寸,用无水乙醇超声波浸洗5分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到4.2mm厚度。采用精密压片机热压成型,温度为2900C,压力为9MPa,时间为7分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比3:1,分子量为1000。所制备的碳纤维板中,纤维含量为36%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为259MPa,弹性模量961MPa。

实施例6

将1K平纹编织,密度为200g/m3的碳纤维布裁剪成60mm×43mm尺寸,用无水乙醇超声波浸洗4分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到2mm厚度。采用精密压片机热压成型,温度为2600C,压力为8MPa,时间为10分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比2:1,分子量为500。所制备的碳纤维板中,纤维含量为35%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为289MPa,弹性模量为759MPa。

实施例7

将12K平纹编织,密度为300g/m3的碳纤维布裁剪成59mm×41mm尺寸,用无水乙醇超声波浸洗3分钟,烘干后放入马弗炉中4500C煅烧1小时。将锡纸制备成一无盖的长方形盒状,放入模具中,将经过预处理的碳纤维布铺展在锡纸上,在上面平铺一薄层聚二苯基硼硅氧烷预聚体粉末,然后再平铺一层碳纤维布,再撒一薄层聚二苯基硼硅氧烷预聚体粉末,如此重复,形成碳纤维布和聚二苯基硼硅氧烷预聚体相间的层状结构,直至达到5.1mm厚度。采用精密压片机热压成型,温度为3000C,压力为7MPa,时间为12分钟,得到聚硼硅氧烷-碳纤维布复合板。所用的聚二苯基硼硅氧烷预聚体中硅硼的摩尔比3:2,分子量为1000。所制备的碳纤维板中,纤维含量为50%,制备的聚硼硅氧烷-碳纤维布复合板拉伸强度为297MPa,弹性模量为956MPa。

最后所应说明的是,以上实施例仅用以补充阐释本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的广大技术人员应当理解,对本发明的技术方案进行修改或者同等替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1