本发明涉及汽车遮阳垫技术领域,特别涉及一种汽车用隔热遮阳垫。
背景技术:
汽车作为人们户外活动工具,受到外界强光照射的几率非常高,时间特别长,特别是随着炎热夏季的来临,许多人的车停在露天停车场上,经过暴晒,当人们再次回到车内时,车内温度奇高,人根本无法忍受,经过现场测验,在四川省成都市某晴朗的一天,当外界气温为32℃时,将无遮阳垫的汽车停在露天停车场1小时后,用温度计测量汽车内温度,测验结果为,车内驾驶室温度达到65℃,比外界气温高出33℃,在此温度下,人们只能先打开车内空调一段时间后才能进入车内,这不仅仅耗时耗能源,还会突发意外情况,造成眩晕呕吐甚至晕倒、汽车自燃等危害,同时,经测验,汽车金属车身部分的温度可达到75℃以上,极易造成烫伤。
因此,近几年人们开发出了各种类型的产品来用于汽车降温,主要以遮阳篷、玻璃隔热贴膜和隔热遮阳垫为主流产品,由于隔热遮阳垫携带和使用方便,价格较低,隔热效果好,一直备受人们喜爱。据某著名隔热遮阳垫生产企业声称,使用隔热遮阳垫后,汽车内外的温度相差在12℃以内,一般在6-7℃之间,即当室外温度为32℃时,遮盖有隔热遮阳垫的汽车车内温度一般在38℃左右,最高不会超过44℃,具有优秀的隔热效果。
但是现有使用的汽车隔热遮阳垫仍然存在着不完善之处,其隔热途径只能通过反射太阳光来实现,而不能对车身进行隔热降温,因此其隔热能力还存在较大上升空间。也即是说,现有隔热遮阳垫往往忽略了车身本身的吸热,即使车内温度与外界气温相差6℃,金属车身的温度则至少相差13℃以上,特别是黑色漆车身,其温度可达到相差20℃,仍然会有发生烫伤的可能性,其隔热效果还有待提高。
技术实现要素:
本发明的发明目的在于:针对上述存在的问题,提供一种汽车用隔热遮阳垫,以解决现有隔热遮阳垫隔热效果不好,车内和车身温度较高的问题。
本发明采用的技术方案如下:一种汽车用隔热遮阳垫,从上至下依次粘接有金属反射膜、抗撕裂层、玻璃棉结构层和柔性导热层,金属反射膜远离抗撕裂层的一面均匀涂覆有氟碳清漆,抗撕裂层用高强度纱线编织而成,玻璃棉结构层与柔性导热层粘接的一面设有若干锥基底,锥基底内充满相变材料,柔性导热层通过粘接涂层与玻璃棉结构层粘接。
由于上述结构的设置,金属反射膜用于将绝大部分太阳光反射回去,氟碳清漆用于保护金属反射层;抗撕裂层一方面用于提高隔热遮阳垫的机械强度和耐久性,另一方面用于阻隔太阳光携带的能量渗透至隔热遮阳垫内部,进而起到隔热作用;玻璃棉结构层一方面用于隔热,另一方面用于为相变材料提供存储结构和固定柔性导热层;柔性导热层用于对车身进行吸热散热,以降低车社内的温度;相变材料层用于降低柔性导热层的热动态平衡温度,使降温效果更显著。
进一步,高强度纱线由芳纶纤维和涤纶纤维合并加捻而成,其中,芳纶纤维与涤纶纤维的质量百分比为2:1。
进一步,粘接涂层覆盖于玻璃棉结构层的带有锥基底的一面。
进一步,锥基底为锥塔形圆顶结构,均匀分布在玻璃棉结构层上,锥基底的高度为0.2-5mm。
进一步,氟碳清漆喷涂厚度为150-300μm,金属反射膜溅镀厚度为50-150μm,柔性导热层的厚度为0.6-1mm。
进一步,柔性导热层由柔性导热涂料组成,柔性导热涂料按重量份计由以下原料组成:有机硅改性丙烯酸树脂38份,膨胀石墨8份,导热纤维丝14份,云母粉6份,过渡金属复合氧化物粉末6份,醋酸丁酯10份,气相二氧化硅0.7份,二丙酮醇15份,分散剂1.3份和流平剂0.7份。
进一步,相变材料为固-液相变材料,固-液相变材料的相变温度为31-36℃。
本发明还包括一种汽车用隔热遮阳垫的制备方法,包括以下步骤:
步骤1、编织高强度纱线,将42-58根芳纶纤维与21-29根涤纶纤维按照质量百分比为2:1合并加捻成高强度纱线,然后将高强度纱线编织成抗撕裂层;
步骤2、将得到的抗撕裂层浸渍在硅溶胶中,然后静置进行凝胶,10h后取出放入60℃恒温干燥箱中进行干燥,得到凝胶处理后的抗撕裂层,备用;
步骤3、在抗撕裂层的一面溅镀金属反射膜,然后在形成的金属反射膜上喷涂氟碳清漆,干燥后备用;
步骤4、制造玻璃棉成型模具,将玻璃棉压制成一面带有锥基底的玻璃棉结构层,备用;
步骤5、在玻璃棉结构层带有锥基底的一面喷涂密封胶,并在玻璃棉结构层的面上形成一层密封层,干燥后备用;
步骤6、制造固-液相变材料,将固-液相变材料加热变为液相后置于玻璃棉结构层的锥基底中,其中锥基底内的液相相变材料的深度不超过锥基底的高度,然后将玻璃棉结构层置于真空箱中空冷至室温;
步骤7、制造柔性导热涂料,将有机硅改性丙烯酸树脂和分散剂加入反应器内,然后用搅拌机以800r/min的转速对混合组分进行搅拌直至分散均匀,得到基料,然后向基料中依次加入碳纤维丝、膨胀石墨、云母粉、气相二氧化硅、过渡金属复合氧化物粉末,然后加入醋酸丁酯和二丙酮醇,用搅拌机对混合料进行充分搅拌,搅拌速度为1000r/min,直至分散均匀,得到初始涂料;
步骤8、将金属纤维丝和流平剂加入步骤7的初始涂料中,用分散机分散均匀后得到未固化的涂料,将未固化的涂料泵入空气喷枪的储料罐中,然后用空气喷枪喷涂在步骤6得到的玻璃棉结构层带有锥基底的一面,静置至涂层流平后,放入高温烘箱于140℃下真空烘烤固化成膜,然后再保温10min,随炉冷却至室温,得到初始隔热遮阳垫;
步骤9、将步骤3得到的抗撕裂层不带金属反射膜的一面与步骤7得到的初始隔热遮阳垫不带柔性导热涂料的一面用粘结剂粘接固定后,即得到隔热遮阳垫。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明的隔热遮阳垫原料来源广泛,加工简单方便,制造成本低,适合于工业大规模生产;
2、抗撕裂层用高强度纱线编制而成,能够大幅提高隔热遮阳垫的机械强度,同时将抗撕裂层用硅溶胶浸渍后,其空隙中填满了硅凝胶,具有显著的隔热性能、阻燃性能和防水性能,整体上提升了隔热遮阳垫的质量;
3、柔性导热层和相变材料的设置,使隔热遮阳垫不仅具有隔热遮阳的功能,还具有吸热散热作用,能大幅降低车身的温度,使车身的温度维持在较低状态,避免了烫伤的风险,进一步提高了隔热遮阳垫的性能;
4、本发明的隔热遮阳垫效果显著,在气温30℃时,能使车内温度维持在36℃以下(一般在33℃左右),车身温度维持在39℃以下(一般在35℃左右),总厚度不超过1cm,可折叠,携带使用方便,易于推广应用。
附图说明
图1是本发明的一种隔热遮阳垫结构示意图;
图2是图1中A部分的局部结构放大示意图;
图3是柔性导热层局部部分结构放大示意图。
图中标记:1为氟碳清漆,2为金属反射膜,3为抗撕裂层,4为玻璃棉结构层,5为相变材料,6为柔性导热层,61为金属纤维丝,62为碳纤维丝,63为膨胀石墨,64为过渡金属复合氧化物粉末,7为粘接涂层。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
如图1和图2所示,一种汽车用隔热遮阳垫,从上至下依次粘接有金属反射膜2、抗撕裂层3、玻璃棉结构层4和柔性导热层6,金属反射膜2远离抗撕裂层3的一面均匀涂覆有氟碳清漆1,抗撕裂层3用高强度纱线编织而成,玻璃棉结构层4与柔性导热层6粘接的一面设有若干锥基底,锥基底内充满相变材料5,柔性导热层6通过粘接涂层7与玻璃棉结构层粘接。
玻璃棉结构层4,玻璃棉具有很好地隔热保温作用,同时还具有很好地韧性和稳定性,将此用于隔热遮阳垫时,一方面可以起到良好的隔热保温效果,另一方面可以增强隔热遮阳垫的力学性能,使之结构更加稳定,不易发生变形。玻璃棉结构层4的一面设置锥基底的缘由在于,一方面使锥基底内填充相变材料5,另一方面使锥基底凸出部分与柔性导热层6连接,柔性导热层6结合牢固不易脱离。更进一步地说,锥基底为锥塔形圆顶结构,均匀分布在玻璃棉结构层4上,锥基底的高度为0.2-5mm(优选为0.2mm,也可选择0.2mm或5mm)。
抗撕裂层3用高强度纱线编织而成,高强度纱线由芳纶纤维和涤纶纤维合并加捻而成,芳纶具有伸长率高,拉力强,耐热耐酸碱等特点,而涤纶具有强度高、弹性好、耐热耐酸碱等特点,将两者组合使用,优势互补,使高强度纱线不仅具有很好的稳定性,还具有高强度的弹性和抗撕裂性,强度高,不易撕裂。更进一步地说,芳纶纤维与涤纶纤维的质量百分比为2:1,以使高强度纱线主要具有芳纶的优势特点。
柔性导热层6用于与车身直接接触,以对车身进行吸热散热,降低车身的温度,更进一步地说,柔性导热层6由柔性导热涂料组成,柔性导热涂料按重量份计由以下原料组成:有机硅改性丙烯酸树脂34-39份,膨胀石墨7-9份,导热纤维丝12-15份,云母粉6-8份,过渡金属复合氧化物粉末5-7份,醋酸丁酯9-11份,气相二氧化硅0.5-1份,二丙酮醇12-17份,分散剂1-1.5份和流平剂0.5-1份。
在本实施例中,柔性导热涂料可由以下重量份的原料组成:按重量份计由以下原料组成:有机硅改性丙烯酸树脂34-39份,膨胀石墨7-9份,导热纤维丝12-15份,云母粉6-8份,过渡金属复合氧化物粉末5-7份,醋酸丁酯9-11份,气相二氧化硅0.5-1份,二丙酮醇12-17份,分散剂1-1.5份和流平剂0.5-1份;柔性导热涂料也可由以下重量份的原料组成:有机硅改性丙烯酸树脂39份,膨胀石墨9份,导热纤维丝15份,云母粉8份,过渡金属复合氧化物粉末7份,醋酸丁酯11份,气相二氧化硅1份,二丙酮醇17份,分散剂1.5份和流平剂1份;作为优选,柔性导热涂料按重量份计由以下原料组成:有机硅改性丙烯酸树脂38份,膨胀石墨8份,导热纤维丝14份,云母粉6份,过渡金属复合氧化物粉末6份,醋酸丁酯10份,气相二氧化硅0.7份,二丙酮醇15份,分散剂1.3份和流平剂0.7份。
上述中,有机硅改性丙烯酸树脂由乙烯基有机硅氧烷单体与丙烯酸酯类单体共聚而成,具有优秀的耐高温、耐候性、良好的柔柔性以及强的附着力等性能,用此作为柔性导热涂料的基料,可使基料具有良好的导热、柔性和稳定性,在本实施例中,选用含有羟基的有机硅丙烯酸树脂,固含50%,硅含40%。
膨胀石墨,作为导热补强填料,由于其具有优良的导热性和柔软性,在本实施例中主要用来作为导热块,用以形成导热“中转站”,使柔性导热涂料内的热量能够迅速排出,增强柔性导热涂料的散热性能。优选地,膨胀石墨选用小颗粒膨胀石墨,目数在325目以上,400目以下为宜。
导热纤维丝,导热纤维丝包含金属纤维丝和碳纤维丝,金属纤维丝与碳纤维丝的质量百分比为4:1,两种不同种类的导热纤维丝共混后,不仅会提高纤维丝的均匀分布,还会进一步形成三维状的网络导热通路,如图3所示,以细长金属纤维丝61为主通道,以碳纤维丝62为支流和搭接桥梁,在涂料内可形成连续不间断的网络状“导热路线”,涂料在受到加热时,热量可通过涂料内网格状的导热纤维丝分散于涂料各处,热量被分散后与涂料周围物体发生热交换,进而达到散热目的,长短纤维丝的综合使用,克服了单一规格的纤维丝易出现搭接盲区和分散不均的问题,解决了网络状纤维形成难和网络状纤维易断点、不连续的技术难点,同时,形成的三维网格状纤维丝还有助于涂料柔韧性的增加,使涂料在受到拉伸、压缩、热胀冷缩时,不易出现龟裂、褶皱、裂纹等缺陷,压缩形变率极低,固化后的基料不易脱落,稳定性增强。
在本实施例中,金属纤维丝61可以为黄铜纤维、不锈钢纤维、碳钢纤维、铝纤维和铝合金纤维其中的一种或几种混合,优选为导热性能较佳的黄铜纤维,更具体地,黄铜纤维单丝直径应在40-80μm之间,以50-60μm为主要单丝直径,长径比为40-60:1,以确保黄铜纤维丝具备足够好的导热、韧性等性能。碳纤维丝为细短沥青碳纤维丝,其单丝直径为10-15μm,长径比为2-3:1,以确保碳纤维丝能够在黄铜纤维丝之间形成良好的搭接桥梁。
云母粉能够在表面张力的作用下在涂料内形成基本平行的取向排列,阻隔腐蚀性物质例如水、机油等对形成的柔性导热层的渗透,提高涂层的耐腐蚀性,同时云母粉还可以承受拉应力,增加涂层的附着力,提高涂层热辐射及机械性能,云母粉的加入,还能与导热纤维发生协同作用,减小导热纤维所受的应力,降低导热纤维发生脱落的趋势,在本实施例中,优选用绢云母粉,一是云母粉发挥出最佳作用。
醋酸丁酯和二丙酮醇在本实施例中作为溶剂,能够保证涂层干燥时的成膜效果,相比于单一溶剂,两种溶解参数相近和沸点相近的溶剂共混可以达到优势互补的效果,克服单一溶剂所固有的缺点,使涂料的成膜效果更易得到保障,成功率高。气相二氧化硅在本实施例中作为防沉剂,蓬松粉末状、多孔的气相二氧化硅可有效提高涂料内填料的悬浮性,阻止分层现象的发生,使涂料保持良好的稳定性。分散剂用于减少搅拌分散过程中所用的时间,使混合料能尽快分散均匀,在本实施例中选用BYK-ATU分散剂,流平剂用于避免成膜出现缩孔等现象,是一种聚丙烯酸酯溶液,选用BYK-355流平剂。
过渡金属复合氧化物粉末64在本实施例中作为吸热材料,其吸收比可达到0.91,发射比约为0.4,具有很强的吸热性能,过渡金属复合氧化物粉末64均匀分散后,在涂料内形成若干个吸热源,每个吸热源类似于“吸热泵”,将周围的热量大量吸入,然后通过导热纤维丝将热量输送于涂层各处,使涂层内外不会形成局部热量集中现象,涂层受热均匀,吸热能力提高,进而使得涂层稳定性更好。如图3所示,膨胀石墨63、过渡金属复合氧化物粉末64、金属纤维丝61和碳纤维62共同形成三维导热网络,在二维图示中,细长的金属纤维丝61搭接成基础网架,由于细长金属纤维丝61之间存在较多搭接盲区,基础网架为拥有较多断点的基础网架,基础网架的搭接盲区处均匀分散有若干相互搭接的细短碳纤维丝62,一部分细短碳纤维丝62接通断点的基础网架,基础网架的大部分断点被接通,另一部分细短碳纤维丝62与膨胀石墨63和过渡金属复合氧化物粉末64搭接,并通过膨胀石墨63和过渡金属复合氧化物粉末64间接接通基础网架,整体上形成了连续不间断地三维导热网络。
进一步,过渡金属复合氧化物可以为FeMnCuO2、FeMnCuO3、FeMnCuO4、FeMnCuO5和FeCuO5其中的一种或几种共混,优选为FeCuO5。
上述中,柔性导热涂料的制备和使用方法包括以下步骤:
步骤1、将有机硅改性丙烯酸树脂和BYK-ATU分散剂加入反应器内,然后用搅拌机以800r/min的转速对混合组分进行搅拌直至分散均匀,得到基料;
步骤2、向步骤1得到的基料中依次加入沥青碳纤维丝、小颗粒膨胀石墨、绢云母粉、气相二氧化硅、FeCuO5粉末,然后加入醋酸丁酯和二丙酮醇,用搅拌机对混合料进行充分搅拌,搅拌速度为1000r/min,直至分散均匀,得到初始涂料;
步骤3、将黄铜纤维丝和BYK-355流平剂加入步骤2的初始涂料中,用分散机分散均匀后得到未固化的涂料,将未固化的涂料泵入空气喷枪的储料罐中,然后用空气喷枪喷涂在处理过的基材(在本实施例中,基材为玻璃棉结构层)表面,静置至涂层流平后,放入高温烘箱于140℃下真空烘烤固化成膜,然后再保温10min,随炉冷却至室温后即得。
金属反射膜具有较大的消光系数,反射率很高,是一种优秀的遮光材料,将金属反射膜用于隔热遮阳垫中,能使隔热遮阳垫具有很高的反射率,其反射比可接近1。进一步,根据人们需要不同,选用的金属反射膜也不同,例如在紫外区常用的金属薄材料是铝,在可见光区常用的金属薄材料是铝和银,在红外区常用材料为金、银、铜金属薄材料,在本实施例中,考虑金属反射膜处用来反射太阳光意外,还需反射膜具有削弱红外线能量的功能,综合考虑,金属反射膜可以选用银、铝、铜等,优选用银金属薄材料;更进一步地说,金属反射采用溅镀的方式镀在抗撕裂层上,溅镀厚度为50-150μm(优选为100μm,也可以选择50μm或150μm)。
氟碳清漆具有优异的耐候性、耐持久性、抗划伤、柔韧性、防腐及附着力强等特点,使一种良好的罩面保护涂料,由于氟碳清漆为透明涂料,将其涂敷在金属反射膜上时,不会腐蚀和破坏金属反射膜,同时不会影响金属反射膜的反射率,很好地保护了金属反射膜,在本实施例中,氟碳清漆的喷涂厚度为150-300μm(优选为180μm,也可以选择150μm或300μm)。
相变材料5的设置可以起到辅助柔性导热层吸热散热的作用,利于柔性导热层吸热散热过程,当柔性导热层散热不及时本身温度较高时,通过相变材料蓄热的功能,吸收柔性导热层的热量,使柔性导热层温度降低,进而重新发挥出柔性导热层的吸热散热能力,相变材料蓄热至临界值时,相变材料不再吸热,此时撤离隔热遮阳垫,柔性导热层由于不再吸热温度迅速降低,相变材料释放蓄热,并通过柔性导热层向外界散发热量,直至恢复初态(固体状),以备下次继续使用,实现了循环利用。
为了使相变材料具有上述功能,相变材料为固-液相变材料,固-液相变材料的相变温度为31-36℃,更进一步地说,固-液相变材料按质量百分比由以下组成:膨胀石墨7%、二元低共熔脂肪酸87%、多孔氧化镁2%、多孔聚酯纤维2%,羧甲基纤维素2%,其中二元低共熔脂肪酸由月桂酸和肉豆蔻酸共混而成。设计二元低共熔脂肪酸为相变蓄热基体,由于月桂酸和肉豆蔻酸具有价廉易得,性质稳定,几乎无毒,环保并可再生等特点,二元低共熔脂肪酸由月桂酸和肉豆蔻酸共混而成,共混后形成的共晶物的相变温度适宜,符合现实需求(共混后相变温度在20-50℃),更进一步说,在本实施例中,要求月桂酸和肉豆蔻酸共混后得到的二元低共熔脂肪酸的相变温度在31-36℃,相变潜热为141-167J/g,相变温度选择在31-36℃的缘由在于,主要是考虑到降温后汽车车身与吸热涂层的热动态平衡温度一般控制在31-36℃较为适宜,优选地,将热动态平衡温度控制在33℃时,车身温度的影响可以忽略不计,此时二元低共熔脂肪酸的相变温度中月桂酸和肉豆蔻酸所对应地质量比为58:42,相变温度为33℃左右,相变潜热为151J/g。
膨胀石墨为常用有机类相变材料,与脂肪酸类有机物具有很好的兼容性,脂肪酸/膨胀石墨基相变复合材料中,膨胀石墨的最大吸附质量达80%,脂肪酸在发生相变时,几乎不会发生液态渗漏,具有很强的稳定性。但是脂肪酸/膨胀石墨基相变复合材料只能在不受到较大冲击力和折弯力的情况下才能保持优秀的稳定性能,当脂肪酸/膨胀石墨基相变复合材料受到较大冲击力和折弯力时(例如隔热垫折叠时),膨胀石墨内,受到拉伸的地方孔隙度会变大,已为液态的脂肪酸极易发生脱离,受到压缩的地方孔隙度会变小,充斥在空隙内的液体会被挤出进而失去依附力,这些脱离膨胀石墨的液体脂肪酸会发生液体流动,进而使相变材料层遭受破坏而失去作用,因此,本实施例中加入了辅助定形吸附物多孔氧化镁和多孔聚酯纤维,多孔氧化镁具有优秀的介孔特征,液体脂肪酸能够充分吸附在多孔氧化镁基体内,将多孔氧化镁混于二元低共熔脂肪酸后,相变材料层受到冲击力和折弯力时,以形成液流的脂肪酸内充斥着大量多孔氧化镁,这些游离状的多孔氧化镁为液流脂肪酸提供移动吸附点,进而增加了液流的黏度,在一定程度上阻止了相变材料层结构变形的趋势,进而有效防止相变材料层流动泄漏的问题,同时为了进一步完全解决变材料层流动泄漏的问题,在相变材料层中还添加了多孔聚酯纤维,多孔聚酯纤维不仅可以,还能提高蓄热量,使相变材料层发挥出最佳效果。
多孔氧化镁和多孔聚酯纤维复合使用,在形成的相变材料层内,发生协同作用,当固体脂肪酸发生相变时,游离的多孔氧化镁随着液流移动,多孔聚酯纤维将会挡获游离的多孔氧化镁,进一步增加液流的粘度,在整体上表现为,相变材料层发生相变时,形成的液体由于粘度大而聚集于局部,不会形成液流,进而维持了相变材料层的结构稳定。同时,相变材料层在受到拉伸和冲击时,颗粒形状和纤维形状的结合使用,增加了相变材料层的韧性、抗撕裂强度和抗疲劳强度,使相变材料层能够弯折,提高了其适应性。
更进一步地说,多孔氧化镁的制备方法为:称取设计量的三嵌段聚合物F-127模板剂于反应器中,加入无水乙醇和六水合硝酸镁,再置于真空环境下搅拌混合10-15h,然后将溶液放入50℃恒温干燥箱中干燥,直至样品为胶体状为止,再将得到的胶体放入箱式电阻炉内于450℃进行煅烧,升温速率控制为2℃/min,在空气条件下煅烧8h,煅烧后保温2h,然后随炉冷却至室温即得。
上述固-液相变材料的的制备方法包括以下步骤:
步骤1、将常态下的月桂酸和肉豆蔻酸按质量百分比为58:42的比例取量,然后于反应器中搅拌混合均匀,密封反应器并于80℃的烘箱中保温,直至反应器内月桂酸和肉豆蔻酸全部融化,然后取出用搅拌器搅拌混合均匀,得到二元低共熔脂肪酸混合溶液;
步骤2、将二元低共熔脂肪酸混合溶液置于超声水浴锅中,于60℃对二元低共熔脂肪酸混合溶液进行超声振动4min,然后再次密封反应器并置于60℃的烘箱中保温备用;
步骤3、将天然鳞片石墨在50℃真空干燥箱中烘干12h,用高温膨化法于800℃箱式电阻炉中加热制得膨胀石墨,备用;
步骤4、将步骤3中制得的膨胀石墨放入反应器内,向反应器内放入多孔氧化镁和多孔聚酯纤维,然后搅拌混合均匀,再60℃水浴保温,备用;
步骤5、在真空环境下,用滴管将二元低共熔脂肪酸混合溶液和羧甲基纤维素滴入步骤4的反应器内,直至滴加完毕;
步骤6、步骤5完成后,反应器继续60℃水浴,用搅拌机对反应器内进行充分搅拌,直至混合均匀,再将反应器内的物料倒入预先处理好的模具中(在本实施例中,模具为玻璃棉结构层),然后将模具置于70℃的烘箱中恒温干燥20-30h,最后取出脱模即得。
综上,隔热遮阳垫的制备方法包括以下步骤:
步骤1、编织高强度纱线,将42-58根芳纶纤维与21-29根涤纶纤维按照质量百分比为2:1合并加捻成高强度纱线,然后将高强度纱线编织成抗撕裂层;
步骤2、将得到的抗撕裂层浸渍在硅溶胶中,然后静置进行凝胶,10h后取出放入60℃恒温干燥箱中进行干燥,得到凝胶处理后的抗撕裂层(以使凝胶充满抗撕裂层内的孔隙,阻断热量向车身传播,大幅提高抗撕裂层的隔热性能),备用;
步骤3、在抗撕裂层的一面溅镀金属反射膜,然后在形成的金属反射膜上喷涂氟碳清漆,干燥后备用;
步骤4、制造玻璃棉成型模具,将玻璃棉压制成一面带有锥基底的玻璃棉结构层,备用;
步骤5、在玻璃棉结构层带有锥基底的一面喷涂密封胶,并在玻璃棉结构层的面上形成一层密封层,干燥后备用;
步骤6、制造固-液相变材料,将固-液相变材料加热变为液相后置于玻璃棉结构层的锥基底中,其中锥基底内的液相相变材料的深度不超过锥基底的高度,然后将玻璃棉结构层置于真空箱中空冷至室温;
步骤7、制造柔性导热涂料,将有机硅改性丙烯酸树脂和分散剂加入反应器内,然后用搅拌机以800r/min的转速对混合组分进行搅拌直至分散均匀,得到基料,然后向基料中依次加入碳纤维丝、膨胀石墨、云母粉、气相二氧化硅、过渡金属复合氧化物粉末,然后加入醋酸丁酯和二丙酮醇,用搅拌机对混合料进行充分搅拌,搅拌速度为1000r/min,直至分散均匀,得到初始涂料;
步骤8、将金属纤维丝和流平剂加入步骤7的初始涂料中,用分散机分散均匀后得到未固化的涂料,将未固化的涂料泵入空气喷枪的储料罐中,然后用空气喷枪喷涂在步骤6得到的玻璃棉结构层带有锥基底的一面,喷涂厚度为1-5mm(优选为2mm,也可选择1mm或5mm)静置至涂层流平后,放入高温烘箱于140℃下真空烘烤固化成膜,然后再保温10min,随炉冷却至室温,得到初始隔热遮阳垫;
步骤9、将步骤3得到的抗撕裂层不带金属反射膜的一面与步骤7得到的初始隔热遮阳垫不带柔性导热涂料的一面用粘结剂粘接固定后,即得到隔热遮阳垫。
如图1和图2所示,金属反射膜2反射绝大部分太阳光,起到了很好地遮阳效果,剩余部分太阳光和热量通过抗撕裂层3隔离,热量和太阳光无法渗透至隔热遮阳垫底部,进而起到了隔热效果;柔性导热层6与车身接触时,较大的温差促使柔性导热层吸收车身大量的热量,进而使车身温度持续降低,直至车身与柔性导热层6达到热动态衡,若此时热动态平衡温度较高,则相变材料5大量吸收柔性导热层的热量,促使柔性导热层6温度降低,进而使热动态平衡温度降低,整体上,使车身的温度处于较低的状态,避免了烫伤的风险。同时,车身温度的降低,还会发生连锁效应,使车内的温度进一步降低,通过现场测试,在气温为30℃的露天停车场中,将本实施例的隔热遮阳垫遮盖于汽车上1h后,用温度计测得,车内的温度与外界气温相差在6℃以内,最佳只相差2-3℃,车身的温度与外界气温相差在9℃以内,最佳只相差4-5℃,明显优于现有使用的隔热遮阳垫。
实施例二
实施例二与实施例一相同,其不同之处在于,固-液相变材料按质量百分比由以下组成:膨胀石墨9%、二元低共熔脂肪酸82%、多孔氧化镁1%、多孔聚酯纤维5%,羧甲基纤维素3%,其中二元低共熔脂肪酸由月桂酸和肉豆蔻酸共混而成。
实施例三
实施例三与实施例一和实施例二相同,其不同之处在于,固-液相变材料按质量百分比由以下组成:膨胀石墨7%、二元低共熔脂肪酸83%、多孔氧化镁5%、多孔聚酯纤维3%,羧甲基纤维素2%,其中二元低共熔脂肪酸由月桂酸和肉豆蔻酸共混而成。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。