一种高性能包装用复合薄膜的制作方法

文档序号:11643300阅读:196来源:国知局

本发明涉及多层复合薄膜技术领域,特别涉及一种高性能包装用复合薄膜,该复合薄膜可应用于真空包装、充气包装、气调包装、高温蒸煮包装、无菌包装以及涂覆、印刷、复合基材等。



背景技术:

多层共挤复合薄膜是指由多种不同聚合物,采用共挤出吹塑方法、共挤出流延方法或共挤出拉伸方法复合而成的薄膜。这种薄膜作为塑料包装材料广泛应用于食品、加工肉类产品、日用品、化妆品、化工产品、农药、军工产品等等,并且可以实现产品的密封软包装以及满足充气或抽真空、热成型、气调包装、高温蒸煮包装、无菌包装等各种包装功能、在各种环境下具有高阻湿、阻氧、阻油、保香等各种阻隔性能。

在食品包装行业,真空包装、充气包装、气调包装、高温蒸煮包装、无菌包装及涂覆、印刷、复合基材的应用非常广泛,真空包装是将食品放入包装袋内,抽出包装袋内的空气,达到预定真空度后将其封口,其主要作用是除氧,以防止食品变质。充气包装是在抽真空后再冲入氮气、二氧化碳、氧气单一气体或两三种气体的混合。气调包装是采用气调保鲜气体(2~4种气体根据食品特性配比混合),对包装袋内的空气进行置换,改变包装袋内食品的外部环境,抑制细菌的生长繁衍,减缓新鲜食品新陈代谢的速度,从而延长食品的保鲜期或货架期。无菌包装是指将经过杀菌、已达到商业无菌状态的产品(液态奶及奶制品、饮料等),封闭在已杀菌的容器中,在无菌环境下进行灌注,灌装后包装容器保持密封的一种包装方法。与真空包装、充气包装、气调包装及高温蒸煮包装、无菌包装及涂覆、印刷复合基材技术同步发展的是复合软包装薄膜,真空包装、充气包装、气调包装及高温蒸煮包装、无菌包装及涂覆、印刷、复合基材技术的关键是保持包装薄膜的阻隔功能性和优良的热封性能。为了达到环保和减量的目标,采用多层共挤出成型工艺方法实现了vocs的零排放,采用双向拉伸成型工艺使薄膜薄到一定程度以后其强度仍可得到保障。但多层高阻隔薄膜因各层材料的加工特性不同,同时在相同的工艺条件下完成共挤和双向拉伸的成型技术受现有技术的限制,薄膜的层间剥离强度、热封性能均无法得到保障。

现有技术存在如下问题:1、多层复合薄膜中各层材料不同,不同材料的拉伸倍率不同,当拉伸倍率小的材料层被拉伸至与拉伸倍率大的材料层相同倍率时,层间剥离强度急剧下降甚至脱层,而拉伸倍率小的材料极可能被撕裂;2、拉伸后热封性能下降;3、为了使拉伸后的薄膜具备足够热封性,通常在拉伸后的薄膜上再复合一热封层,但是复合使用的干式复合溶剂存在污染,对食品不安全,不环保。



技术实现要素:

本发明目的是提供一种高性能包装用复合薄膜。

为达到上述目的,本发明采用的技术方案是:一种高性能包装用复合薄膜,其创新在于:该复合薄膜的结构如下:

bl/tie/po1/pox/po3式(1)

式(1)中,从左往右依次表示的含义是:

bl表示外层,其材料为聚酰胺或聚酯或乙烯乙烯醇共聚物;

tie表示粘合层,其材料为以po1层材料为载体的马来酸酐接枝共聚物;

po1表示主拉伸层,亦称po1层,其材料为聚乙烯或聚丙烯;

pox表示拉伸过渡桥,亦称pox桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;x表示层数,且x为1、2、3……,但不为0;

po3表示内层,亦称po3层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;

所述式(1)的复合薄膜通过多层共挤出及双向拉伸成型一次获得,其中,所述双向拉伸采用先纵向拉伸,再横向拉伸的两步拉伸方法来实现;

所述复合薄膜的总厚度为8微米~100微米,po1层的厚度占所述复合薄膜总厚度的30~60%;pox层的厚度占所述复合薄膜总厚度的10~20%;po3层的厚度占所述复合薄膜总厚度的8~20%;

所述po1层、pox层及po3层的材料的密度选择要求如下:当po1层为聚乙烯时,po1层的密度为0.87~0.97g/cm³;当po1层为聚丙烯时,po1层的密度为0.86~0.91g/cm³;pox桥的密度为0.86~0.97g/cm³,po3层的密度为0.87~0.97g/cm³;

所述po1层和po3层材料的溶解度参数之差的绝对值大于或等于0.1(j·cm-3)1/2,且小于或等于0.5(j·cm-3)1/2,且所述po1层和po3层材料的内聚能密度之差的绝对值大于或等于3j/cm3,且小于或等于5j/cm3;所述pox桥材料的溶解度参数及内聚能密度是以po1层材料和po3层材料两者中的一者为基准,呈梯度向另一者过渡;

所述po1层至pox桥至po3层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(j•cm-3)1/2,同时,po1层至pox桥至po3层中各相邻层之间的内聚能密度之差的绝对值小于或等于3j/cm3

上述技术方案中的有关内容解释如下:

1、上述方案中,所述pox桥材料的溶解度参数和内聚能密度是以po1层材料和po3层材料两者中的一者为基准,向另一者递增或递减过渡。

2、上述方案中,所述pox桥材料的溶解度参数和内聚能密度是以po1层材料和po3层材料两者中的一者为基准,呈v字形梯度向另一者过渡。

3、上述方案中,所述pox桥材料的溶解度参数和内聚能密度是以po1层材料和po3层材料两者中的一者为基准,呈m字形梯度向另一者过渡。

4、上述方案中,所述pox桥材料的溶解度参数和内聚能密度是以po1层材料和po3层材料两者中的一者为基准,呈w字形梯度向另一者过渡。

5、在本发明中,所述溶解度参数(solubilityparameter,简称sp)是衡量聚合物材料在加工条件下(包括橡胶和塑料加工条件下呈液态)相溶性的一项物理常数。

所述内聚能密度(cohesiveenergydensity)就是单位体积v内1mol凝聚体为克服分子间作用力汽化时所需要的能量e(内聚能)。是评价分子间作用力大小的一个物理量,主要反映基团间的相互作用。一般来说,分子中所含基团的极性越大,分子间的作用力就越大,则相应的内聚能密度就越大;反之亦然。

溶解度参数其物理意义是材料单位体积内聚能密度的开平方:sp=(e/v)1/2,其中,sp是溶解度参数,e是内聚能,v是体积,e/v是内聚能密度。

本发明的技术原理及优点:掌握溶解度参数,就是掌握了不同聚合物之间的相溶程度,为能否成功并用提供依据。两种高分子材料的溶解度参数越相近,则共混效果越好。如果两者的差值超过了0.5,则一般难以共混均匀,需要增加增溶剂才可以。增溶剂的作用是降低两相的表面张力,使得界面处的表面被激化,从而提高相溶的程度。增溶剂往往是一种聚合物,起到桥梁中介的作用。在本发明中,拉伸过渡桥起到了增溶剂以及桥梁中介的作用。

影响复合薄膜多层共挤出双向拉伸的两个重要因素是层间材料的溶解度参数和密度,内聚能密度是材料单位体积的内聚能,内聚能密度与材料密度及材料熔点/软化温度成正比的关系,本发明依据聚合物内聚能密度及溶解度参数相同或相近,即符合有机物相似相溶的基本规则,作为设定拉伸过渡桥(pox桥)的依据,两种高分子材料的溶解度参数及内聚能密度越相近,则共混效果越好,通过拉伸过渡桥来缩小层间材料溶解度参数及内聚能密度之间的差异,消除或减弱了结构层间的内应力,提高了剥离强度、热封强度,实现多层共挤薄膜的双向拉伸。

在本发明中,当所述po1层和po3层材料的溶解度参数之差的绝对值大于或等于0.1(j·cm-3)1/2且小于或等于0.5(j·cm-3)1/2时,同时,内聚能密度之差的绝对值大于或等于3j/cm3且小于或等于5j/cm3时,可以通过本发明pox桥来同时满足po1层到po3层相溶性的过渡、多层共挤薄膜的双向拉伸以及拉伸过渡桥厚度占复合薄膜总厚度的10~20%要求。当po1层和po3层材料的溶解度参数之差的绝对值大于0.5(j·cm-3)1/2或/且内聚能密度之差的绝对值大于5j/cm3时,po1层和po3层材料之间的相溶性较差,此时,采用本发明拉伸过渡桥手段将无法同时满足相溶性、双向拉伸以及拉伸过渡桥厚度占复合薄膜总厚度的10~20%要求。当po1层和po3层材料的溶解度参数之差的绝对值小于0.1(j·cm-3)1/2或/且内聚能密度之差的绝对值小于3j/cm3时,不需要设置拉伸过渡桥。

本发明通过双向拉伸工艺使分子有序排列,增加了强度。

具体实施方式

下面结合实施例对本发明作进一步描述:

实施例一:

复合薄膜结构中po1为聚丙烯;pox为高密度聚乙烯/线性低密度聚乙烯+高密度聚乙烯/线性低密度聚乙烯+乙烯-辛烯的共聚物/乙烯-辛烯的共聚物,层数为四层;po3为聚丙烯,具体参见表格一:

表格一:

表格一中可见各聚合物的密度、溶解度参数以及内聚能密度,po1层和po3层材料的溶解度参数之差的绝对值为0.30(j·cm-3)1/2,0.1(j·cm-3)1/2<0.30(j·cm-3)1/2<0.5(j·cm-3)1/2,po1层和po3层材料的内聚能密度之差的绝对值为4.773j/cm3,3j/cm3<4.773j/cm3<5j/cm3,满足设置拉伸过渡桥的条件,拉伸过渡桥pox为四层结构,pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,呈v字形向po3层材料过渡;

所述po1层至pox桥至po3层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(j•cm-3)1/2,同时,po1层至pox桥至po3层中各相邻层之间的内聚能密度之差的绝对值小于或等于3j/cm3。。

以下实施例通过表格呈现,为了节省篇幅,不再通过文字赘述。

实施例二:

复合薄膜结构中po1为聚丙烯;pox为高密度聚乙烯/线性低密度聚乙烯/高密度聚乙烯,层数为三层;po3为乙烯-辛烯的共聚物,具体参见表格二:

表格二:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,向po3层材料递减过渡。

实施例三:

复合薄膜结构中po1为高密度聚乙烯;pox为线性低密度聚乙烯/低密度聚乙烯,层数为两层;po3为乙烯-辛烯的共聚物,具体参见表格三:

表格三:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,向po3层材料递减过渡。

实施例四:

复合薄膜结构中po1为高密度聚乙烯;pox为线性低密度聚乙烯/高密度聚乙烯+低密度聚乙烯,层数为两层;po3为高密度聚乙烯+聚丙烯,具体参见表格四:

表格四:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,向po3层材料递减过渡。

实施例五:

复合薄膜结构中po1为聚丙烯;pox为高密度聚乙烯/线性低密度聚乙烯/低密度聚乙烯,层数为三层;po3为乙烯-辛烯的共聚物,具体参见表格五:

表格五:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,向po3层材料递减过渡。

实施例六:

复合薄膜结构中po1为聚丙烯;pox为高密度聚乙烯/线性低密度聚乙烯+乙烯-辛烯的共聚物,层数为两层;po3为乙烯-辛烯的共聚物,具体参见表格六:

表格六:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,向po3层材料递减过渡。

实施例七:

复合薄膜结构中po1为聚丙烯;pox为高密度聚乙烯+乙烯-辛烯的共聚物/乙烯-辛烯的共聚物/线性低密度聚乙烯+乙烯-辛烯的共聚物,层数为三层;po3为聚丙烯,具体参见表格七:

表格七:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,呈v字形向po3层材料过渡。

实施例八:

复合薄膜结构中po1为聚丙烯;pox为改性聚乙烯+高密度聚乙烯/线性低密度聚乙烯/线性低密度聚乙烯+改性聚乙烯,层数为三层;po3为乙烯-辛烯的共聚物,具体参见表格八:

表格八:

pox桥材料的溶解度参数及内聚能密度是以po1层材料为基准,向po3层材料递减过渡。

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,本领域技术人员可在上述实施例的基础上做出其他变化,比如选择各材料的不同密度、选择添加不同的活化剂等,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1