一种蜂窝阻隔结构防弹头盔的制作方法

文档序号:16545143发布日期:2019-01-08 20:48阅读:265来源:国知局
一种蜂窝阻隔结构防弹头盔的制作方法

本实用新型涉及防弹头盔技术领域,特别是指一种蜂窝阻隔结构防弹头盔。



背景技术:

防弹头盔是一种单兵作战头部安全防护的重要装备,目前传统的防弹头盔均采用UHMWPE纤维复合材料或芳纶纤维复合材料采用热压成型制备,该单一材质的防弹头盔鉴于材质自身的物理特性存在诸多问题,例如UHMWPE纤维复合材料的高温蠕变问题严重,弹丸侵撤防护过程的整体变形量较大;芳纶纤维复合材料的抗紫外老化问题严重,影响整体头盔的使用寿命和安全性。为了改善这些问题,研究者尝试采用碳纤维与以上纤维复合组成叠层组合结构的防弹头盔以解决防弹和服役过程中的刚性和耐老化问题,得到了较好的效果,然而这些头盔的防护级别一直得不到有效提升,仅仅停留在手枪弹丸的防御水平。而面对冲锋枪或者自动步枪或半自动步枪的弹丸侵撤,则没有较有效的防护性能。

防弹陶瓷材料具有硬度大、密度低等优异的力学性能,在重型防弹装甲上的应用已经较为广泛,而利用防弹陶瓷与传统复合材料材质形成组合结构而制备复合构型的单兵防护装备的研究较少,主要因为防弹陶瓷的整体密度与纤维复合材料相比较大,整体的重量影响了携带和佩戴的便携性和舒适性。



技术实现要素:

本实用新型提供一种重量较轻、刚度大、整体变形量小的蜂窝阻隔结构防弹头盔。

为解决上述技术问题,本实用新型提供技术方案如下:

本实用新型提供一种蜂窝阻隔结构防弹头盔插,从头盔外表面到内表面依次包括蜂窝阻隔层、中间刚性层、内部缓冲层,其中:

所述蜂窝阻隔层由六角形柱状陶瓷微筒内填充短切碳纤维复合材料构成,所述中间刚性层由碳纤维二维编织织物结构浸渍热固性树脂基体制备而成,所述内部缓冲层采用高韧性纤维二维编织结构预制体织物结构增强热塑性树脂基体构成;

所述蜂窝阻隔层的外层还设置有碳纤维热固性复合材料层。

进一步的,所述内部缓冲层的厚度为2-4mm。

进一步的,所述蜂窝阻隔层中陶瓷的材质选用氧化铝、碳化硅、氮化硼、碳化硼或氮化硅。

进一步的,所述蜂窝阻隔层中六角形柱状陶瓷微筒的高度为5-20mm,六角形柱状陶瓷微筒的壁厚为1-3mm。

进一步的,所述六角形柱状陶瓷微筒内填充的材料采用短切碳纤维增强热固性树脂复合材料,碳纤维为T300、T700、T800或T1000,短切长度为3-5mm。

进一步的,所述蜂窝阻隔层中热固性树脂为酚醛树脂、环氧树脂或不饱和聚酯树脂。

进一步的,所述中间刚性层中所用的碳纤维为T300、T700、T800或T1000,所用的二维编织织物结构为平纹、斜纹或缎纹;所用的热固性树脂基体选用环氧树脂、酚醛树脂或不饱和聚酯树脂。

进一步的,所述内部缓冲层中高韧性纤维选用UHMWPE纤维、芳纶纤维或PBO纤维,二维编织结构为平纹、斜纹或缎纹;

内部缓冲层中热塑性树脂基体选用聚氨酯、聚乙烯、聚醚醚酮或聚苯硫醚。

本实用新型具有以下有益效果:

本实用新型的蜂窝阻隔结构防弹头盔,蜂窝阻隔层由六角形柱状陶瓷微筒内填充短切碳纤维复合材料构成,可以提高整体刚性和对冲击弹丸的表面磨削;中间刚性层由碳纤维二维编织织物结构浸渍热固性树脂基体制备而成,用以对蜂窝阻隔层起到整体的支撑和连接作用;内部缓冲层采用高韧性纤维二维编织结构预制体织物结构增强热塑性树脂基体构成,以提高整体最终防弹防护作用和抵消部分弹丸造成的背凸问题;在最外层设置有碳纤维热固性复合材料层,多层结构整体刚度大,受到弹丸冲击时整体变形量小,重量较轻,便于携带和佩戴,增加了舒适性。

附图说明

图1为本实用新型的蜂窝阻隔结构防弹头盔的整体结构示意图,其中,1-蜂窝阻隔层,2-中间刚性层,3-内部缓冲层,6-碳纤维热固性复合材料层;

图2为本实用新型的蜂窝阻隔结构防弹头盔的蜂窝阻隔层的内部结构示意图,其中,4-六角形柱状陶瓷微筒,5-短切碳纤维复合材料。

具体实施方式

为使本实用新型要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。

一方面,本实用新型提供一种蜂窝阻隔结构防弹头盔,如图1-2所示,从头盔外表面到内表面依次包括蜂窝阻隔层1、中间刚性层2、内部缓冲层3,其中:

蜂窝阻隔层1由六角形柱状陶瓷微筒4内填充短切碳纤维复合材料5构成,中间刚性层2由碳纤维二维编织织物结构浸渍热固性树脂基体制备而成,内部缓冲层3采用高韧性纤维二维编织结构预制体织物结构增强热塑性树脂基体构成;

蜂窝阻隔层1的外层还设置有碳纤维热固性复合材料层6。

本实用新型的蜂窝阻隔结构防弹头盔,蜂窝阻隔层由六角形柱状陶瓷微筒内填充短切碳纤维复合材料构成,可以提高整体刚性和对冲击弹丸的表面磨削;中间刚性层由碳纤维二维编织织物结构浸渍热固性树脂基体制备而成,用以对蜂窝阻隔层起到整体的支撑和连接作用;内部缓冲层采用高韧性纤维二维编织结构预制体织物结构增强热塑性树脂基体构成,以提高整体最终防弹防护作用和抵消部分弹丸造成的背凸问题;在最外层设置有碳纤维热固性复合材料层,多层结构整体刚度大,受到弹丸冲击时整体变形量小,重量较轻,便于携带和佩戴,增加了舒适性。

进一步的,内部缓冲层3的厚度优选为2-4mm,可以根据实际情况灵活选择。

进一步的,蜂窝阻隔层1中陶瓷的材质选用氧化铝、碳化硅、氮化硼、碳化硼或氮化硅。

优选的,蜂窝阻隔层1中六角形柱状陶瓷微筒的高度为5-20mm,六角形柱状陶瓷微筒的壁厚优选为1-3mm,六角形柱状陶瓷微筒的孔采用六角形状,孔对角线的最大长度根据防御弹丸的具体要求灵活调整。

优选的,六角形柱状陶瓷微筒内填充的材料采用短切碳纤维增强热固性树脂复合材料,碳纤维为T300、T700、T800或T1000,短切长度为3-5mm,其中,蜂窝阻隔层1中热固性树脂为酚醛树脂、环氧树脂或不饱和聚酯树脂,热固性树脂的含量优选为30-60%。

作为本实用新型的一种改进,中间刚性层2中所用的碳纤维为T300、T700、T800或T1000,所用的二维编织织物结构为平纹、斜纹或缎纹;所用的热固性树脂基体选用环氧树脂、酚醛树脂或不饱和聚酯树脂,中间刚性层中总体树脂的含量可控制在30-60%范围内。

本实用新型中,内部缓冲层3中高韧性纤维选用UHMWPE纤维、芳纶纤维或PBO纤维,二维编织结构为平纹、斜纹或缎纹;

内部缓冲层3中热塑性树脂基体选用聚氨酯、聚乙烯、聚醚醚酮或聚苯硫醚,内部缓冲层内总体树脂的含量控制在20-40%范围内。

另一方面,本实用新型还提供一种上述的蜂窝阻隔结构防弹头盔的制备方法,包括以下步骤:

首先采用高韧性纤维的二维织物浸渍复合热塑性树脂,采用剪裁技术将其叠层铺层,采用模压成型工艺形成内部缓冲层头盔壳体;采用高强度碳纤维二维织物浸渍复合热固性树脂基体形成预浸原料,同样采用剪裁技术叠层并通过模压成型在内部缓冲层头盔壳体外层制备中间刚性层,所用的压制最大压力为25MPa,其中缓冲层的热压温度在120-140℃范围内,中间刚性层的热压温度控制在120-160℃范围内。

进一步的,防弹头盔的中间刚性层和内部缓冲层均采用分次热压成型方式制备,在该两层组合成型后,在其最外表面采用胶黏剂粘接拼接形成蜂窝阻隔层整体,之后在蜂窝阻隔层整体外表面以碳纤维浸渍热固性树脂真空导入固化成型形成头盔整体即碳纤维热固性复合材料层,在内部缓冲层和中间刚性层制备完成后,在中间刚性层表面将单个六角形柱状陶瓷微筒以粘结剂组合粘接,所用的胶黏剂选用环氧树脂、丙烯酸树脂或酚醛树脂粘合剂,粘接过程在25-40℃范围内操作,在六角形柱状陶瓷微筒粘合完成形成蜂窝阻隔层后,在单个六角形柱状陶瓷微筒内填充碳纤维复合材料填充体,最后在最外层包覆一层浸渍热固性树脂的碳纤维二维织物,采用真空导入成型热固化成型方式形成头盔整体结构,其中真空度控制在-0.05到-0.1MPa,固化成型的温度控制在120-160℃,固化时间为0.5-1h。

下面结合具体实施例进行进一步说明本制备方法的特征和细节,但所列过程和数据并不意味着对本实用新型范围的限制。

实施例1:

选用聚氨酯树脂含量20%的UHMWPE纤维的平纹预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以120℃的温度、以25MPa压强压制1小时完成厚度为3mm的缓冲层头盔内壳的制备;在缓冲层外侧采用平纹的T300高强碳纤维浸渍含量在60%的环氧树脂形成预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以160℃的温度、以25MPa压强压制1小时完成厚度为2mm的缓冲层头盔内壳的制备;采用氧化铝陶瓷制备厚度为1mm、对角最大长度为20mm、高度在5mm的六角形柱状陶瓷微筒,将六角形柱状陶瓷微筒采用环氧树脂粘合剂在40℃范围内操作完成整体拼接,在陶瓷微筒内部填充5mm的浸渍酚醛树脂的T700短切碳纤维,六角形柱状陶瓷微筒内填充体的树脂含量控制在60%,最后在最外层包覆一层浸渍酚醛树脂的碳纤维缎纹织物,采用-0.05MPa的真空度、160℃的温度真空导入成型头盔整体,固化时间为1小时。

实施例2:

选用聚乙烯树脂含量40%的芳纶纤维的斜纹预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以120℃的温度、以15MPa压强压制2小时完成厚度为2mm的缓冲层头盔内壳的制备;在缓冲层外侧采用缎纹的T700高强碳纤维浸渍含量在30%的环氧树脂形成预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以125℃的温度、以20MPa压强压制1小时完成厚度为2.5mm的缓冲层头盔内壳的制备;采用碳化硅陶瓷制备厚度为2mm、对角最大长度为10mm、高度在10mm的六角形柱状陶瓷微筒,将六角形柱状陶瓷微筒采用丙烯酸树脂粘合剂在40℃范围内操作完成整体拼接,在六角形柱状陶瓷微筒内部填充5mm的浸渍环氧树脂的T1000短切碳纤维,六角形柱状陶瓷微筒内填充体的树脂含量控制在40%,最后在最外层包覆一层浸渍环氧树脂的碳纤维斜纹织物,采用-0.1MPa的真空度、120℃的温度真空导入成型头盔整体,固化时间为0.5小时。

实施例3:

选用聚丙烯树脂含量30%的PBO纤维的斜纹预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以130℃的温度、以21MPa压强压制2小时完成厚度为2mm的缓冲层头盔内壳的制备;在缓冲层外侧采用缎纹的T800高强碳纤维浸渍含量在40%的不饱和聚酯树脂形成预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以120℃的温度、以20MPa压强压制1小时完成厚度为2mm的缓冲层头盔内壳的制备;采用碳化硼陶瓷制备厚度为2mm、对角最大长度为20mm、高度在10mm的六角形柱状陶瓷微筒,将六角形柱状陶瓷微筒采用环氧树脂粘合剂在40℃范围内操作完成整体拼接,在六角形柱状陶瓷微筒内部填充4mm的浸渍环氧树脂的T800短切碳纤维,六角形柱状陶瓷微筒内填充体的树脂含量控制在33%,最后在最外层包覆一层浸渍不饱和聚酯树脂的碳纤维缎纹织物,采用-0.1MPa的真空度、120℃的温度真空导入成型头盔整体,固化时间为1小时。

实施例4:

选用聚苯硫醚树脂含量40%的UHMWPE纤维的平纹预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以140℃的温度、以25MPa压强压制1小时完成厚度为4mm的缓冲层头盔内壳的制备;在缓冲层外侧采用斜纹的T1000高强碳纤维浸渍含量在60%的环氧树脂形成预浸原料,采用特定的剪裁技术将其叠层铺层,采用热压成型,以127℃的温度、以25MPa压强压制1小时完成厚度为4mm的缓冲层头盔内壳的制备;采用氮化硅陶瓷制备厚度为2mm、对角最大长度为20mm、高度在10mm的六角形柱状陶瓷微筒,将六角形柱状陶瓷微筒采用丙烯酸树脂粘合剂在35℃范围内操作完成整体拼接,在六角形柱状陶瓷微筒内部填充3m的浸渍环氧树脂的T1000短切碳纤维,六角形柱状陶瓷微筒内填充体的树脂含量控制在45%,最后在最外层包覆一层浸渍环氧树脂的碳纤维平纹织物,采用-0.1MPa的真空度、125℃的温度真空导入成型头盔整体,固化时间为1小时。

在本实用新型中,制备方法的条件不同,得到的蜂窝阻隔结构防弹头盔的性能会有不同,为更好地证明本实用新型的防弹性能,现构建如下对比例1:

对比例1:

采用UHMWPE纤维复合材料热压成型制备与实施例4厚度相同的防弹头盔。

将实施例1-实施例4以及对比例1在相同条件下进行实弹测试,得到不同弹速下的凹陷深度(mm),如表1所示:

表1

由表1可知,本实用新型的防弹头盔与对比例1相比,在相同弹速下,其凹陷深度较小,抵御弹丸后变形较小,刚度较大,防护性能更好,本实用新型在弹速900m/s左右不会出现穿透问题。

另外,本实用新型中蜂窝阻隔层的六角形柱状陶瓷微筒为中空结构,在防弹性能提高的前提下整体重量较轻,便于携带和佩戴,增加了舒适性。

以上所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1