共注射成型多层结构体和其制造方法与流程

文档序号:19666215发布日期:2020-01-10 21:42阅读:389来源:国知局

本发明涉及具有由乙烯-乙烯醇共聚物树脂组合物制成的阻隔层和与其两侧接触层叠的外层的共注射成型多层结构体。



背景技术:

乙烯-乙烯醇共聚物(以下有时称为evoh)是对于氧气等气体、有机化学品的阻隔性优异的高分子材料,其被广泛用作膜、片、容器等各种包装材料。

evoh是容易吸湿的树脂,由于吸湿而导致其阻隔性能降低。因此,为了防止evoh的吸湿,多数情况下将在evoh层的两侧配置有聚烯烃层等疏水性树脂层的多层结构体用作容器等。然而,由于evoh层与疏水性树脂层的粘接性差,因此广泛地在两层之间配置马来酸酐改性聚烯烃等粘接性树脂层。然而,层构成变得复杂时,无法避免制造成本的上升,需求一种不设置粘接性树脂层而将evoh层和疏水性树脂层进行粘接的方法。

另一方面,在通过共注射成型而得到多层结构体的情况下,由多个料筒将熔融的多种树脂同时注射至模具内。并且,以该树脂层叠的状态在模具内流动而填充至模具中,由此得到多层结构体。此时,在技术上难以在evoh层与疏水性树脂层之间均匀地形成粘接性树脂层,因此,在evoh层的两侧不经由粘接性树脂层而形成疏水性树脂层。

在专利文献1中,记载了在燃料容器中使用的成型部件,其通过将阻隔性树脂(a)层和具有11以下的溶解性参数的热塑性树脂(b)层叠层而成,记载了该成型部件的机械强度等优异。并且,在其实施例中,记载了多层燃料容器,其以使由共混物形成的层夹住由evoh形成的层的方式进行共注射而成,所述共混物由聚乙烯和马来酸酐改性聚乙烯构成。

专利文献2记载了氧吸收性树脂组合物,其为含有实质上仅在主链具有碳-碳双键的热塑性树脂和过渡金属盐的氧吸收性树脂组合物,该热塑性树脂的每1摩尔碳-碳双键的氧吸收量为1.6摩尔以上。另外,还记载了在evoh等基质树脂中分散有所述热塑性树脂的颗粒的树脂组合物,记载了通过由该热塑性树脂带来的氧吸收而表现出高度的氧阻隔性。

【现有技术文献】

【专利文献】

【专利文献1】日本特开2001-146116

【专利文献2】wo2007/126157a。



技术实现要素:

发明要解决的技术课题

根据专利文献1记载的发明,记载了在具有evoh层和与其两侧接触而层叠的聚乙烯树脂组合物层的共注射成型多层结构体中,在两层间具有一定程度的粘接性。但是,本发明人等发现:由这种不具有粘接层的共注射成型多层结构体制成的容器由于搬运时的落下等而引起层间剥离,与之相伴在evoh层中产生微细的裂纹,由此虽然在容器的外观上没有问题,但可引起容器的器身的氧化劣化。

用于解决课题的方案

为了解决上述课题而作出的发明如以下所述。

(1)共注射成型多层结构体,其具有阻隔层和与其两侧接触而层叠的外层,其中,所述阻隔层由包含乙烯-乙烯醇共聚物(a)和熔点为250℃以下的高级脂肪酸的碱金属盐(b)的树脂组合物(x)制成,乙烯-乙烯醇共聚物(a)的乙烯单元含量为20~60摩尔%,皂化度为90%以上,所述阻隔层中的碱金属盐(b)的含量以金属原子换算计为50~1500ppm,所述外层由包含未改性的高密度聚乙烯(f)和马来酸酐改性聚乙烯(g)的树脂组合物(y)制成,相对于树脂组合物(y)整体的马来酸酐改性率为0.005~0.1wt%。

(2)上述(1)所述的共注射成型多层结构体,其中,未改性的高密度聚乙烯(f)相对于乙烯-乙烯醇共聚物(a)的190℃/2160g时的mfr比(f/a)为0.04~50。

(3)上述(1)或(2)所述的共注射成型多层结构体,其中,马来酸酐改性聚乙烯(g)相对于未改性的高密度聚乙烯(f)的190℃/2160g时的mfr比(g/f)为0.5~100。

(4)上述(1)~(3)中任一项所述的共注射成型多层结构体,其中,马来酸酐改性聚乙烯(g)相对于未改性的高密度聚乙烯(f)和马来酸酐改性聚乙烯(g)的合计的质量比[g/(f+g)]为0.025~0.2。

(5)上述(1)~(4)中任一项所述的共注射成型多层结构体,其中,碱金属盐(b)为硬脂酸钠和硬脂酸钾中的至少任一者。

(6)上述(1)~(5)中任一项所述的共注射成型多层结构体,其中,所述阻隔层还包含具有碳-碳双键的热塑性树脂(c)、和选自铁盐、镍盐、铜盐、锰盐和钴盐中的至少1种过渡金属盐(d)。

(7)上述(6)所述的共注射成型多层结构体,其中,热塑性树脂(c)为聚亚辛烯基(ポリオクテニレン)。

(8)上述(1)~(7)中任一项所述的共注射成型多层结构体,其中,所述阻隔层还包含吸湿剂(e)。

(9)容器,其由上述(1)~(8)中任一项所述的共注射成型多层结构体构成。

(10)盖子,其由上述(1)~(8)中任一项所述的共注射成型多层结构体构成。

(11)上述(1)~(8)中任一项的多层结构体的制造方法,其中,将包含乙烯-乙烯醇共聚物(a)和碱金属盐(b)的树脂组合物(x)、与包含未改性的高密度聚乙烯(f)和马来酸酐改性聚乙烯(g)的树脂组合物(y)进行共注射成型。

发明的效果

本发明的共注射成型多层结构体尽管不具有粘接剂层,但是由evoh树脂组合物制成的阻隔层、与由包含未改性的高密度聚乙烯和马来酸酐改性聚乙烯的树脂组合物制成的外层具有优异的粘接性,作为结果,即使由于落下等而受到冲击后,也可维持氧阻隔性能。

具体实施方式

(树脂组合物(x))

本发明是具有阻隔层和与其两侧接触而层叠的外层的共注射成型多层结构体,所述阻隔层由包含evoh(a)、和熔点为250℃以下的高级脂肪酸的碱金属盐(b)的树脂组合物(x)制成。

作为本发明中使用的evoh(a),优选是将乙烯-乙烯基酯共聚物进行皂化而得到的,其中,更优选是将乙烯-乙酸乙烯酯共聚物进行皂化而得到的。evoh(a)的乙烯单元含量为20~60摩尔%。通过使乙烯单元含量为20摩尔%以上,熔融成型性变得良好。乙烯单元含量适合为25摩尔%以上。另一方面,通过使乙烯单元含量为60摩尔%以下,阻隔性变得良好。乙烯单元含量适合为50摩尔%以下,更适合为40摩尔%以下。

evoh(a)的皂化度为90%以上。此处,皂化度是evoh(a)中包含的乙烯醇单元相对于乙烯基酯单元和乙烯醇单元的合计的比例。通过使皂化度为90%以上,阻隔性变得良好,同时熔融成型时的热稳定性也变得良好。皂化度适合为98%以上,更适合为99%以上。

将乙烯与乙烯基酯进行共聚时,也可以包含其它单体作为共聚成分。作为这种单体,可列举出丙烯、异丁烯、α-辛烯、α-十二碳烯等α-烯烃;丙烯酸、甲基丙烯酸、巴豆酸、马来酸、衣康酸等不饱和酸或其酸酐、盐、或者单烷基酯或二烷基酯等;丙烯腈、甲基丙烯腈等腈类;丙烯酰胺、甲基丙烯酰胺等酰胺类;亚乙基二磺酸、烯丙基磺酸、甲基烯丙基磺酸等烯烃磺酸或其盐;烷基乙烯基醚类、乙烯基酮、n-乙烯基吡咯烷酮、氯乙烯、偏二氯乙烯等。然而,源自其它单体的成分的含量优选为10摩尔%以下、更优选为5摩尔%以下、进一步优选为1摩尔%以下。

evoh(a)的190℃、2160g时的熔体流动速率(mfr)适合为1~20g/10分钟。通过使mfr为1g/10分钟以上,在注射成型时evoh(a)能够高速流动,能够将阻隔层均匀地形成至多层结构体的端部为止。mfr更适合为2g/10分钟以上,进一步适合为3g/10分钟以上。另一方面,mfr超过20g/10分钟时,阻隔层的强度有可能降低。mfr更适合为15g/10分钟以下,进一步适合为13g/10分钟以下。

本发明的阻隔层由包含evoh(a)和熔点为250℃以下的高级脂肪酸的碱金属盐(b)的树脂组合物(x)制成。对于碱金属盐(b)而言,通过使其熔点为250℃以下,能够在熔融成型时进行熔化。此时的熔化的碱金属盐(b)的粘度远比evoh(a)小,因此,因注射成型时的剪切力而导致碱金属盐(b)在阻隔层与邻接层的界面发生浓缩。其结果是,因下述的树脂组合物层(y)中的马来酸酐单元与碱金属盐(b)的相互作用而表现出高粘接力。

作为熔点为250℃以下的高级脂肪酸的碱金属盐(b),优选碳原子数为12~30的脂肪酸的盐。通过使碳原子数大,熔点容易达到250℃以下。碳原子数更适合为14以上,进一步适合为16以上。作为形成盐的脂肪酸,适合为月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、花生酸、山嵛酸等饱和脂肪酸。也可以使用油酸、亚油酸之类的不饱和脂肪酸,但从热稳定性的观点出发,优选为饱和脂肪酸,特别优选为硬脂酸。形成盐的碱金属没有特别限定,优选为钾和钠,从粘接性更良好的观点出发,更优选为钾。作为具体的碱金属盐(b),优选为硬脂酸钾和硬脂酸钠,特别优选为硬脂酸钾。

所述阻隔层中的碱金属盐(b)的含量以金属原子换算计为50~1500ppm。在碱金属盐(b)的含量以金属原子换算计小于50ppm的情况下,粘接性的改善效果不充分。碱金属盐(b)的含量以金属原子换算计优选为100ppm以上,更优选为150ppm以上。在碱金属盐(b)的含量以金属原子换算计超过1500ppm的情况下,成型品的外观变差。碱金属盐(b)的含量以金属原子换算计优选为1000ppm以下、更优选为750ppm以下、进一步优选为500ppm以下。

使evoh(a)含有碱金属盐(b)的方法没有特别限定,可以在预先将evoh(a)与碱金属盐(b)进行熔融混炼而得到树脂组合物(x)后,再供于共注射成型,也可以将evoh(a)与碱金属盐(b)在共注射成型机中进行熔融混炼。从获得均匀的成型品的观点出发,优选将预先使用挤出机、适合使用双螺杆挤出机进行熔融混炼而得到的粒料供于共注射成型。

所述阻隔层优选还包含具有碳-碳双键的热塑性树脂(c)、以及选自铁盐、镍盐、铜盐、锰盐和钴盐中的至少1种过渡金属盐(d)。由于过渡金属盐(d)的存在,热塑性树脂(c)中包含的碳-碳双键容易被氧化,因此,能够将通过阻隔层的氧分子捕获,能够表现出极高的氧阻隔性。此处提及的“碳-碳双键”不包括芳香环所含的双键。

热塑性树脂(c)所含的碳-碳双键的量适合为0.001~0.02mol/g。如聚丁二烯那样,热塑性树脂(c)所含的双键也可以彼此被2个亚甲基隔开,但从氧吸收效率的方面出发,热塑性树脂(c)所含的双键优选彼此被3个以上亚甲基隔开,其中,作为热塑性树脂(c),适合为聚亚辛烯基。聚亚辛烯基可通过使环辛烯进行开环聚合来制造。热塑性树脂(c)的适合的重均分子量为1,000~500,000。这种热塑性树脂(c)可通过专利文献2中记载的方法等来制造。

过渡金属盐(d)是为了促进热塑性树脂(c)的氧化反应而配合的。作为过渡金属盐(d),可以使用铁盐、镍盐、铜盐、锰盐和钴盐。其中,适合为钴盐。作为过渡金属盐(d)的阴离子种类,适合为羧酸阴离子。作为羧酸,可列举出乙酸、硬脂酸、乙酰丙酮、二甲基二硫代氨基甲酸、棕榈酸、2-乙基己酸、新癸酸、亚油酸、妥尔酸、油酸、癸酸、环烷酸等,但不限定于它们。作为用作过渡金属盐(d)的特别适合的盐,可列举出硬脂酸钴、2-乙基己酸钴和新癸酸钴。另外,过渡金属盐(d)可以为具有离子性聚合物作为抗衡离子的所谓离聚物。

所述阻隔层中的热塑性树脂(c)的适合含量相对于evoh(a)100质量份为1~30质量份。另外,阻隔层中的过渡金属盐(d)的优选含量以金属元素换算计为1~50,000ppm。热塑性树脂(c)和过渡金属盐(d)的配合方法没有特别限定,优选与碱金属盐(b)同时进行熔融混炼来配合。

所述阻隔层优选还含有吸湿剂(e)。作为吸湿剂(e),可以使用磷酸盐和硫酸盐等。作为所述磷酸盐,可以列举出选自磷酸钠(na3po4)、磷酸氢二钠(na2hpo4)、磷酸二氢钠(nah2po4)、多磷酸钠、磷酸锂、磷酸氢二锂、磷酸二氢锂、多磷酸锂、磷酸钾、磷酸氢二钾、磷酸二氢钾、多磷酸钾、磷酸钙(ca3(po4)2)、磷酸氢钙(cahpo4)、磷酸二氢钙(ca(h2po4)2)、多磷酸钙、磷酸铵、磷酸氢二铵、磷酸二氢铵和多磷酸铵中的至少一种盐的无水物。作为所述硫酸盐,除了铍(硫酸铍(beso4・4h2o))、镁(硫酸镁(mgso4・7h2o))、钙(硫酸钙(caso4・2h2o))等的碱土金属以外,可以列举出铜(硫酸铜(cuso4)・5h2o))、锌(硫酸锌(znso4・7h2o))、铁(硫酸铁(feso4・7h2o))等可以形成2价离子的过渡金属的硫酸盐等。另外,作为3价金属的硫酸盐,可以列举出铝(硫酸铝(al2(so4)3・16h2o))、铁等金属的硫酸盐。

所述阻隔层中的吸湿剂(e)的适合含量相对于evoh(a)100质量份为1~50质量份。吸湿剂(e)的配合方法没有特别限定,优选与碱金属盐(b)同时进行熔融混炼而配合。

本发明的阻隔层可以包含无机填料。所述阻隔层中的无机填料的含量优选为50质量%以下、更优选为20质量%以下、进一步优选为10质量%以下。另外,所述阻隔层也可以包含evoh(a)、碱金属盐(b)、热塑性树脂(c)、过渡金属盐(d)、吸湿剂(e)和无机填料之外的成分,其含量优选为20质量%以下、更优选为10质量%以下、进一步优选为5质量%以下。

(树脂组合物(y))

与由树脂组合物(x)制成的阻隔层的两侧接触而层叠的外层由包含未改性的高密度聚乙烯(f)(以下,有时将高密度聚乙烯简写为hdpe)和马来酸酐改性聚乙烯(g)(以下,有时将马来酸酐改性聚乙烯简写为马来酸酐改性pe)的树脂组合物(y)制成。根据制作包含evoh(a)和碱金属盐(b)的树脂组合物(x)时所得到知识,本发明人等认为在使熔融粘度高的马来酸酐改性pe(g)分散于熔融粘度低的hdpe(f)中时,马来酸酐改性pe(g)不向阻隔层与邻接树脂的界面浓缩,在阻隔层与外层之间不表现充分的粘接性。然而,令人惊讶的是,本发明人等发现即便使用粘度高的马来酸酐改性pe(g),也能够得到在形成为容器时具有实用上足够的粘接力的多层结构体。

hdpe(f)是未被极性单体改性的实质上仅由烃单体形成的hdpe。hdpe(f)可以为乙烯的均聚物,也可以为共聚有5质量%以下丙烯的共聚物。另一方面,马来酸酐改性pe(g)是被作为极性单体的马来酸酐改性过的pe。作为马来酸酐改性pe(g)的基础成分的聚乙烯(改性前的聚乙烯)可以为乙烯的均聚物,也可以为共聚有5质量%以下丙烯的共聚物。另外,为了使所得多层结构体的粘接性优异,相对于树脂组合物(y)整体的马来酸酐改性率需要为0.005~0.1wt%。所述改性率更优选为0.015wt%以上。

hdpe(f)的190℃、2160g时的mfr优选为0.1~100g/10分钟。通过使190℃、2160g时的mfr为0.1g/10分钟以上,能够容易地进行注射成型。mfr更适合为0.2g/10分钟以上、进一步适合为1.0g/10分钟以上。另一方面,通过使190℃、2160g时的mfr为100g/10分钟以下,能够获得外观良好的成型品。mfr更适合为50g/10分钟以下、进一步适合为30g/10分钟以下。

马来酸酐改性pe(g)的190℃、2160g时的mfr优选为0.5~200g/10分钟。通过使190℃、2160g时的mfr为0.5g/10分钟以上,阻隔层与外层的粘接性变得良好。mfr更适合为1g/10分钟以上。另一方面,190℃、2160g时的mfr超过200g/10分钟时,熔融粘度过于变低,难以制造马来酸酐改性pe(g)。

马来酸酐改性聚丙烯(g)相对于hdpe(f)与马来酸酐改性pe(g)的合计的质量比[g/(f+g)]优选为0.025~0.2。通过使质量比[g/(f+g)]为0.025以上,阻隔层与外层的粘接性变得良好。质量比[g/(f+g)]更适合为0.03以上、进一步适合为0.04以上。另一方面,质量比[g/(f+g)]超过0.2时,所得成型品的外观有可能变差。质量比[g/(f+g)]更适合为0.13以下,进一步适合为0.08以下。

hdpe(f)相对于evoh(a)的190℃/2160g时的mfr比(f/a)优选为0.04~5。通过使mfr比(f/a)为0.04~5,能够获得外观良好的成型品。mfr比(f/a)更适合为3以下,进一步适合为1以下。另一方面,mfr比(f/a)更适合为0.1以上。

马来酸改性pe(g)相对于hdpe(f)的190℃/2160g时的mfr比(g/f)优选为0.5~100。通过使mfr比(g/f)为0.5~100,能够获得外观良好的成型品。mfr比(g/f)更适合为70以下、进一步适合为50以下、特别适合为20以下。

将hdpe(f)与马来酸酐改性pe(g)进行配合的方法没有特别限定,可以在预先将未改性pe(f)与马来酸酐改性pe(g)进行熔融混炼而得到树脂组合物后,再供于共注射成型,也可以在将hdpe(f)与马来酸酐改性pe(g)进行干式共混而得到混合粒料后,再在共注射成型机中进行熔融混炼。

进行共注射成型时,将包含evoh(a)和碱金属盐(b)的树脂组合物(x)与包含hdpe(f)和马来酸酐改性pe(g)的树脂组合物(y)进行共注射成型,前者形成阻隔层,后者形成与其两侧接触而层叠的外层。此时,也可以在外层的更外侧形成追加的层,但适合的层构成为外层(树脂组合物(y))/阻隔层(树脂组合物(x))/外层(树脂组合物(y))的三层结构。

各树脂组合物的注射时机可根据目标多层结构体的形状来适当调整。首先,开始内侧和外侧的两个外层的注射,然后开始阻隔层的注射,由此能够防止阻隔层在前端部露出。另外,通过最后仅注射外层,在浇口部(ゲート部)也能够防止阻隔层露出。注射成型时的温度只要设为所用树脂的熔点以上的温度且为碱金属盐(b)的熔点以上的温度即可,没有特别限定。

阻隔层与外层的厚度比率没有特别限定,将两侧的外层的总厚度设为100时的阻隔层的厚度优选为1~20。所述阻隔层的厚度更适合为2以上。另一方面,所述阻隔层的厚度更适合为15以下。

如此得到的共注射成型多层结构体可以用于要求阻隔性的容器、例如食品容器、有机化学品容器等的用途。特别地,适合于饮料物的瓶子或盖子、医疗用的小瓶。

实施例

以下,通过实施例进一步说明本发明,但本发明完全不限定于此。实施例中的试样的评价方法如下所示。

(1)evoh(a)的乙烯单元含量和皂化度

通过以dmso-d6作为溶剂的1h-nmr测定(测定装置:日本电子公司制jnm-gx-500型)来求出。

(2)熔体流动速率(mfr)

使用熔体指数测定仪(宝工业公司制l244),在温度为190℃或230℃、载荷为2160g的条件下,通过测定试样的流出速度(g/10分钟)而求出。

(3)熔点(tm)

按照jisk7121,使用差示扫描量热仪(dsc)(taインスツルメント制q2000),求出熔点(tm)。

(4)氧透过度(otr)

将以下述步骤制作的盖子装配于500mlpet瓶上,使用moderncontrol公司制ox-tran2/21型氧透过率测定装置,在以下的条件下测定瓶的otr。

・瓶内侧:23℃、氮气、100%rh

・瓶外侧:23℃、空气、50%rh。

另外,使填充水并盖有盖子的瓶子从1m的高度以倒立状态(盖子朝下的方向)向混凝土面垂直落下,对于落下后的瓶子,在与上述相同的条件下测定otr。对于5个瓶子,进行落下后的otr的测定,将其平均值作为落下试验后的otr。

(5)透湿度

根据透湿度(水蒸气透过度;wvtr)根据气相色谱法(jis-k7129-c),使用蒸气透过测定装置(gtrtec公司制“gtr-wv”)进行测定。具体地,在温度为40℃、水蒸气供给侧的湿度为90%rh、载气侧的湿度为0%rh的条件下测定透湿度(单位:g/(m2・天))。透湿度以厚度100μm的未改性hdpe的单层膜作为试样来实施测定。

(6)落下试验

准备在亚甲蓝水溶液62ml中加入了交联型马来酸酐-异丁烯共聚物的微粉末1.2g的氧检测用组合物,加入到用下述步骤制作的50ml小瓶内,用橡皮塞密封。使该小瓶从30cm的高度以直立状态(橡皮塞朝上的状态)向混凝土面垂直落下,将落下后的小瓶在23℃、50%rh环境下静置,计数小瓶内的氧检测用组合物着色为蓝色为止的天数,按照以下的基准进行评价。

a7天以上

b4~6天

c2~3天

d1天以内。

[pe的品种]

在以下的实施例中,未改性hdpe(f)和马来酸酐改性pe(g)使用以下的产品。

[未改性hdpe(f)]

・ineos公司制eltexsuperstresscap508s2、mfr=1.8g/10分钟(190℃、2160g载荷)

・ineos公司制rigidexhd5502s、mfr=0.2g/10分钟(190℃、2160g载荷)。

[马来酸酐改性pe(g)]

・evaleurope公司制alp-063、mfr=7g/10分钟(190℃、2160g载荷)、马来酸酐改性率0.4wt%

・twohchem公司制novacom-phfs2100p、mfr=25g/10分钟(190℃、2160g载荷)、马来酸酐改性率1.0wt%。

实施例1

在乙烯单元含量为32摩尔%、皂化度为99摩尔%以上、mfr为4.4g/10分钟(190℃、2160g载荷)、otr为2.0cc・20μm/m2・天・atm(20℃/85%rh)的evoh(株式会社可乐丽制エバールf104b)中,混合作为高级脂肪酸的碱金属盐(b)的硬脂酸钾,使evoh中的硬脂酸钾的含量以金属原子换算计为200ppm,然后在以下的条件下将混合物进行熔融混炼后,进行粒料化,进一步进行干燥,由此得到evoh树脂组合物的粒料。硬脂酸钾的熔点为240℃。

・装置:26mmφ双螺杆挤出机(东洋精机制作所制ラボプラストミル15c300)

・l/d:25

・螺杆:同向完全啮合型

・模头孔数:2孔(3mmφ)

・挤出温度(℃):c1=200、c2~c5=240、模头=240

・转速:100rpm

・排出量:约5kg/hr

・干燥:热风干燥80℃、6hr。

另一方面,将作为hdpe(f)的ineos公司制的cap508s2(mfr=1.8g/10分钟(190℃、2160g载荷))95质量份与作为马来酸酐改性pe(g)的evaleurope公司制的alp-063(mfr=7g/10分钟(190℃、2160g载荷))5质量份进行干式共混,得到包含hdpe(f)的粒料和马来酸酐改性pe(g)的粒料的混合pe粒料。

使用所得的evoh树脂组合物的粒料和混合pe粒料,在以下的条件下进行共注射成型,得到500mlpet瓶用盖子或50ml小瓶的共注射成型多层结构体。通过上述的方法测定所得的共注射成型多层结构体的otr和外观。结果示于表1。

・装置:共注射成型机nestalmachine公司制synergy3000

・螺杆直径

evoh树脂组合物:18mmφ

pe树脂组合物[包含hdpe(f)和改性pe(g)的树脂组合物]:28mmφ

・热流道:kortec公司制

・evoh树脂组合物/pe树脂组合物=9/91(质量比)

・500mlpet瓶用盖子:直径36mm、高度14mm

・50ml小瓶:底的外径43mm、高度73mm

・温度条件

evoh树脂组合物:区段1=220℃、区段2=245℃、区段3=255℃

pe树脂组合物:区段1=240℃、区段2=250℃、区段3=255℃、区段4=260℃、区段5=260℃

歧管:255℃

・注射压力、时间:1200bars、4秒

・模具温度:40℃

・循环时间:8.5秒

・冷却时间:1秒。

实施例2~5、比较例1~4

将用于阻气层和外层的树脂组合物的组成如表1所示的那样进行改变,除此以外,与实施例1同样地进行共注射成型多层结构体的制造和评价。结果示于表1。

实施例6

将装配有搅拌机和温度计的容量5升的3口烧瓶进行氮气置换后,向其中装入溶解有环辛烯110g(1.0mol)和顺式-4-辛烯187mg(1.7mmol)的庚烷溶液624g。接着,制备使苄叉基(1,3-双均三甲苯基咪唑烷-2-亚基)(三环己基膦)二氯化钌8.48mg(10μmol)溶解于甲苯1g而得的催化剂液体,将其添加至上述庚烷溶液中,以70℃进行开环易位聚合。5分钟后,利用气相色谱仪(株式会社岛津制作所制的“gc-14b”、柱:化学品检查协会制的“g-100”)分析反应液,结果确认到环辛烯的消失。向所得反应液中添加甲醇600g,在40℃搅拌30分钟后,在40℃静置1小时而进行分液,除去下层。向上层再次添加甲醇600g,在40℃搅拌30分钟后,在40℃静置1小时而进行分液,除去下层。在减压下从上层馏去庚烷等低沸成分,进而,使用真空干燥机以50pa、40℃干燥24小时,得到重均分子量为158,000、分子量1,000以下的低聚物含有率为8.5质量%的聚亚辛烯基101.2g(收率90%)。

所得聚亚辛烯基的侧链中的碳-碳双键相对于所有碳-碳双键的比率为0%。应予说明,将主链中的碳-碳双键的量设为a(mol/g)、侧链中的碳-碳双键的量设为b(mol/g)时,该相对于所有碳-碳双键的比率用100×b/(a+b)表示。

将所得全部量的聚亚辛烯基破碎成1mm见方左右,投入至装配有搅拌机、回流管、温度计的500ml可分离烧瓶中,添加丙酮300g并在40℃搅拌3小时。通过倾析将丙酮除去后,再次添加丙酮300g,在40℃搅拌3小时。通过倾析将丙酮除去,接着,使用真空干燥机,以50pa、100℃的条件干燥6小时,得到重均分子量为163,000、分子量1,000以下的低聚物含有率为3.1质量%的聚亚辛烯基96.1g。

将乙烯单元含量为32摩尔%、皂化度为99摩尔%以上、mfr为5.2g/10分钟(190℃、2160g载荷)的evoh、聚亚辛烯基、硬脂酸钴和硬脂酸钾在以下的条件下进行熔融混炼后,粒料化,然后进行干燥,由此得到evoh树脂组合物的粒料。该树脂组合物(x)含有92质量份evoh、8质量份聚亚辛烯基、以金属原子换算计为200ppm的硬脂酸钴和以金属原子换算计为200ppm的硬脂酸钾。

・装置:26mmφ双螺杆挤出机(东洋精机制作所制ラボプラストミル15c300)

・l/d:25

・螺杆:同向完全啮合型

・模头孔数:2孔(3mmφ)

・挤出温度(℃):c1=200、c2~c5=240、模头=240

・转速:100rpm

・排出量:约5kg/hr

・干燥:热风干燥80℃、6hr。

将如此得到的evoh树脂组合物的粒料用于共注射成型,除此之外,利用与实施例1相同的方法,得到共注射成型多层结构体。针对所得的共注射成型多层结构体,与实施例1同样地进行评价并将结果示于表1。

实施例7

将乙烯单元含量为32摩尔%、皂化度为99摩尔%以上、mfr为4.8g/10分钟(190℃、2160g载荷)的evoh、磷酸氢二钠、分散剂和硬脂酸钾在以下的条件下进行熔融混炼后,粒料化,然后进行干燥,由此得到evoh树脂组合物的粒料。该树脂组合物(x)含有80质量份evoh、20质量份磷酸氢二钠、400ppm分散剂和以金属原子换算计为200ppm的硬脂酸钾。

・装置:26mmφ双螺杆挤出机(东洋精机制作所制ラボプラストミル15c300)

・l/d:25

・螺杆:同向完全啮合型

・模头孔数:2孔(3mmφ)

・挤出温度(℃):c1=200、c2~c5=240、模头=240

・转速:100rpm

・排出量:约5kg/hr

・干燥:热风干燥80℃、6hr。

将如此得到的树脂组合物用于共注射成型,除此之外,利用与实施例1相同的方法,得到共注射成型多层结构体。针对所得的共注射成型多层结构体,与实施例1同样地进行评价并将结果示于表1。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1