一种阻燃抗穿刺的高阻隔片材及其制备方法与流程

文档序号:18667041发布日期:2019-09-13 20:18阅读:248来源:国知局
一种阻燃抗穿刺的高阻隔片材及其制备方法与流程

本发明涉及建筑材料,更具体地说,它涉及一种阻燃抗穿刺的高阻隔片材及其制备方法。



背景技术:

随着经济的发展,时代的进步,对建筑材料的要求也越来越高,原有的建材已不能满足时代发展的需求。目前在国内,高分子防水片材被普遍应用于建筑防水工程中。普通的高分子防水材料只具备普通防水作用,不能起到阻燃的作用,其功能比较单一,而且使用寿命低,防水性能不够理想。

防水片材主要是用于建筑墙体、屋面、以及公路、垃圾填埋场、污水处理站等场所,起到抵御外界雨水、地下水渗漏的一种可卷曲成卷状的柔性建材产品,作为工程基础与建筑物之间无渗漏连接,是整个工程防水的第一道屏障,对整个工程起着至关重要的作用。近年来,防水片材是纸胎外面涂盖防水涂料,其韧性、抗裂性能较差,表面保护层与基体之间粘接力差,使用寿命短,容易发生渗漏事故。

目前市场上的高分子耐根穿刺防水片材由于耐根穿刺高分子片材厚度都大于或等于1.2mm厚,这就使耐根穿刺高分子片材柔度下降,再由于搭接边有采用胶黏剂粘接的或虽然能够焊接,但本身材料的焊接性不好,影响焊接效果,导致防水失败。

现有申请号为cn201610635407.0的中国专利-一种阻燃型防水片材,虽然可以提高防水片材的强度,并且可以抗穿刺、抗撕裂,具有良好的防水性,优异的阻燃性能、高强度等优点。

但是,其片材结构层达到了九层之多,厚度必然大于或等于1.2mm,这就片材柔度下降,防水效果无法保障,同时耗费原材料。

现有申请号为cn201611021813.4的中国专利-一种耐根穿刺茂金属聚乙烯片材、自粘片材及制备方法,虽然其通过工艺设备制得厚度较低的片材,但其工艺复杂,膜层结构达到了七层之多,耗费材料,阻隔性能还有待提高。



技术实现要素:

针对现有技术存在的不足,本发明的目的在于提供一种阻燃抗穿刺的高阻隔片材及其制备方法,该阻燃抗穿刺的高阻隔片材具有不错的抗穿刺、高阻隔的优点,具备优异的阻燃性能和良好的尺寸稳定性,片材厚度仅为0.9mm,有着很好的低温柔韧性。

为实现上述目的,本发明提供了如下技术方案:

一种阻燃抗穿刺的高阻隔片材,该阻燃抗穿刺的高阻隔片材为层状结构,两层供给结构或三层供给结构,两层供给结构从上到下依次包括:改性pe层和pe基材层;三层供给结构从上到下依次包括改性pe层、pe基材层和改性pe层,该阻燃抗穿刺的高阻隔片材的厚度为0.9mm。

进一步地,所述两层供给结构中改性pe层厚度为0.2mm,pe基材层厚度为0.7mm;所述三层供给结构中改性pe层厚度为0.2mm,pe基材层厚度为0.5mm,改性pe层厚度为0.2mm。

通过采用上述技术方案,片材厚度仅为0.9mm,在保证了良好的抗穿刺性能的同时,使得同时具备着很好的低温柔韧性。

进一步地,所述pe基材层包括以下组分:mpe树脂80-100份、hdpe10-30份、阻隔材料30-50份、卤素阻燃母粒3-6份和弹性体5-10份;所述改性pe层包括以下组分:mpe树脂80-100份、马来酸酐改性pe树脂30-50份、hdpe10-30份、阻隔材料30-50份、卤素阻燃母粒3-6份和弹性体5-10份。

通过采用上述技术方案,采用由于mpe树脂(mlldpe)与hdpe具有良好的共混性和易加工性,采用该组分制备的片材具有很好的拉伸强度、抗冲击强度、良好的透明性以及较好的低温热封性和抗污染性。

进一步地,所述阻隔材料为opperatm改性剂或阻隔空气、水蒸气的功能母粒。

通过采用上述技术方案,可以增强片材的挺度和阻隔性能。

进一步地,所述mpe树脂包括牌号为exceedtm1018ma的茂金属乙烯-己烯共聚物和牌号为exceedtmxp8784系列的乙烯1-己烯共聚物中的一种或两种。

通过采用上述技术方案,mlldpe-茂金属乙烯-己烯共聚物大大提高了片材的抗穿刺性能,同时其良好的易加工性能和共混性能使得片材的厚度仅为0.9mm,使得片材有着良好的低温柔韧性,在任何气候条件(尤其是寒冷气候)下都易于安装,并能保证焊接强度使得强度与柔韧性完美平衡。

进一步地,所述卤素阻燃母粒为cpe、十溴二苯醚、十溴二苯乙烷、四溴双酚a、hbcd、八溴醚、溴化聚苯乙烯和溴化环氧树脂中的一种或几种。

通过采用上述技术方案,使片材具备良好的阻燃和耐高温性能。

进一步地,所述弹性体包括tpu和牌号为vistamatm6102烯烃基弹性体中的一种或两种。

通过采用上述技术方案,使得片材结构层之间和结构层内部有着很好的粘附性能,同时使整个片材有着优异的弹性和韧性,很好的耐化学性和耐候性。

进一步地,所述各个结构层采用胶黏剂黏结复合,所述胶黏剂为聚乙烯醇胶黏剂。

通过采用上述技术方案,使结构层黏结效果好,提高了压延成型中的固化速度,环保、无污染。

该阻隔片材的制备方法,步骤如下:

第一步:将mpe树脂、hdpe、卤素阻燃母粒、阻隔材料和弹性体分别研磨10-15min后,混合、干燥;然后将研磨后的混合物均匀加入到高速混合机中,在80℃-100℃的温度下,混合100min-140min,转速为800-1200r/min,得到共混物;

第二步:将共混物加入到高速密炼机塑炼再混炼,混炼温度为120℃,混炼时间为60min,混炼完成后采用两辊压延机将混料压延成厚度为0.7mm的pe基材层;

第三步:按上述组分称取原料,将mpe树脂、卤素阻燃母粒、阻隔材料和马来酸酐改性pe树脂均匀混合后加入到高速混合机中,在80℃-100℃的温度下,混合100min-140min,转速为800-1200r/min,得到共混物;

第四步:将上述共混物通过双螺杆挤出机熔融塑化,然后依次加入hdpe和弹性体,双螺杆挤出机的长径比为20:1,挤出机各段温度:加料段180℃-200℃,压缩段200℃-220℃,均化段220℃-240℃,物料通过机头口模挤出,流涎成均匀熔体后,采用两辊压延机将混料压延成厚度为0.2mm的改性pe层;

第五步:将改性pe层和pe基材层通过胶黏剂热压复合后冷却36h,制成厚度为0.9mm的结构板材,通过卷绕机均匀收卷成片材。

综上所述,本发明具有以下有益效果:

1、两层供给结构或三层供给结构在保证片材有着十分优异的抗穿刺性能的同时,厚度仅为0.9mm,节省了材料;低温柔韧性使得在任何气候条件(尤其是寒冷气候)下都易于安装,并能保证焊接强度使得强度与柔韧性完美平衡

2、该片材有着很好的高阻隔性能,可以很好地阻隔水蒸气,有着十分优异的耐水性和洁净性,同时该片材可以应用于恶劣环境,例如酸雨、海边,有着很好的耐候性和耐腐蚀性能;基材本身具备的抗热老化性能、耐紫外线性能、耐臭氧性能,以及高填料填充能力和保油性,因此可以增强平屋顶和低坡度屋顶的耐久性提高了接缝强度和抗剥离强度,可以实现耐久性和屋顶耐用性

3、阻燃性能十分优异,有着很好的力学性能,同时在满足需求的同时,大大节省了原材料。

附图说明

图1为两层供给结构示意图;

图2为三层供给结构示意图;

图3为各实施例抗穿刺力曲面图;

图4为各实施例接缝剥离强度曲面图;

图5为各实施例热尺寸变化率曲面图。

图中:1、pe基材层;2、改性pe层。

具体实施方式

一种阻燃抗穿刺的高阻隔片材,该阻燃抗穿刺的高阻隔片材为两层供给结构,如图1,两层供给结构从上到下依次包括:改性pe层2和pe基材层1,该阻燃抗穿刺的高阻隔片材的厚度为0.9mm,其中改性pe层2厚度为0.2mm,pe基材层1厚度为0.7mm;三层供给结构从上到下依次包括:改性pe层2、pe基材层1和改性pe层2,该阻燃抗穿刺的高阻隔片材的厚度为0.9mm,其中改性pe层2厚度为0.2mm,pe基材层1厚度为0.5mm,改性pe层2厚度为0.2mm。

该阻燃抗穿刺的高阻隔片材的制备方法,步骤如下:

第一步:将mpe树脂、hdpe、卤素阻燃母粒、阻隔材料和弹性体分别研磨10-15min后,混合、干燥;然后将研磨后的混合物均匀加入到高速混合机中,在80℃-100℃的温度下,混合100min-140min,转速为800-1200r/min,得到共混物;

第二步:将共混物加入到高速密炼机塑炼再混炼,混炼温度为120℃,混炼时间为60min,混炼完成后采用两辊压延机将混料压延成厚度为0.7mm的pe基材层1;

第三步:按上述组分称取原料,将mpe树脂、卤素阻燃母粒、阻隔材料和马来酸酐改性pe树脂均匀混合后加入到高速混合机中,在80℃-100℃的温度下,混合100min-140min,转速为800-1200r/min,得到共混物;

第四步:将上述共混物通过双螺杆挤出机熔融塑化,然后依次加入hdpe和弹性体,双螺杆挤出机的长径比为20:1,挤出机各段温度:加料段180℃-200℃,压缩段200℃-220℃,均化段220℃-240℃,物料通过机头口模挤出,流涎成均匀熔体后,采用两辊压延机将混料压延成厚度为0.2mm的改性pe层2;

第五步:将改性pe层2和pe基材层1通过胶黏剂热压复合后冷却36h,制成厚度为0.9mm的结构板材,通过卷绕机均匀收卷成片材。

所述pe基材层1包括以下组分:mpe树脂80-100份、hdpe10-30份、阻隔材料30-50份、卤素阻燃母粒3-6份和弹性体5-10份;所述改性pe层2包括以下组分:mpe树脂80-100份、马来酸酐改性pe树脂30-50份、hdpe10-30份、阻隔材料30-50份、卤素阻燃母粒3-6份和弹性体5-10份。

两层供给结构:实施例1-5,各结构层组分如表1。

表1:实施例1-5组分

三层供给结构:实施例6-10,各结构层组分如表2

表2:实施例6-10组分

三层供给结构:对比例1-3,各结构层组分如表3。

表3:对比例1-3组分

各实施例的测试项目及测试标准如表4。

表4:测试指标

实施例1-5的测试结果如表5。

表5:实施例1-5测试结果

实施例6-10的测试结果如表6。

表6:实施例6-10测试结果

对比例1-3测试结果如表7。

表7:对比例1-3测试结果

实验结构分析:

通过实施例6与对比例1对比分析发现,添加hdpe和opperatm改性剂使得片材具备优异的高阻隔性能,可在0.5mpa,2h条件下不透水,洁净性能优异;通过实施例9与对比例2对比分析发现,再添加弹性体后,片材热尺寸变化率由原来的6%-7%变为2%-3%,尺寸稳定性获得大大提升,弹性体的添加,使得片材有着什么优良的的弹性与韧性,整体结构强度与稳定性有了很大提升;通过实施例10与对比例3对比分析发现,通过马来酸酐接枝改性,使得片材抗穿刺性能有了十分明显的提升,抗穿刺力有了很大增强。

通过测试结果分析:

如图3为各实施例抗穿刺力曲面图;如图4为各实施例接缝剥离强度曲面图;如图5为各实施例热尺寸变化率曲面图。

实施例9为本发明最优选择方案,各项性能最为优异,本发明制备的片材有着很好的热尺寸稳定性,有着十分优异的高阻隔不透水性,可在0.5mpa,2h的条件下不透水,阻燃性能至少在b1以上,可达到a级,难燃甚至不燃,抗穿刺性能高于行业标准,抗穿刺力在150n及其以上,最高可达到200n。低温柔韧性能优异,可在-40℃条件下不产生任何裂纹,有着很好的焊接接缝强度和粘结力,最高达到8n/mm。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1