具有增强的性能性质的可充气多孔缓冲制品的制作方法

文档序号:25355424发布日期:2021-06-08 14:39阅读:100来源:国知局
具有增强的性能性质的可充气多孔缓冲制品1.本申请要求2018年7月25日提交的美国临时申请号62/703176的权益,其通过引用以其整体并入本文。2.本发明公开的主题涉及适合用作缓冲制品和用作衬垫和/或空隙填充物的可充气制品,特别是用于包装应用的可充气制品。3.背景空气多孔缓冲制品已经使用了一段时间。常规的缓冲材料包括热成形的密封的层压制品,例如bubblewrap®缓冲材料。然而,还已知制备层压的可充气制品,其可以在未充气的情况下运输到包装机,并且在使用之前立即充气。这样的可充气制品通常由两个可热密封的膜制成,所述膜在离散区域中熔化在一起以形成一个或多个可充气室。然而,可充气制品利用相当大量的热塑性材料,并且具有有限的爆裂强度。期望使用较少的热塑性材料和/或提供表现出改进的爆裂强度的可充气制品。4.概述本文所公开的可充气制品利用一个或多个含有微层的膜,并且已发现与由一个或多个缺乏微层的膜制成的其它方面相同的可充气制品相比,所述可充气制品提供一种或多种改进的性能性质。在本文所公开的一些实施方案中,相对于由除了缺乏微层结构之外相同的膜制成的对比可充气制品,由各自具有微层的两个多层膜制成的可充气制品提供增强的爆裂强度。在本文的一些实施方案中,相对于由除了缺乏微层结构之外相同的膜制成的对比可充气制品的海拔存活率,由具有微层的多层膜制成的可充气制品提供增强的海拔存活率。在本文的一些实施方案中,已经表明,相对于由除了缺乏微层结构之外相同的对比膜制成的对比可充气制品,由具有微层的多层膜制成的可充气制品由能够具有更大伸长率(即更大韧性)的膜制成。在本文的一些实施方案中,相对于由除了缺乏微层结构之外相同的膜制成的对比可充气制品的压缩强度,由具有微层的多层膜制成的可充气制品提供增强的压缩强度。5.第一方面涉及可充气多孔缓冲制品,其具有多个可充气室,其中每个室包含通过连接通道彼此串联连接的多个可充气单元,所述制品由密封到其自身或密封到第二膜的第一多层膜制成,其中所述第一膜包含多个微层,其中至少50%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物。6.在实施方案中,所述第一多层膜进一步包含含有第一子组的所述多个微层的α截面和含有第二子组的所述多个微层的β截面,其中所述α截面中至少50%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物,并且所述β截面中至少50%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物。7.在实施方案中,所述α截面中100%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物,并且所述β截面中100%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物。8.在实施方案中,所述第一多层膜密封到所述第二膜,并且所述第二膜是也包含多个微层的第二多层膜,其中所述第二膜中至少50%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物。9.在实施方案中,所述第二多层膜进一步包含在所述第二膜中含有第一子组的所述多个微层的γ截面和在所述第二膜中含有第二子组的所述多个微层的δ截面,其中所述γ截面中至少50%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物,并且所述δ截面中至少50%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物。10.在实施方案中,所述γ截面中100%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物,并且所述δ截面中100%的所述微层包含选自乙烯均聚物、乙烯共聚物、丙烯均聚物和丙烯共聚物的聚合物。11.在实施方案中,所述第一膜包含5‑200个微层,并且所述第二膜包含5‑200个微层。12.在实施方案中,所述α截面中每个所述微层的平均厚度为0.001‑0.1密耳,并且所述α截面的总厚度为0.05密耳至0.5密耳,并且所述β截面中每个所述微层的平均厚度为0.001‑0.1密耳,并且所述α截面的总厚度为0.05密耳至0.5密耳。13.在实施方案中,所述α截面和所述β截面各自具有5‑50个微层并且共同构成所述第一膜的20‑80重量%(基于总膜重,即“tfb”),并且所述γ截面和所述δ截面各自具有5‑50个微层并且共同构成所述第二膜的20‑80重量%(tfb),并且所述α、β、γ和δ截面中每个所述微层包含至少一种选自以下的成员:均相乙烯/α‑烯烃共聚物、低密度聚乙烯、线性低密度聚乙烯、极低密度聚乙烯、超低密度聚乙烯、中密度聚乙烯、高密度聚乙烯和乙烯/降冰片烯共聚物。14.在实施方案中,所述α截面和所述β截面各自具有10‑30个微层并且共同构成所述第一膜的30重量%至75重量%,并且所述γ截面和所述δ截面各自具有10‑30个微层并且共同构成所述第二膜的30重量%至75重量%。15.在实施方案中,所述α截面和所述β截面各自具有12‑25个微层并且共同构成所述第一膜的40重量%至70重量%,并且所述γ截面和所述δ截面各自具有12‑25个微层并且共同构成所述第二膜的40重量%至70重量%。16.在实施方案中,所述α截面和所述β截面各自具有12‑20个微层并且共同构成所述第一膜的50重量%至70重量%,并且所述γ截面和所述δ截面各自具有12‑20个微层并且共同构成所述第二膜的50重量%至70重量%。17.在实施方案中,所述α截面包含为外部膜层的微层,并且至少一部分所述α截面用作密封层。18.在实施方案中,所述β截面包含为外部膜层的微层,并且至少一部分所述β截面用作滥用层。19.在实施方案中,所述第一膜进一步包含外部密封层、外部滥用层、在所述外部密封层和所述外部滥用层之间的氧阻挡层、在所述密封层和所述氧阻挡层之间的第一粘接层、在所述氧阻挡层和所述滥用层之间的第二粘接层,并且所述α截面在所述密封层和所述第一粘接层之间。20.在实施方案中,所述β截面在所述α截面和所述第一粘接层之间,并且所述β截面直接层压到所述α截面。21.在实施方案中,所述β截面在所述第二粘接层和所述滥用层之间。22.在实施方案中,所述第二膜进一步包含外部密封层、外部滥用层、在所述外部密封层和所述外部滥用层之间的氧阻挡层、在所述密封层和所述氧阻挡层之间的第一粘接层和在所述氧阻挡层和所述滥用层之间的第二粘接层,并且所述γ截面在所述密封层和所述第一粘接层之间。23.在实施方案中,所述δ截面在所述γ截面和所述第一粘接层之间,并且将所述δ截面直接层压到所述γ截面。24.在实施方案中,所述第一膜的总厚度为0.2‑1.2密耳。25.在实施方案中,所述第二膜的厚度为0.2‑1.2密耳。26.在实施方案中,所述第一膜的总厚度为0.3‑1密耳,并且所述第二膜的厚度为0.3‑1密耳。27.在实施方案中,所述第一膜和所述第二膜各自:(i)聚酰胺含量为3‑12重量%,基于总膜重,(ii)总厚度为0.2密耳至0.7密耳,和(iii)再循环含量为0‑20重量%,基于总膜重。28.在实施方案中,所述第一膜和所述第二膜各自的聚酰胺含量为4‑11重量%(tfb),所述第一膜和所述第二膜各自总厚度为0.3‑0.6密耳,并且所述第一膜和所述第二膜各自再循环含量为0‑15重量%(tfb)。29.在实施方案中,所述第一膜和所述第二膜各自的聚酰胺含量为5重量%至10重量%(tfb),所述第一膜和所述第二膜各自总厚度为0.35‑0.45密耳,并且所述第一膜和所述第二膜各自再循环含量为0‑12重量%(tfb)。30.在实施方案中,所述第一膜的总厚度为0.3密耳至0.5密耳。31.在实施方案中,所述第一膜的总厚度为0.35密耳至0.45密耳。32.在实施方案中,所述第一膜含有2重量%至20重量%(tfb)的量的聚酰胺,其中所述α截面和β截面共同构成所述第一膜的30重量%至80重量%(tfb),其中所述第一膜的总厚度为0.2‑1.2密耳,其中所述第一膜含有0重量%至6重量%的再循环(tfb),其中所述第二膜含有2重量%至20重量%(tfb)的量的聚酰胺,其中所述γ截面和所述δ截面共同构成所述第二膜的30重量%至80重量%(tfb),其中所述第二膜的总厚度为0.2‑1.2密耳,其中所述第二膜含有0重量%至6%再循环(tfb)。33.在实施方案中:(i)所述第一膜含有4重量%至12重量%(tfb)的量的聚酰胺,其中所述α截面和β截面共同构成所述第一膜的40重量%至70重量%(tfb),其中所述第一膜的总厚度为0.3‑0.9密耳,其中所述第一膜含有0重量%至5重量%的再循环(tfb),和(ii)所述第二膜含有4重量%至12重量%(tfb)的量的聚酰胺,其中所述γ截面和δ截面共同构成所述第二膜的40重量%至70重量%(tfb),其中所述第二膜的总厚度为0.3‑0.9密耳,其中所述第二膜含有0重量%至5重量%的再循环(tfb)。34.在实施方案中:(i)所述第一膜含有5重量%至10重量%(tfb)的量的聚酰胺,其中所述α截面和β截面共同构成所述第一膜的45重量%至65重量%(tfb),其中所述第一膜的总厚度为0.4密耳至0.8密耳,其中所述第一膜含有0重量%至3重量%的再循环(tfb),和(ii)所述第二膜含有5重量%至10重量%(tfb)的量的聚酰胺,其中所述γ截面和δ截面共同构成所述第二膜的45重量%至65重量%,基于总膜重,其中所述第一膜的总厚度为0.4‑0.8密耳,其中所述第一膜含有0重量%至3重量%的再循环(tfb)。35.在实施方案中,所述第一膜的所述第一外层和第二外层具有相同的层厚度并且具有相同的聚合物组成,并且所述第一膜的所述第一粘接层和第二粘接层具有相同的层厚度和相同的聚合物组成。36.在实施方案中,所述第一膜和所述第二膜具有相同的层数、相同的层顺序、相同的层组成和相同的层厚度。37.在实施方案中,所述室横向延伸跨过所述可充气制品,所述室从沿纵向延伸的封闭的充气歧管延伸。38.在实施方案中,所述室横向延伸跨过所述可充气制品,所述室从沿纵向延伸的开口裙部延伸。39.在实施方案中,每个室包含3‑40个单元。40.在实施方案中,所述单元具有长度为0.5英寸至2.5英寸的未充气的主轴。41.在实施方案中,根据astmd2732测量,在85℃下所述第一膜的总自由收缩小于10%。42.在实施方案中,所述根据astmd2732测量,在85℃下第一膜和所述第二膜两者的总自由收缩小于10%。43.在实施方案中,在所述第一膜中所述微层都不包含聚氨酯。在实施方案中,在所述第二膜中所述微层都不包含聚氨酯。在实施方案中,在所述第一膜中的所述微层或在所述第二膜中的所述微层都不包含聚氨酯。权利要求38:根据权利要求1‑37中任一项所述的可充气缓冲制品,其中所述第一膜和第二膜不包含交联的聚合物网络。44.在实施方案中,所述第一膜密封到其自身。45.附图简述图1是平折构造的未充气的可充气制品的示意图。46.图2是图1的制品在充气后的示意图。47.图3a是用于本发明公开的主题的可充气制品的多层膜的放大的横截面示意图。48.图3b是用于对比可充气制品的对比多层膜的放大的横截面示意图。49.图4a是用于制造可充气制品的方法的流程图。50.图4b是用于制造可充气制品的方法的示意图。51.图5是可充气制品的截面的平折视图,该可充气制品已经被修改用于进行爆裂测试。52.图6a是用于爆裂测试的充气喷嘴的纵向截面图。53.图6b是图6a的充气喷嘴通过图6a的线6b‑6b截取的横截面图。54.图6c是图6a的充气喷嘴通过图6a的线6c‑6c截取的横截面图。55.图7a是用于将可充气制品夹紧到图6a、6b和6c的充气喷嘴的一对夹紧压板的纵向视图。56.图7b是图7a的夹紧压板通过图7a的线7b‑7b截取的截面图。57.图8a是包括含有充气喷嘴和夹紧压板的修改的可充气制品的部分的组件的详细视图。58.图8b是图8a的组件的示意性横截面图。59.详细描述如本文所用,术语“层”一般用于指本体层以及单独的微层两者。是指将小于第一膜的整个表面粘附到其自身或粘附到小于第二膜或包装的其它第二组件的整个表面。73.如本文所用,短语“热密封”是指膜表面的第一部分与膜表面的第二部分的任何密封,其中通过将一个或两个区域加热到至少它们各自的密封起始温度来形成密封。热密封可以通过多种方式中的任何一种或多种进行。如下所述,可以通过使膜与加热的鼓接触以产生热密封件来进行热密封。74.如本文所用,术语“均相聚合物”是指分子量分布相对窄和组成分布相对窄的聚合反应产物。均相聚合物可用于多层膜的各层中用于制造可充气制品。均相聚合物在结构上不同于非均相聚合物,因为均相聚合物表现出链内共聚单体的相对均相的排序,所有链中序列分布的镜像,和所有链的长度的相似性,即较窄的分子量分布。此外,均相聚合物通常使用茂金属或其它单位点类型催化而不是使用齐格勒纳塔催化剂来制备。75.均相乙烯/α‑烯烃共聚物通常可以通过乙烯和任何一种或多种α‑烯烃的共聚来制备。α‑烯烃可以是c3‑c20α‑单烯烃、c4‑c12α‑单烯烃和c4‑c8α‑单烯烃中的任一种。α‑烯烃可以包含至少一种选自丁烯‑1、己烯‑1和辛烯‑1的成员,即分别为1‑丁烯、1‑己烯和1‑辛烯。α‑烯烃可以包含辛烯‑1和/或己烯‑1和丁烯‑1的共混物。76.制备和使用线性的均相聚合物的方法公开于美国专利号5,206,075、美国专利号5,241,031和pct国际申请号wo93/03093中,各自通过引用以其整体并入本文。再另一类均相乙烯/α‑烯烃共聚物是“基本上线性的”均相共聚物,也称为“长链支化的”均相共聚物,公开于lai等人的美国专利号5,272,236和lai等人的美国专利号5,278,272中,两者通过引用以其整体并入本文。这些专利中的每一个都公开了由dowchemicalcompany生产和销售的基本上线性的均相长链支化的乙烯/α‑烯烃共聚物。77.用于制造可充气多孔缓冲制品的可用膜包括具有密封层、气体阻挡层(通常为o2‑阻挡层)和在密封层和气体阻挡层之间的粘接层的多层膜等。可用的多层结构进一步包括具有以下结构的多层膜:密封层/第一粘接层/阻挡层/第二粘接层/滥用层。再其它可用的多层结构包括具有以下结构的膜:密封层/芯层/第一粘接层/阻挡层/第二粘接层/滥用层。78.尽管微层截面可以代替以上段落中确定的任何一个或多个层,但是微层截面可以代替密封层、滥用层、阻挡层和一个或多个芯层中的一个或多个。在一些实施方案中,提供了一个或多个微层截面。两个或更多个微层截面可以彼此相邻共挤出,即,直接彼此粘附,在本文中也称为彼此层压。79.一个或多个微层截面可以代替用于制造可充气缓冲制品的膜中的一个或多个芯层。微层截面包含彼此层压的多个微层。微层截面可以具有例如10‑100个微层。微层序列可以包含交替系列的树脂。树脂对的交替序列的实例包括ll/vl、eva/ld、vl/m‑ll、eva/epb和ul/ll,其中ll=线性低密度聚乙烯,vl=极低密度聚乙烯,ld=低密度聚乙烯,ul=超低密度聚乙烯,m‑ll=酸酐改性的线性低密度聚乙烯,eva=乙烯/乙酸乙烯酯共聚物,和epb=乙烯/丙烯/丁烯共聚物。树脂组合可以简单地与仅为一种树脂的每个微层交替,或者与包含树脂共混物的微层中的一些或全部共混和交替。微层的层布置的实例包括:(a+b)n、(a/b)n、(a/b)n/a、[a/(a+b)]n和[a/(a+b)]n,其中n是整数,“+”是指共混的组分,“a”是指第一树脂,而“b”是指不同于第一树脂的第二树脂。芯层中的树脂a和树脂b之间的比率可以是例如9:1至1:9或3:7至7:3。[0080]密封层可以包含任何可热密封的聚合物,包括离聚物树脂、聚烯烃(例如,高密度聚乙烯、低密度聚乙烯和乙烯/α‑烯烃共聚物,例如中密度聚乙烯、线性低密度聚乙烯、极低密度聚乙烯和超低密度聚乙烯)、乙烯/丙烯共聚物和聚苯乙烯;对于高温应用,密封层甚至可以包含聚酰胺、聚酯、聚氯乙烯,或由聚酰胺、聚酯、聚氯乙烯组成。密封层可以含有主dsc峰最高例如小于130℃、或小于125℃、或小于120℃、或小于115℃、或小于110℃、或小于105℃的聚合物,或熔点低于80℃的乙烯/乙酸乙烯酯共聚物。用于密封层的聚合物包括离聚物树脂和烯烃均聚物和共聚物,后者包括均相和非均相乙烯/α‑烯烃共聚物。[0081]均相乙烯/α‑烯烃共聚物包括均相线性乙烯/α‑烯烃共聚物和具有长链支化的均相乙烯/α‑烯烃共聚物。具有长链支化的均相乙烯/α‑烯烃共聚物包括由dowchemicalcompany制造的affinity®基本上线性的均相乙烯/α‑烯烃共聚物。均相线性乙烯/α‑烯烃共聚物包括由exxonchemicalcompany制造的exact®线性均相产品。乙烯/α‑烯烃共聚物可以是乙烯/己烯共聚物、乙烯/辛烯共聚物或乙烯/丁烯共聚物。[0082]尽管可充气制品通过将两个外部膜层彼此密封而制成,但是如果膜横截面关于外层组成对称,则一个外层用作密封层,而另一个外层用作滥用层,即使仅一个层被热密封到构成可充气制品的另一个膜,或者如果可充气制品通过折叠单个膜并将其密封到其自身而制成,则仅一个层被密封到其自身。在一些情况下,密封层的存在目的不仅仅是密封。密封层可以向可充气制品提供强度、体积、滥用、磨损和冲击强度性质中的许多性质。在一些实施方案中,多层膜的横截面关于层布置、层厚度和层组成是对称的。[0083]气体阻挡层为多层膜提供相对不透过一种或多种大气气体(例如氮气和/或氧气和/或氩气和/或二氧化碳)的性质。这提供了具有更长寿命的充气的缓冲产品,因为气体阻挡层允许充气的缓冲制品在单元中保留气体更长的时间段。气体阻挡层有助于减少负载下的流体损失。在没有气体阻挡层的情况下,缓冲产品在负载下可以在4‑7天内表现出显著的流体损失(即,“蠕变”)。阻挡层可以包含在一定温度和时间下老化时结晶的聚合物和可充气多孔缓冲产品,以确保气体阻挡层中聚合物的结晶基本上完全。[0084]用于气体阻挡层的合适的树脂包括结晶聚酰胺、结晶聚酯、乙烯/乙烯醇共聚物(即皂化的乙烯/乙酸乙烯酯共聚物)、聚丙烯腈、聚偏二氯乙烯和结晶聚环烯烃。气体阻挡层中的结晶聚合物可以包括一种或多种结晶聚酰胺,例如聚酰胺6、聚酰胺66、聚酰胺9、聚酰胺10、聚酰胺11、聚酰胺12、聚酰胺69、聚酰胺610、聚酰胺612及其共聚物。结晶聚酯包括聚对苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯以及聚碳酸亚烷基酯。皂化的乙烯/乙酸乙烯酯共聚物(通常称为evoh)是适用于气体阻挡层的结晶共聚物。结晶环烯烃聚合物可以制造合适的气体阻挡层。ticona是这样的聚环烯烃的制造商。气体阻挡层可以由100%caplon®b100wp聚酰胺6制成,其粘度为fav=100(即fav=甲酸粘度),得自alliedchemical。[0085]如本文所用,短语“粘接层”是指主要目的是将两层彼此粘附的任何内层。粘接层含有能够与极性聚合物(例如聚酰胺和乙烯/乙烯醇共聚物)共价键合的聚合物。粘接层可以用于将密封层粘附到气体阻挡层。粘接层可以包含其上具有极性基团(特别是羰基)的任何聚合物,或对包含彼此不充分粘附的聚合物的相邻层提供足够的层间粘附的任何其它聚合物。[0086]如本文所用,短语“改性聚合物”以及更具体的短语如“改性乙烯‑乙酸乙烯酯共聚物”和“改性聚烯烃”是指具有如下所定义的酸酐官能度的这样的聚合物,所述酸酐官能度接枝在聚合物上和/或与聚合物共聚。与仅仅与其共混相反,这样的改性聚合物可以具有接枝在其上或与其聚合的酸酐官能度。[0087]如本文所用,短语“酸酐官能度”是指任何形式的酸酐官能度,例如马来酸、富马酸等的酸酐,无论是与一种或多种聚合物共混、接枝到聚合物上还是与聚合物共聚,并且通常还包括这样的官能度的衍生物,例如由其衍生的酸、酯和金属盐。[0088]粘接层聚合物包括烯烃/不饱和酯共聚物、烯烃/不饱和酸共聚物和酸酐改性的烯烃聚合物和共聚物,例如其中酸酐接枝到烯烃聚合物或共聚物上。更特别地,用于粘接层的聚合物包括酸酐改性的聚烯烃、酸酐改性的乙烯/α‑烯烃共聚物、乙烯/乙酸乙烯酯共聚物、乙烯/丙烯酸丁酯共聚物、乙烯/甲基丙烯酸甲酯共聚物、乙烯/丙烯酸共聚物、乙烯/甲基丙烯酸共聚物和聚氨酯。酸酐改性的乙烯/α‑烯烃共聚物可以是酸酐改性的乙烯/c4‑10α‑烯烃共聚物或酸酐改性的乙烯/c4‑8共聚物。适合用作粘接层的改性聚合物描述于wu等人的题为“graftcopolymersofpolyolefinsandcyclicacidandacidanhydridemonomers”的美国专利号3,873,643;shida等人的题为“adhesiveblends”的美国专利号4,087,587;和adur的题为““fourcomponentadhesiveblendsandcompositestructures”的美国专利号4,394,485,各自通过引用以其整体并入本文。[0089]用于粘接层的聚合物可以包括用一种或多种单体改性(例如接枝)的烯烃聚合物,所述单体例如丙烯酸、甲基丙烯酸、富马酸、马来酸、马来酸酐、4‑甲基环己‑4‑烯‑1,2‑二羧酸酐、双环(2.2.2)辛‑5‑烯‑2,3‑二羧酸酐、1,2,3,4,5,8,9,10‑八氢萘‑2,3‑二羧酸酐、2‑氧杂‑1,3‑二酮基螺(4.4)壬‑7‑烯、双环(2.2.1)庚‑5‑烯‑2,3‑二羧酸酐、马来海松酸(maleopimaricacid)、四氢邻苯二甲酸酐、x‑甲基双环(2.2.1)庚‑5‑烯‑2,3‑二羧酸酐、x‑甲基降冰片‑5‑烯‑2,3‑二羧酸酐、降冰片‑5‑烯‑2,3‑二羧酸酐、na酸酐、甲基na酸酐、腐殖酸酐、甲基腐殖酸酐和本领域技术人员已知的其它稠环单体。[0090]在本发明公开的主题的可充气多孔缓冲制品的实施方案中,粘接层提供期望水平的粘合和内聚强度,以防止当制品在标准条件(即25℃和1个大气压)下充气至3psi的内压并且之后经受苛刻条件(例如140°f下4小时)时多层膜分层。已经发现,各种粘接层聚合物能够提供一定水平的粘合和内聚强度,足以在经受苛刻条件时为3psi充气的制品提供期望的性能性质。[0091]已经发现,由酸酐含量为至少160ppm(基于树脂重量,如通过热解gc‑ms所测量的)的100%酸酐接枝的低密度聚乙烯制成的粘接层提供足够的粘合和内聚强度,以防止当可充气制品充气至3psi时分层。由酸酐含量为190ppm(基于树脂重量)的100%酸酐接枝的线性低密度聚乙烯制成的粘接层提供足够的粘合和内聚强度,以防止在苛刻条件下(例如用于内压为3psi的充气的多孔缓冲制品)分层,其中该充气的制品经受140°f下4小时,或0.542大气压的内部减压5分钟。改性聚烯烃可以选自改性lldpe、改性ldpe、改性vldpe和改性均相乙烯/α‑烯烃共聚物。聚烯烃可以是酸酐改性的,例如聚烯烃的酸酐含量可以是至少150ppm,基于树脂重量,或至少155ppm、或至少160ppm、或至少165ppm、或至少170ppm、或至少175ppm、或至少180ppm、或至少185ppm、或至少190ppm,基于树脂重量。改性聚烯烃的酸酐含量可以是150‑1000ppm,基于树脂重量,或160‑500ppm、或165‑300ppm、或170‑250ppm、或175‑220ppm、或180‑210ppm、或185‑200ppm,基于树脂重量。[0092]参考图1,显示未充气的可充气制品10,其包含两种膜12和14,这两种膜具有各自的内表面12a和14a,这两个内表面以限定一系列预定长度“l”的可充气室16的模式彼此密封。对于每个室16,长度l可以基本上相同,其中相邻的室如所示的彼此偏移,以将室布置成彼此紧密接近。膜12和14以密封件18的模式彼此密封,留下未密封区域,其限定可充气室16,使得每个室16在其长度l上具有至少一个宽度变化。也就是,密封件18可以被模式化以在每个室16中提供一系列宽度相对大的截面20,其经由相对窄的连接通道22与室的另一个单元流体连通。当充气时,截面20可以通过包含截面20的壁的膜12和14的那些截面的对称向外移动而在可充气制品10中提供近似球形的气泡。这通常发生在膜12和14在厚度、柔性和弹性方面相同时。然而,膜12和14可以具有不同的厚度、柔性或弹性,使得充气将导致膜12和14的不同位移,从而提供稍微半球形或以其它方式不对称的气泡。[0093]密封件18还被模式化以提供充气端口24,其位于每个可充气室16的近端26处,以提供到每个室的通道,使得室可以被充气。每个室16的相对的近端26是封闭的远端28。如所示的,近端26处的密封件18是间断的,在它们之间形成有充气端口24。尽管是可选的,但是说明充气端口24的宽度比相对大宽度的可充气截面20更窄,以使在其充气后封闭每个室16所需的密封件的尺寸最小化。[0094]可充气制品10进一步包括一对纵向凸缘30(本文也称为开口裙部),其由延伸超过充气端口24和间断的密封件18的每个膜12和14的一部分形成。在图1所示的实施方案中,凸缘30同等地延伸超过充气端口24和密封件18。凸缘30因此彼此具有相等的宽度,如宽度“w”说明的。凸缘30与端口24和密封件18结合构成可充气制品10中的开放的充气区,其有利地配置成提供室16的快速且可靠的充气。凸缘30的内表面可以与适当配置的喷嘴或其它充气装置的面向外的表面紧密地可滑动接触,以提供部分封闭的充气区,其促进室16的有效且可靠的顺序充气,而不限制实现此顺序充气所需的卷材或充气喷嘴的移动。凸缘30的宽度可以是至少¼英寸,或者宽度为至少½英寸。凸缘30可以具有不同的宽度,但凸缘30也可以具有相等的宽度,如图1所示。用于实现室的充气和密封的示例性设备和方法公开于sperry等人的题为“apparatusandmethodforforminginflatedchambers”的美国专利号7,220,476,其通过引用以其整体并入本文。[0095]密封件18的密封模式可以在室16之间提供不可充气的平面区域。这些平面区域用作柔性接合部,其可以有利地用于使充气的制品围绕产品弯曲或适形,以提供最佳的缓冲保护。在另一个实施方案中,密封模式可以包含不提供平面区域的相对窄的密封件。这些密封件用作相邻室之间的公共边界。这样的密封模式例如在kerr的题为“inflatablepackagingmaterial”的美国专利号4,551,379中显示,其公开内容通过引用以其整体并入本文。在图1中说明的可充气制品10中,密封件18可以是膜12和14的内表面之间的热密封件。或者,膜12和14可以彼此粘合结合。在密封件18的区域中加热膜12和14可以提供非常强的结合。尽管本文通常使用短语“热密封”,但该短语应理解为包括通过用粘合剂粘附膜12和14以及通过热密封形成密封件18。多层膜12和14在它们的内表面上包含热塑性可热密封的聚合物,使得在膜12和14重叠后,可充气制品10可以通过使重叠的片材经过密封辊而形成,所述密封辊具有加热的凸起陆块区域,所述凸起陆块区域在形状上对应于密封件18的期望的模式,如下所述。密封辊施用热并以期望的模式在膜12和14之间形成密封件18,并从而也形成具有期望形状的可充气室16。密封辊上的密封模式也在近端26处提供间断的密封件,因此形成充气端口24,并且还有效地导致形成凸缘30。关于制造可充气制品10的方法的进一步细节在下文公开,并且也在2001年8月22日提交的共同转让的题为“integratedprocessformakinginflatablearticle”的美国专利号6,800,162(kannankeril等人)中阐述,其全部全部公开内容通过引用并入本文,以及在2002年11月22日提交的题为“highstrengthhighgasbarriercellularcushioningproduct”的美国专利号6,982,113中阐述,其全部全部公开内容通过引用并入本文。[0096]通过提供膜12和14作为多层膜,能够实现膜12和14的热密封性,每个膜使另一个膜与包含可热密封的聚合物组成的外部膜层接触。这不仅提供形成热密封件18,还提供了一种方式,通过该方式,充气端口24可以在相应的室充气后由热密封装置封闭。[0097]膜12和14最初是分开的膜,使它们重叠并密封,或者它们可以通过将单个片材折叠到其自身上形成,其中可热密封的表面面向内。与凸缘30相对的纵向边缘(如图1中的边缘32所示)可以是单片折叠的膜的封闭的边缘,或者可以是已经密封在一起的两片离散的膜12和14的各自的边缘。尽管在图1中未说明,但是边缘32可以在未密封区域中,提供类似于凸缘30的另外的一对凸缘,以提供用于使第二系列可充气室充气或用于从两端使室充气的第二开放充气区。任选地,未密封的部分可以进一步包括沿纵向的通道,其用作歧管,即沿制品的边缘连接每个通道。这可以允许制品更快地充气。[0098]所得可充气制品通过在图1中说明的模式密封而制造。图2说明充气完成后和在靠近充气端口24的端部处横跨密封件18的间断的部分已经形成密封件25之后的充气的制品11,从而通过在靠近充气端口24的端部处连接密封件18的不连续部分来关闭充气端口24。[0099]图3a是可以用作在图1中说明的可充气制品10和在图2中说明的充气的制品11中的膜12和/或膜14的多层膜13的放大的横截面示意图。图3a中的多层膜13具有外部热密封层38、外部滥用层40、氧阻挡层42、第一粘接层44、第二粘接层46和两个另外的截面48和50。在本文的工作实施例中,截面48含有16个微层,这些微层通过多个静态在线混合器将多个聚合物的熔融流分成多个层流而形成。也就是,例如,可以将两个相同或不同的聚合物流分成四股流,然后将其分成8股流,然后将其分成16股流,从而产生总共16个微层,所述微层存在于例如多层膜13的“α截面”ꢀ48中。同样可以对多层膜13的“β截面”ꢀ50进行。每个截面可以具有任何期望数量的微层,例如4、8、16、32、64、128个微层等。在以下实例中,α截面48含有16个微层,并且β截面50含有16个层,用于制造可充气制品10的各种多层膜中总共32个微层。[0100]相反,图3b说明用于本文的对比实施例的多层膜15的放大的横截面示意图。如在多层膜13中,在图3b中的多层膜15具有外部热密封层38、外部滥用层40、氧阻挡层42、第一粘接层44、第二粘接层46和两个芯层49和51。在对比实施例中,热密封层38、外部滥用层40、氧阻挡层42、第一粘接层44和第二粘接层46在位置、组成和厚度上与工作多层膜13中的相应的层相同。然而,多层膜13含有内部微层截面48和50,多层膜15具有内部芯层49,其是单个层(没有微层),并且内部芯层51也是单个层(没有微层)。[0101]可充气制品可以由密封在一起的两种膜制成,或者由平折构造的单个折叠的膜或膜管制成。两个离散的膜、折叠的膜的两个叶片或平折构造的膜管的两侧可以在选定的密封区域彼此密封,形成密封部分和未密封部分的模式,后者限定室、充气通道、连接通道、充气裙部或封闭的充气歧管。所得可充气制品是可充气的(即,在充气和密封时将充气气体或流体截留在其中),并提供多个封闭的流体填充室,其中充气的制品可用作缓冲装置以及用于包装空隙填充物和衬垫。可充气制品可以由聚合树脂在一步方法中生产的层压材料制造,这消除了与多步方法相关的缺点。[0102]用于制造可充气层压制品的方法的第一实施方案包含:(a)挤出第一膜和第二膜,所述第一膜和第二膜中的至少一个包含多个微层;(b)冷却所述第一膜和所述第二膜,使得所述膜在彼此接触时不会彼此熔化;(c)使第一膜与第二膜接触;(d)将第一膜和第二膜中的至少一个的选定部分加热到高于熔化温度的温度,使得第一膜和第二膜在选定区域处彼此热密封,其中选定区域提供热密封模式,其中膜之间的未密封部分在第一膜和第二膜之间提供可充气室。当然,如果一个或多个膜是具有密封层的多层膜,则这样的膜的加热仅需要达到高于一个或多个膜的至少密封层的熔化温度的温度。[0103]使第一膜与第二膜接触的步骤(c),然后加热第一膜和第二膜的选定部分的步骤(d),可以在步骤d之前进行步骤c,或者可以颠倒进行该方法的顺序,即首先加热至少一种膜的选定部分,然后使第一膜与第二膜接触,使得第一膜和第二膜在选定区域彼此热密封。此外,选定区域不需要与加热的选定部分精确对应。也就是说,热密封的部分可以比加热的选定部分稍大或稍小。[0104]虽然冷却可以是主动的(例如,使一个或多个膜与一个或多个冷却辊、带接触,使用冷空气或水等),但它也可以是被动的,例如,简单地提供第一膜和第二膜足够的时间以在环境条件下冷却,使得它们在接触时彼此不熔化。此后,为了将膜彼此热密封,必须将一个或两个膜的至少密封层加热到一个或多个密封层将熔化的温度或该温度以上的温度。[0105]第一膜和第二膜可以同时挤出。在一个实施方案中,当由折叠的膜或由环形膜制造制品时,根据需要,从相同的挤出机挤出两种膜。在另一个实施方案中,从单独的模具挤出两个离散的膜,所述模具为环形模具或狭槽模具。可以使用相同的挤出机或使用单独的挤出机挤出两种膜。如果使用环形模具,则所得平折管可以自焊接成平膜,或者通过在纵向切开而转变成平膜。[0106]如果使用平折构造的环形膜或使用折叠的平膜来生产制品,显然两种膜叶片以相同的速度一起前进。如果使用单独的平模具或单独的环形模具生产制品,其中环形膜被切开以打开,则通过以相同的速度使第一膜和第二膜一起前进来进行第一膜与第二膜的接触。尽管可以在膜彼此接触之前进行一个或多个膜或膜叶片的选定部分的加热,但是可以在第一膜和第二膜彼此接触的同时进行第一膜和第二膜(或膜叶片)的选定部分的加热,其中使用热和压力的组合进行热密封。在实施方案中,接触步骤和加热步骤同时进行,其中压力与加热同时进行,导致接触和热密封基本上同时进行。在密封期间,可以同时施用热和压力。[0107]加热可以通过使第一膜和第二膜(或膜叶片)一起围绕加热辊部分缠绕来进行,该加热辊具有以与期望的密封模式相对应的模式凸起的表面。膜(或膜叶片)也可以(或任选地)通过具有凸起表面的加热辊和与其成辊隙关系的第二辊之间的辊隙,其中凸起表面辊具有呈期望的密封模式的凸起表面。可以加热凸起表面辊。然而,两个辊都可以提供有凸起表面,其中凸起表面可操作地对齐以热密封第一膜和第二膜(或第一膜叶片和第二膜叶片)的选定部分,以生产可充气制品。一个或多个凸起表面辊可以各自具有围绕辊连续的凸起表面,使得在第一辊和第二辊的整个旋转过程中保持第一辊和第二辊之间的辊隙,而不需要进一步的装置来保持辊隙。如果处于辊隙关系的一个辊不具有凸起表面,则这样的辊可以具有光滑的连续表面,以确保在辊的整个旋转过程中保持辊隙。或者,可以提供保持不规则辊之间的辊隙的装置,例如在一个或多个辊上的弹性表面、连接辊的齿轮和/或可移动轴上的辊,其中力连续地推动辊彼此接触,尽管存在不规则。第一膜和第二膜以密封和未密封区域的重复模式彼此热密封。[0108]用于制造可充气制品的方法的第二实施方案包含:(a)挤出具有外部表面和内部表面的管状膜,所述管状膜包含多个微层;(b)将所述管状膜冷却至足够低的温度,使得管状膜的内部表面足够冷而不会粘附到其自身;(c)将管状膜放置成具有第一平折侧和第二平折侧的平折构造,使得管状膜的第一平折侧的第一内部平折表面与管状膜的第二平折侧的第二内部平折表面接触;和(d)将管状膜的第一平折侧的选定部分加热密封到管状膜的第二平折侧,进行所述热密封以提供密封区域和未密封区域的模式,其中未密封区域在管状膜的第一平折侧与管状膜的第二平折侧之间提供可充气室。根据热密封的模式,所得热密封的(即层压的)制品可以或不必沿一个或两个侧边切开(即在纵向切开),以向用于使充气室充气的装置提供通道。该替代方法可以根据以上在用于制造可充气制品的方法的第一实施方案中阐述的特征以其它方式进行。[0109]制造可充气制品的方法的第三实施方案包含:(a)挤出包含多个微层的平膜,所述平膜具有第一外部表面和第二外部表面;(b)冷却所述膜,使得所述第一外部表面足够冷,以在抵靠其自身折回时不粘附到其自身;(c)折叠所述膜以在膜的纵向上形成折痕,其中膜的第一叶片在折痕的第一侧上,并且膜的第二叶片在折痕的第二侧上,第一叶片相对第二叶片是平的,使得第一外部表面抵靠其自身折回;和(d)将第一叶片的选定部分加热密封到第二叶片,进行热密封以提供密封和未密封区域的模式,其中未密封区域在第一叶片和第二叶片之间提供可充气室。本公开主题的第三方面还可以根据上文在本发明公开的主题的第一方面中阐述的特征来进行。[0110]图4a是流程图,说明用于制造可充气层压制品的一步集成方法的各个步骤。采用参考编号1‑6来表示步骤。制造可充气层压制品的方法通过以下进行:挤出两种膜1;将所述膜冷却至低于每个膜的熔化温度的温度2;使第一膜和第二膜彼此接触3;加热膜的选定部分4;将第一膜的选定的加热部分密封到第二膜5;和冷却膜以形成层压材料6。尽管冷却步骤6可以是被动的(例如,通过向周围环境放热而简单地使热密封件冷却),但它可以是主动的,以在形成后立即快速冷却热密封件,使得热密封件不会由于继续处理而损坏或削弱。[0111]图4b是采用产生多个室的模式通过将两种膜热密封在一起来制造可充气缓冲制品的设备和方法50的示意图。在图4中,挤出机52和54分别从所示的狭槽模具挤出第一多层膜56和第二多层膜58。在挤出后,膜56围绕传热(冷却)辊60进行部分缠绕,该辊的直径可以是8英寸,并保持在远低于挤出物的熔化温度的表面温度,例如100‑150°f。第二膜58围绕每个传热(冷却)辊62和64进行部分缠绕,每个辊的直径为8英寸,并且各自保持在与冷却辊60相似的表面温度。冷却后,第一膜56围绕teflon®涂布的橡胶压料辊66进行部分缠绕(约90°),该橡胶压料辊的直径为8英寸,并且其主要功能是与传热(加热)凸起表面辊70保持辊隙。当第一膜56通过压料辊66时,第二膜58与第一膜56合并,在一起进入第一辊隙68之前,两种膜一起围绕压料辊66缠绕短距离。压料辊66提供膜56和58的位置以一起出来而没有被损毁或扭曲。[0112]此后,第二膜58与凸起表面辊70(仅为了简化说明,将其说明为光滑的辊)直接接触。第一辊隙68可以使膜56和58经受来自下列中的任何一种的压力:2‑10磅/线性英寸、2‑6磅/线性英寸和4‑10磅/线性英寸。[0113]膜56和58一起接触凸起表面辊70约180度的距离。凸起表面辊70的直径为12英寸,通过使热油循环通过其中而被加热,使得表面保持在280°f至350°f的温度,并且具有被倒圆到1/64英寸半径的凸起表面的边缘。凸起表面辊70其上具有teflon®聚四氟乙烯涂层,其中凸起表面在背景上方¼英寸(0.64cm)的距离。此外,凸起表面辊70的凸起表面可以提供有以下任一表面粗糙度:50‑500均方根(即,“rms”)、100‑300rms以及至少250rms。这种粗糙度改进凸起表面辊70的脱模质量,使得能够实现更快的处理速度并获得高质量产品,该产品不会被辊70上的舔回而损坏。[0114]凸起表面加热与辊70的凸起表面接触的膜58的部分。热从凸起表面辊70通过膜58的加热部分传递,以加热膜56的相应部分,以热密封到膜58。在围绕凸起表面辊70通过约180度时,加热的膜58和56一起通过第二辊隙72,这使得加热的膜58和56经受与施加在第一辊隙68中的压力大约相同的压力,导致在膜56和58之间模式化的热密封。[0115]在通过第二辊隙72后,现在密封在一起的膜58和56围绕传热(冷却)辊74通过约90度,该辊的直径为12英寸并且具有通过其中的冷却水,该冷却水的温度为100°f至150°f。冷却辊74其上具有¼英寸厚(约0.64cm厚)的脱模和传热涂层。该涂层由命名为“sa‑b4”的组合物制成,该组合物由siliconeproductsandtechnologiesinc.oflancaster,n.y提供并施用于金属辊。该涂层含有硅橡胶以提供具有以下肖氏a硬度中任一种的冷却辊74:40‑100、50‑80、50‑70和60‑100。sa‑b4组合物也可以包含一种或多种填料以增加导热性,以改进冷却辊74冷却仍然热的膜的能力,现在密封在一起以产生可充气制品10,其随后卷起以形成用于运输的卷,并随后充气和密封,以产生缓冲制品。[0116]为了以相对高的速度(例如,至少120英尺/分钟,和/或150‑300英尺/分钟,以及至多高达500英尺/分钟的速度)进行该方法,提供具有若干特征的制造设备可能是有利的。凸起表面辊可以提供有脱模涂层或层。凸起表面辊还可以避免引入可能干扰膜从凸起表面辊的清洁脱模的尖锐边缘。如本文所用,短语“脱模涂层”包括所有脱模涂层和层,包括多浸渍涂层、在辊上固化的施加的涂层(如刷涂和喷涂的涂层)以及甚至粘附到辊的脱模带。示例性脱模涂层组合物是teflon®聚四氟乙烯。第二,凸起表面的边缘应被倒圆成足够大的半径,使得膜由于其相对于软化膜的“尖锐性”而容易地脱模而不在边缘上绊住。曲率半径可以是例如以下中的任何一个:1/256英寸至3/8英寸、1/128英寸至1/16英寸、1/100英寸至1/32英寸和至少1/64英寸(即,约0.04cm)中的任何一个。冷却辊可以在具有脱模涂层或层的凸起表面辊的下游提供,并与其成辊隙关系,如上所述。[0117]冷却辊降低层压材料的选定加热部分的温度,以冷却热密封件,使得它们变得足够坚固以经历进一步的处理而不被损坏或削弱。此外,冷却可以在加热装置(即,凸起表面辊)的紧临下游进行,以减少从仍然热的密封件到膜的未加热部分的热渗流,以防止层压制品的未加热部分变得足够热以在旨在用作充气室或充气通道的区域中熔化膜。[0118]用于制造可充气制品的膜可以是吹塑膜或流延膜。吹塑膜(也称为热吹塑膜)从环形模具向上挤出,并在纵向和横向取向,同时仍然熔融,通过将环形挤出物吹成气泡(横向取向)并以比挤出速率更快的速率在膜泡上拉伸(纵向取向)。然而,制造用于本发明公开的主题的膜的一种方法是流延挤出方法,其中将熔融的聚合物挤出通过狭槽模具,其中挤出物在挤出后不久接触冷却辊。热吹塑膜和流延膜两者在85℃下的总自由收缩(即,纵向自由收缩加横向自由收缩)小于15%,如通过astmd2732测量的;在另一个实施方案中,热吹塑膜在85℃下的总自由收缩(即,纵向自由收缩加横向自由收缩)小于10%,如通过astmd2732测量的。[0119]本文所指的膜可以包含聚烯烃,例如低密度聚乙烯、均相乙烯/α‑烯烃共聚物(例如,茂金属催化的乙烯/α‑烯烃共聚物)、中密度聚乙烯、高密度聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯、尼龙、聚偏二氯乙烯(尤其是丙烯酸甲酯和偏二氯乙烯的氯乙烯共聚物)、聚乙烯醇、聚酰胺或其组合中的一种或多种中的任一种。[0120]层压材料20可以足够薄以使制造层压材料20所需的树脂的量最小化,同时足够厚以提供足够的耐久性。第一层膜12和第二层膜13可以具有以下任一种的规格厚度:约0.1至约20密耳;每个膜层的总规格厚度可以是约0.5至约10密耳、约0.8至约4密耳和约1.0至约3密耳。[0121]如果期望或需要,各种添加剂也包括在膜中。例如,添加剂包含颜料、着色剂、填料、抗氧化剂、阻燃剂、抗菌剂、抗静电剂、稳定剂、香料、气味掩蔽剂、防粘连剂、增滑剂等。因此,本发明公开的主题包括采用合适的膜成分。[0122]第一膜12和第二膜13可以是具有a/b/c/b/a结构的热吹塑膜,其总厚度为1.5密耳。a层一起构成总厚度的86%,b层中的每一个构成总厚度的2%,而c层构成总厚度的10%。c层是100%caplon®b100wp聚酰胺6的o2‑阻挡层,粘度fav=100,得自alliedchemical。b层中的每一个是由100%plexar®px165酸酐改性的乙烯共聚物制成的粘接层,得自quantumchemical。a层中的每一个是45重量%的密度为0.941g/cc并且熔体指数为4的hcx002线性低密度聚乙烯(得自mobil)、45重量%的密度为0.918g/cc并且熔体指数为2的lf10218低密度聚乙烯(得自nova)和10重量%的slx9103茂金属催化的乙烯/α‑烯烃共聚物(得自exxon)的共混物。[0123]根据本发明公开的主题形成的层压材料可以抵抗当压力施用于局部区域时的爆裂,因为室之间的空气通道提供缓冲作用。由于气泡之间的空气内部通道,该层压材料还显示优异的抗蠕变性和缓冲性质。[0124]本领域技术人员将理解,可以对本文所述的实施方案进行许多改变和修改,并且可以在不背离本发明公开的主题的公开的发明的精神的情况下进行这样的改变和修改。实施例[0125]表a:用于膜的组合物从狭槽模具流延成对的各种7层共挤出平膜。尽管所有膜具有相同的基本层布置(密封层/本体层#1/本体层#2/粘接层#1/氧阻挡层/粘接层#2/滥用层),总共12种不同的膜由层中聚合物组成的不同组合制成。此外,在12种膜中,两个本体层被生产为两个相邻的微层截面,每个截面具有16个微层。另外12种膜用相同的层组成的组合生产,但每个本体层为单个层(即,不存在微层)。更进一步,这24种不同的多层膜中的每一种以三种最终总体膜厚度(0.8密耳、0.6密耳和0.4密耳)中的每一种制备,而不改变任何层的重量%。因此,总共生产72种不同的膜,即12种聚合物组成变体乘以2种型式(微层和非微层)乘以3种不同的膜厚度(0.4、0.6和0.8密耳)。12种不同的层布置(每层的层重量%)在下面12个表中提供。每个表公开了具有两个微层截面(一个在本体层1中,另一个在本体层2中)的膜,以及具有相同聚合物组成和层厚度的相应的非微层膜,但每个本体层不含微层。不提供每层的实际厚度,但是可以在已知下表中提供的最终膜厚度和层重量%的情况下,连同上文树脂表中关于每层中聚合物密度的信息一起计算。[0126]除非下面另外指出,否则将72种不同膜中的每一种的两个相同的卷材热密封在一起,以期望的热密封模式通过围绕具有凸起表面的加热辊部分缠绕的通道,并通过辊隙,其中辊与凸起表面辊的凸起表面接触,在如上所述的图4b中示意性说明的方法中,以生产可充气缓冲制品。凸起表面辊模式生产充气前长度为15.5英寸(充气后长度为12.25英寸)的充气室,在交替的排中,每个室总共9.5个或10个单元,其中每个单元充气前的直径为1.24英寸。此外,所得密封的卷材具有横向穿孔线以削弱室之间的密封的卷材(使得单独的“片材”可以容易地从材料的辊上撕下,以易于在包装应用中使用),其中穿孔在每10个室之后提供。在充气前,穿孔之间的距离为12.75英寸,但充气后仅为10英寸。对每个室进行充气到充气的单元的平均高度为0.597英寸(1.52cm)的程度。测试所得可充气多孔缓冲制品及其膜的爆裂强度、海拔存活率、拉伸伸长率(仅未密封的膜,如下所述)、压缩强度和预测的失效时间。测试数据和结果的解释一起在以下各种表中提供。[0127]膜#1m和膜#1nm*=由膜1m中的16个微层组成的截面;*=膜1nm中的单个层膜#2m和膜#2nm*=由膜2m中的16个微层组成的截面;*=膜2nm中的单个层膜#3m和膜#3nm*=由膜3m中的16个微层组成的截面;*=膜3nm中的单个层膜#4m和膜#4nm*=由膜4m中的16个微层组成的截面;*=膜4nm中的单个层膜#5m和膜#5nm*=由膜5m中的16个微层组成的截面;*=膜5nm中的单个层膜#6m和膜#6nm*=由膜6m中的16个微层组成的截面;*=膜6nm中的单个层膜#7m和膜#7nm*=由膜7m中的16个微层组成的截面;*=膜7nm中的单个层膜#8m和膜#8nm*=由膜8m中的16个微层组成的截面;*=膜8nm中的单个层膜#9m和膜#9nm*=由膜9m中的16个微层组成的截面;*=膜9nm中的单个层膜#10m和膜#10nm*=由膜10m中的16个微层组成的截面;*=膜10nm中的单个层膜#11m和膜#11nm*=由膜11m中的16个微层组成的截面;*=膜11nm中的单个层膜#12m和膜#12nm*=由膜12m中的16个微层组成的截面;*=膜12nm中的单个层生产以上阐述的24种不同的膜制剂(1m‑12m和1nm‑12nm),并然后在图4b中说明的方法(如上所述)中将其转化成可充气缓冲制品,得到如在图1中说明的上述可充气制品。所得24种缓冲制品中的每一种通过从多层堆叠的狭槽模具挤出两个离散的膜而制成。对于每种可充气制品,两种膜“相同”到以下程度:两种膜(i)具有相同的层数,(ii)具有相同的层布置,(iii)具有相同的层厚度,和(iv)具有相同的层组成。然而,两个离散的“相同的”膜中的每一个从其自身指定的多层堆叠的狭槽模具挤出。用于“m”膜中的每一个的多层堆叠的狭槽模具包括两个芯微层截面,每个芯微层截面由16个微层制成。用于“nm”膜中的每一个的多层堆叠的狭槽模具包括两个离散的芯层,而不是各自含有16个微层的两个芯微层截面。对于每种测试的可充气制品,在图2中说明的方法中将两个相同的膜密封在一起,如上所述。[0128]爆破压力测试使用得自catbridge,ofparsippany,nj的[bubble]poptester/[ib]poptestersystem进行爆裂压力测试。在可充气制品80的截面上进行爆破压力测试,该截面用如图5所示的另外的密封件82修改。密封件82是热密封件,并由纵向热密封部分84和横向热密封部分86组成。纵向密封部分84平行于边缘33延伸,并与密封边缘88间隔期望的距离,以提供充气通道87,使得充气喷嘴90(参见图6a、图6b和图6c)可以插入并紧贴其内部表面。充气喷嘴90在其中具有镜像通道92和94,其中一个通道连接到压缩空气源,而另一个连接到压力计。通道92和94各自直径为3/32英寸。将充气喷嘴90插入通道87中,直到充气喷嘴基部96接触膜边缘89。然后将夹具100(参见图7a和图7b)放置在围绕通道87的膜的部分上,该部分覆盖充气喷嘴90的圆柱形部分98。圆柱形部分98的直径为⅜英寸。[0129]如图7a和图7b所示,包含上夹紧压板102和下夹紧压板104的夹紧压板100用于将可充气制品80的膜牢固地保持抵靠充气喷嘴90,处于图8a和图8b中说明的位置。用于施加力以将夹紧压板100牢固地保持抵靠充气喷嘴90的装置未说明,但是可以是本领域技术人员已知的任何装置,例如c‑夹具、杆夹、弹簧夹、液压夹等。当如图8a和图8b中说明的牢固地压在膜80上时,夹紧压板100减少或消除压缩空气经过充气喷嘴90和从通道87中出来的回流。应当注意,横向密封部分86用于为通道87提供封闭端,使得在从充气喷嘴90中添加压缩空气时,11个室同时充气,直到制品爆裂。[0130]在爆裂压力测试期间,使用压力调节器以20psi向充气喷嘴提供压缩空气,其中气流由节流装置(例如,孔口、针阀等)控制到0.2标准立方英尺/分钟自由流动。在可充气制品处于23℃并且同时可充气制品周围的环境压力为1个大气压时进行测试。当可充气制品破裂时,记录峰值压力。[0131]如本文所用,短语“爆裂压力”、“失效压力”和术语“爆裂”是指当根据以下实例所述的爆裂压力测试充气时可充气制品“失效”的压力。如果膜爆裂,或者表现出密封失效或分层,这对肉眼来说是立即明显的,即不包括痕量密封失效或痕量分层,则制品“失效”。当制品在1个大气环境压力和25℃环境温度的环境中时,通过使制品充气来确定失效压力。[0132]爆破压力测试结果下表1提供可充气制品的爆裂压力。用微层膜截面制成的充气的制品与用相应的非微层膜制成的充气的制品的对比证明,由含有微层膜截面的膜制成的制品始终表现出比由相应的非微层膜制成的制品更高的爆裂强度。此外,统计分析显示,由含有微层膜制成的充气的缓冲制品所表现出的较高的爆裂强度在统计学上显著高于由不含微层的相应的膜制成的充气的缓冲制品所表现出的相对较低的爆裂强度。[0133]海拔存活率测试根据astmd6653进行海拔存活率测试(本文称为“ast”),其通过引用以其整体并入本文。ast用于模拟当包装的产品在高海拔通过飞机运输时低环境压力对充气的缓冲制品的作用,其中充气的缓冲制品用作包装中的缓冲、衬垫和/或空隙填充物。通过将缓冲制品的片材充气,然后密封充气的密而封闭进行ast。每个片材含有10个室,其中5个室含有10个可充气单元,而5个室含有9.5个可充气单元,其中单元(和半个单元)通过一系列9个单元间连接通道加上将第一单元连接到充气裙部的裙部到第一单元连接通道彼此流体连通地串联连接。将可充气制品充气至充气后平均气泡高度为0.597英寸(1.52cm)的程度,其中充气在环境压力为760mmhg并且环境温度为73℉下进行。然后将充气的制品放置在压力降至13.7英寸hg(即348mmhg,为0.458大气压)的室中两分钟的时间段。对于每个数据点,用4个片材进行测试,其中每个片材含有单独的密封的室。此外,将测试重复10次,将结果取平均,其中平均值在下表中报告。ast测试结果以“%充气”报告,其表示在测试期间没有爆裂的密封的室的数量除以测试的室的总数,其中所得商乘以100以提供ast完成时保持充气的室的百分比。[0134]海拔存活率测试结果在ast中,由具有微层的膜制成的缓冲制品表现出比相应的非微层膜显著更高的存活率。更特别地,由含有微层膜制成的缓冲制品对于样品表现出显著更好的海拔存活率率,所述样品:(i)聚酰胺含量为3‑12重量%,基于总膜重(下文中称为“tfb”),总膜厚度为0.2‑0.7密耳,和再循环含量为0‑20重量%,tfb;(ii)聚酰胺含量为4‑11重量%tfb,总膜厚度为0.3‑0.6密耳,和再循环含量为0‑15重量%,tfb;(iii)聚酰胺含量为5‑10重量%tfb,总膜厚度为0.35‑0.45密耳,和再循环含量为0‑12重量%,tfb。[0135]表1:爆裂强度和海拔存活率横向膜伸长率测试根据astmd882进行横向膜伸长率测试(“td伸长率测试”),其通过引用以其整体并入本文。生产六组膜对(即,每组由一对相同的微层膜和另一对相应的非微层膜组成,总共12种不同类型的24种膜),并将其双缠绕到辊上,而不是彼此密封以形成可充气制品。对于每个膜,从辊上取四个7.62厘米长、2.54厘米宽的膜样品。对于每个样品,7.62cm样品长度在横向上延伸。然后将每个膜样品安装在型号5564的instron®上,并用机器的十字头以设定为20英寸/分钟的拉伸速率在样品长度的方向拉伸(即,相对于膜的生产方式,在其横向拉伸样品的膜)。拉伸样品直到其断裂。如下表中报告的伸长率%值通过从最终样品长度(即,样品断裂时的长度)减去instron安装之间的原始样品长度,并将该差值除以样品的原始长度,然后将商乘以100确定。所得值表示样品的td伸长率百分比。表2(下面)中报告的每个值表示4个测试样品的平均值,这些样品以相同方式取自相同的膜。测试在73°f下用样品进行。[0136]选择用于td伸长率测试的六组膜对包括(i)第一组三个膜组,每个膜组含有15重量%聚酰胺(基于总膜重),所有的配方都相同,除了一组为0.8密耳厚,另一组为0.6密耳厚,而最后一组为0.4密耳厚,和(ii)第二组三个膜组,每个膜组含有5重量%聚酰胺(基于总膜重),所有的配方都相同,除了一组为0.8密耳厚,另一组为0.6密耳厚,而最后一组为0.4密耳厚。[0137]表2:膜td伸长率td伸长率测试结果如上表所示,所有在结构中含有具有15%尼龙的微层膜经历在横向上的伸长率至平均约400%的水平。非微层膜在厚度为0.8密耳和0.6密耳的膜中显示类似的伸长率。然而,当厚度降低至0.4密耳时,一半的非微层的测试试样屈服断裂。在非微层膜中,仅0.8密耳厚的膜样品伸长至400%。0.6密耳和0.4密耳的所有测试试样均未能以屈服伸长和断裂(即,断裂前仅经历约6%的屈服)。微层化改进厚度降低的尼龙样品的td伸长率。所有含微层膜都经历横向取向至约400%的水平,包括0.8密耳、0.6密耳和一些0.4密耳厚的膜。[0138]尽管还发现聚酰胺含量从15重量%降低到5重量%(基于总膜重)降低膜的拉伸强度、伸长率和阻挡性能,但是令人惊奇地发现在较薄规格的膜的td伸长率领域中存在微层膜和相应的非微层膜之间的明显差异。进一步发现,具有微层的膜的纵向(md)伸长率在统计学上与不具有微层的相应的膜的md伸长率相同。[0139]尽管具有微层和不具有微层的膜之间的td伸长率%对于厚度为约0.8密耳的膜大致相同,但是对于厚度为0.6密耳和0.4密耳的膜,令人惊讶地发现微层化改进td伸长率%。认为这些具有较大td伸长率%的含有较薄微层的膜比它们的非微层对应物具有更大的强度,并且认为与一旦可充气缓冲制品充气时的更大气泡强度相对应,相对于使用它们的非微层对应物生产的可充气制品。相对于它们的含有非微层的对应物,具有微层的较薄的膜(例如,0.2密耳至0.7密耳、或0.3‑0.65密耳、或0.4‑0.6密耳)的td伸长率%的显著改进是令人惊讶和出乎意料的。此外,较高的伸长率应与较高的气泡强度相关,较高的气泡强度应允许以较低的规格生产膜,同时保持缺乏微层的较厚膜的气泡强度性质。[0140]抗压缩测试根据astmd3575(standardtestmethodsforflexiblecellularmaterialsmadefromolefinpolymers)和astmd642(standardtestmethodfordeterminingcompressiveresistanceofshippingcontainers,components,andunitloads)进行抗压缩测试,其通过引用以其整体并入本文。生产六组膜对(即,每组由一对相同的微层膜和一对相应的非微层膜组成)并密封在一起以制造12种不同的可充气制品。将12种可充气缓冲制品充气至0.597英寸(1.52cm)的厚度,密封封闭,并根据astmd3575和astmd642经受抗压缩测试,其结果在下表中阐述。[0141]表3:压缩强度压缩强度测试结果显示,由具有微层的膜制成的充气的缓冲制品相对于由不具有微层的相应的膜制成的对比缓冲制品的压缩强度意外增加。更特别地,在10%聚酰胺水平(tfb)和0%再循环(tfb)下,其中再循环材料通过再循环相同类型的膜来制备,其中再循环材料位于膜的芯层中,对于由0.4密耳厚的膜制成的制品,平均最大压缩力增加46.7%,而对于0.6密耳厚的膜,平均最大压缩力增加52.9%。在膜中在5%聚酰胺水平(tfb)和0%再循环(tfb)下,对于由0.4密耳厚的膜制成的制品,平均最大压缩力增加19.8%,而对于由0.6密耳厚的膜制成的制品,平均最大压缩力增加18.4%。在膜中在5%聚酰胺水平(tfb)和11%(tfb)再循环下,对于由0.4密耳厚的膜制成的制品,平均最大压缩力增加1.4%,而对于由0.6密耳厚的膜制成的制品,平均最大压缩力增加9.3%。[0142]基于上述结果,推测从由以下膜制成的可充气制品可获得的压缩强度出乎意料高地增加:具有构成30‑80重量%(tfb)的微层截面的膜,该膜含有2‑20重量%(tfb)的量的聚酰胺,其中该膜的总厚度为0.2‑1.2密耳,其中该膜含有0‑6%的再循环(tfb);或具有构成35‑75重量%(tfb)的微层截面的膜,该膜含有3‑15重量%(tfb)的量的聚酰胺,其中该膜的总厚度为0.3‑1密耳,其中该膜含有0‑5%的再循环(tfb);或具有构成40‑70重量%(tfb)的微层截面的膜,该膜含有4‑12重量%(tfb)的量的聚酰胺,其中该膜的总厚度为0.3‑0.9密耳,其中该膜含有小于5%的再循环(tfb);或具有构成45‑65重量%(tfb)的微层截面的膜,该膜含有4‑12重量%(tfb)的量的聚酰胺,其中该膜的总厚度为0.4‑0.8密耳,其中该膜含有小于3%的再循环(tfb)。[0143]预测的失效时间评价压缩强度数据用于在预测模型中确定充气的缓冲制品的失效时间。该模型是instron®5900r。来自这些预测模型的结果显示,与非微层结构相比,微层结构具有更长持续时间的失效时间。基于5%*的压缩强度负载,微层样品可以持续长达12.8天,而非微层样品将认为早在7.9天就失效。下表提供来自预测模型的结果的细节。[0144]表4:失效时间预测当前第1页1 2 3 当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1