一种包装用PETG多层复合膜及其制备方法与流程

文档序号:24981240发布日期:2021-05-07 22:56阅读:328来源:国知局
一种包装用PETG多层复合膜及其制备方法与流程

本发明属于包装材料领域,具体涉及一种包装用petg多层复合膜及其制备方法。



背景技术:

食品包装材料是指用于制造包装容器、包装装潢、包装印刷、包装运输等满足产品包装要求所使用的材料。目前,常用于食品包装的材料包括塑料、玻璃、金属、木料、纸质等,其中,塑料包装材料由于其具有良好的可塑性、弹性、绝缘性、化学惰性等特性,且具有比重小、质量轻、易于加工、资源丰富、耗能少、成本低、对食品有保护作用等优点,已被广泛应用于食品包装。而塑料包装材料逐渐取代纸、玻璃等传统包装材料,是食品包装中最主要的包装材料之一。目前,我国用于食品包装用的塑料材料主要有聚乙烯(pe)、聚丙烯(pp)、聚酯(pet)、聚偏二氯乙烯(pvdc)、聚碳酸酯(pc)、聚苯乙烯(ps)、聚酰胺(pa)、聚乙烯醇(pva)等,但是,塑料包装材料也存在着一定的缺点和不足:①其稳定性不佳,不耐高温、易变形;②塑料原材料和加工助剂可能会对包装食品造成污染,影响人体健康,例如:增塑剂;③石油基塑料的大量使用以及降解难带来白色污染,对环境造成极大的影响。

随着环境污染的日益严重,低碳、节能、环保已成为全球关注的焦点,因此,绿色包装受到了越来越多的重视和推广。绿色包装材料是指在全生命周期内对自然环境和人类健康不造成危害,并且后期能实现回收再使用或可自行降解不污染环境,能有效地降低不可再生资源的消耗的包装材料。塑料包装材料的可降解化是未来包装材料的研究热点和难点。

目前正在发展中的有淀粉基可降解材料、聚乳酸可降解塑料、水溶性塑料薄膜等。这类材料更多的是在pp、pe等传统塑料中加入少量可降解材料来达到降低成本、增加塑料的可降解性的目的,但是,存在解决降解不彻底的问题,有的树脂分子骨架在很长时间内难以降解,以碎片或粉末的形式残存于自然环境中,反而加重了废塑料回收处理的困难。此外,由于可降解塑料是利用多糖、蛋白质等天然可降解物质为原料制成的高分子材料,其机械强度和韧性与石油基塑料相比会略逊一筹(如淀粉基降解塑料有脆性大、易破裂的缺陷),甚至在使用过程中会出现失效的问题,降解的可控性差,从而会影响可降解塑料的应用范围。

近年来,关于食品包装材料的研究,国内外的关注点主要在开发功能型、环保型绿色食品包装材料,提高食品包装材料的功能性、安全性和环保性是我国可持续发展战略的要求,提供一种功能型、安全型、和环保型的食品包装材料是十分必要的。



技术实现要素:

为了克服现有技术的不足与缺点,本发明的首要目的在于提供一种包装用petg多层复合膜。

本发明的另一目的在于提供上述一种包装用petg多层复合膜的制备方法。

本发明的再一目的在于提供上述一种包装用petg多层复合膜的应用。

本发明的目的通过下述技术方案实现:

一种包装用petg多层复合膜,包含abc三层膜层,其中,a层为热封层,b层为阻隔层,c层为支撑层,a层的组分为petg,b层由如下按质量百分比计的组分组成:29~39.5%pha和60~70%petg和0.5~1%纳米二氧化锡,c层由如下按质量百分比计的组分组成:70~80%pla和20~30%petg;

所述的a层中的petg优选为skygreen®s2008、gn071(美国伊士曼)或0603(美国伊士曼);

所述的b层和c层的petg优选为k2012(韩国sk)、kn200(韩国sk)和eb062(美国伊士曼)中的至少一种,该类型petg具有高粘性且阻隔性好;

所述的pha优选为p34hb,该类型pha引入了4hb,破坏了结晶规整性,结晶度下降,大大提高了大分子链的流动性,有利于提高结晶速率,进而使其硬度降低,延展性提高,机械性能和热稳定性得到改善;

所述的pla优选为2003d(美国natureworks)和2500hp(美国natureworks)中的至少一种;

所述的包装用petg多层复合膜的制备方法,包含如下步骤:

(1)将包装用petg多层复合膜的各层原料分别混合后,在不同挤出机中进行熔融塑化;然后送入三层共挤圆形模头进行熔体成型,得到圆形熔体管坯;

(2)将上述圆形熔体管坯经过真空定径、冷却成型后在热水槽中进行预热,然后进行横向吹胀和纵向拉伸;

(3)将上述经吹塑成型后的薄膜进行辐照处理和热处理,最后收卷,得到包装用petg多层复合膜;

步骤(1)中所述的三层共挤圆形模头的温度优选为180~185℃;

步骤(2)中所述的横向吹胀的吹胀比为2.5~3.0;

步骤(2)中所述的纵向拉伸的拉伸比为2.5~3.0;

步骤(3)中所述的辐照处理的辐射剂量优选为100~300kgy;

步骤(3)中所述的热处理的条件优选为80~90℃处理5~20min;

一种包装用petg多层复合膜,通过上述制备方法制备得到;

所述的包装用petg多层复合膜在包装材料中的应用;

本发明相对于现有技术具有如下的优点及效果:

(1)本发明提供的包装用petg多层复合膜,包含abc三层膜层(图1),其中,a层为热封层,b层为阻隔层,c层为支撑层,无需粘合层,其中,热封层由具有良好热封强度和合适热封温度的petg组成,阻隔层则由具有较好气体阻隔效果的petg和pha组成,支撑层由pla和petg组成,三层结构均包含petg,且petg的含量逐层减少,通过不同含量petg,使得各聚合物间的相容性得到提高,膜层间不易滑动和剥离,且三层膜层均为绿色环保材料;

(2)本发明选择的p34hb类型pha引入了4hb,破坏了结晶规整性,结晶度下降,大大提高了大分子链的流动性,有利于提高结晶速率,进而使其延展性提高,机械性能和热稳定性得到改善;

(3)本发明在功能层间添加了纳米二氧化锡,其中,该纳米材料一方面提高了膜的抗静电能力,一方面,金属锡元素的存在,使得在pha在熔融挤出过程,减少了大尺寸球晶的形成,提高了结晶速率,进而使得pha的韧性、延展性得以提高;

(4)本发明通过辐照+热处理的形式,可避免pha在室温过程中二次结晶现象以及球晶的形成;

(5)本发明通过在pla和pha中添加结晶度低的petg,可有效改善pla和pha脆性较大、稳定性差、结晶速度慢等问题;

(6)本发明提供的包装用petg多层复合膜具有良好的阻隔性能,拉伸强度和断裂伸长率较高。

附图说明

图1是本发明提供的包装用petg多层复合膜的结构示意图。

具体实施方式

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。

实施例1

(1)将pla(2003d)、p34hb(深圳意可曼)、petgskygreen®s2008和eb062在进行熔融挤出前,先进行干燥去湿处理,备用:

(2)将包装用petg多层复合膜的各层原料分别混合,其中,a层(热封层)的组分为petg(petgskygreen®s2008),b层(阻隔层)由如下按质量百分比计的组分组成:34.2%p34hb和65%petg(eb062)和0.8%纳米二氧化锡,c层(支撑层)由如下按质量百分比计的组分组成:75%pla(2003d)和25%petg(eb062);配好料后,将各层在不同挤出机中进行熔融塑化;然后送入温度为180℃的三层共挤圆形模头进行熔体成型,得到圆形熔体管坯;

(3)将上述圆形熔体管坯经过真空定径、冷却成型后在热水槽中进行预热,预热后冲入压缩空气进行横向吹胀和纵向拉伸,吹胀比为2.8,拉伸比为2.5;

(4)将上述经吹塑成型后的薄膜采用电子加速器进行辐照处理,辐射剂量为200kgy;然后85℃热处理10min后进行收卷,得到包装用petg多层复合膜,其中,a层、b层和c层的厚度比例为40:15:45。

实施例2

(1)将pla(2003d)、p34hb(深圳意可曼)、petgskygreen®s2008和eb062在进行熔融挤出前,先进行干燥去湿处理,备用:

(2)将包装用petg多层复合膜的各层原料分别混合,其中,a层(热封层)的组分为petg(petgskygreen®s2008),b层(阻隔层)由如下按质量百分比计的组分组成:29%p34hb和70%petg(eb062)和1%纳米二氧化锡,c层(支撑层)由如下按质量百分比计的组分组成:70%pla(2003d)和30%petg(eb062);配好料后,将各层在不同挤出机中进行熔融塑化;然后送入温度为180℃的三层共挤圆形模头进行熔体成型,得到圆形熔体管坯;

(3)将上述圆形熔体管坯经过真空定径、冷却成型后在热水槽中进行预热,预热后冲入压缩空气进行横向吹胀和纵向拉伸,吹胀比为3.0,拉伸比为2.5;

(4)将上述经吹塑成型后的薄膜采用电子加速器进行辐照处理,辐射剂量为120kgy;然后80℃热处理15min后进行收卷,得到包装用petg多层复合膜,其中,a层、b层和c层的厚度比例为45:13:42。

实施例3

(1)将pla(2003d)、p34hb(深圳意可曼)、petgskygreen®s2008和eb062在进行熔融挤出前,先进行干燥去湿处理,备用:

(2)将包装用petg多层复合膜的各层原料分别混合,其中,a层(热封层)的组分为petg(petgskygreen®s2008),b层(阻隔层)由如下按质量百分比计的组分组成:39.5%p34hb和60%petg(eb062)和0.5%纳米二氧化锡,c层(支撑层)由如下按质量百分比计的组分组成:80%pla(2003d)和20%petg(eb062);配好料后,将各层在不同挤出机中进行熔融塑化;然后送入温度为185℃的三层共挤圆形模头进行熔体成型,得到圆形熔体管坯;

(3)将上述圆形熔体管坯经过真空定径、冷却成型后在热水槽中进行预热,预热后冲入压缩空气进行横向吹胀和纵向拉伸,吹胀比为2.5,拉伸比为2.5;

(4)将上述经吹塑成型后的薄膜采用电子加速器进行辐照处理,辐射剂量为150kgy;然后90℃热处理5min后进行收卷,得到包装用petg多层复合膜,其中,a层、b层和c层的厚度比例为40:20:40。

对比例1

本实施例中c层(支撑层)由pla(2003d)制备得到,其他层组成与实施例1相同,制备方法同实施例1。

对比例2

本实施例中b层(阻隔层)由如下按质量百分比计的组分组成:40%p34hb和60%petg(eb062),其他层组成与实施例1相同,制备方法同实施例1。

分别检测实施例1~3以及对比实施例1~2制得的包装用petg多层复合膜的厚度、拉伸强度、断裂伸长率、热封温度、热封强度、水蒸气透过量、氧气透过量等。其中,拉伸强度和断裂伸长率参照gb/t1040.3方法进行,热封性能参照bmstt01方法进行,透氧性能等参照asrm相关方法进行。

结果见表1。

表1实施例1~3以及对比实施例1~2制得的包装用petg多层复合膜的性能

从表1可以看出,c层(支撑层)由100%pla(2003d)制备得到的装用petg多层复合膜(对比例1)无论是在拉伸强度还是在断裂伸长率上均低于实施例1~3制得的装用petg多层复合膜,说明c层(支撑层)中添加的petg可有效提高膜的韧性和延展性,同时也影响膜的阻隔性;而对比例2中未添加纳米二氧化锡,对膜的阻隔性无太大影响,但是由于二氧化锡的添加可以减少pha中大尺寸球晶的形成,提高了结晶速率,进而可以提高其拉伸强度和断裂伸长率,从表1中可以看出,对比例2制得的多层复合膜在拉伸强度和断裂伸长率是明显低于实施例1~3制得的装用petg多层复合膜。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1