具有含HFO的泡孔气体的热绝缘介质管的制作方法

文档序号:30063905发布日期:2022-05-18 00:23阅读:191来源:国知局
具有含HFO的泡孔气体的热绝缘介质管的制作方法
具有含hfo的泡孔气体的热绝缘介质管
1.本技术是申请号为201780035436.6的中国专利申请的分案申请。
2.本发明涉及包含热绝缘件,具体地说热绝缘介质管的管系统,以及用于连接具有改进的热绝缘件的导管的热绝缘罩装置或套管。此外,本发明涉及用于制备此类装置的方法,并且还涉及含有氢氟烯烃(hfo)的聚合物泡沫在此类装置中的用途以及用于制备此类装置的用途。最后,本发明涉及hfo在热绝缘件中作为泡孔气体的用途。
3.包含热绝缘件的管系统,也称为预绝缘管系统或热绝缘管系统,本身是已知的并且已被验证。此类管系统包括柔性或刚性介质管,其由热绝缘件封闭,热绝缘件反过来由护套封闭,并且还可能包括套管和/或罩装置。根据结构,这些预绝缘管系统也称为塑料介质管系统(pmp)或塑料夹套管系统(pjp)。在第一种情况中,所使用的介质管具有一定的柔性,使得整个复合材料也可以在一定的力的作用下缠绕在滚筒上。因此,这些也称为柔性管系统。在后者中,所使用的介质管不是柔性的,因此,在整个复合材料的情况下也参考刚性管系统。因此,具有一个或多个热绝缘层的热绝缘介质管或导管是已知的;和其生产一样。因此,从ep0897788和ep2213440中已知用于连续生产热绝缘介质管的方法。从ep2248648中已知一种用于生产单独的刚性管段的方法。
4.在此类管系统中,通常用作绝缘材料的泡沫(例如,聚氨酯pu)随着时间的推移改变其泡孔气体的组成。这是由于氮气和氧气从周围环境扩散到泡沫中以及由于泡沫中最初包含的泡沫气体和/或泡孔气体,特别是二氧化碳和其它发泡剂离开泡沫而发生。空气具有比最初包含的二氧化碳和其它通常使用的发泡剂显着更高的热导率。
5.已经提出将所谓的阻挡层集成到外护套中以使这些扩散过程最小化。
6.金属层可用作阻挡层。如果使用金属层,不仅需要完全抑制气体交换,而且还需要完全防止水蒸气扩散。这在使用由塑料制成的介质管的情况下尤其有问题,因为水通常作为介质流过它们,因此水蒸气虽然也是少量的,但通过其壁连续地迁移。所述水蒸气必须具有向外穿透和/或与周围环境产生平衡的可能性,否则因为水会随着时间的推移而变得富含热绝缘导管的热绝缘,由此热导率显着上升并且存在长期热绝缘受损的风险。
7.由一种或多种聚合物材料组成的层可用作阻挡层。因此,ep1355103描述了热绝缘导管,其包含由乙烯-乙烯醇(evoh)、聚酰胺(pa)或聚偏二氯乙烯(pvdc)制成的阻挡层。此外,ep2340929描述了一种塑料夹套管,其外护套形成为多层管并且在其内部具有气体渗透阻挡层(“屏障”)。这些文献中描述的管难以生产和/或具有不充分的绝缘能力。从ch710709(后公布的)和wo2004/003423中已知具有热绝缘件和聚合物阻挡层的导管;这些聚合物包含聚酮和/或evoh。
8.模制部件和连接件用于连接热绝缘管。特别地,罩壳用作模制部件,如wo2008/019791中所述。或者,套管用作连接件,特别地在连接刚性管的情况下。在此类模制部件和连接件的情况下也会出现上述问题。
9.本发明的一个目的是提供一种绝热导管以及不具有上述缺点的模制部件和连接件。
10.根据独立权利要求实现上述概括的目的。从属权利要求代表有利实施例。可以从
说明书和附图中推断出另外有利实施例。结合本发明提供的一般的、优选的和特别优选的实施例、范围等可以根据需要彼此组合。各个定义、实施例等也可以省略和/或可以是不相关的。
11.以下将详细描述本发明。显然,下文公开和描述的各种实施例、偏好和范围可以根据需要彼此组合。此外,取决于实施例,可以不应用单个定义、偏好和范围。此外,术语“包括”包含“含有”和“由

组成”的含义。
12.本发明中使用的术语用于对本领域技术人员而言通常典型的常规意义。如果没有其它含义来自直接上下文,则在这种情况下,以下术语特别地具有此处指出的含义/定义。
13.附图进一步说明了本发明;除了以下描述之外,可以从这些附图推断出本发明的另外实施例。
14.图1示意性地示出了根据本发明的导管(1)的横截面结构。在这种情况下,(2)是外护套,其外侧(6)面向周围,且内侧(5)面向热绝缘件;(3)表示使用泡孔气体的热绝缘件;(4)是介质管。
15.图2示意性地示出了外护套(2)的优选实施例的结构。在这种情况下,(7)是外聚合物层(特别地为热塑性塑料);(8)是外粘合促进剂层,(9)是阻挡层;(10)是内部粘合促进剂层,且(11)是内部聚合物层(特别地为热塑性塑料)。
16.图3显示了在50℃下测量的pu泡沫的热导率值(横坐标单位为mw/m*k)依赖于泡孔气体组成(纵坐标单位为vol%)的相关性的图示。正方形代表环戊烷,圆圈代表co2且三角形代表hfo。
17.图4显示了pu泡沫的平均孔径(横坐标单位为μm)依赖于泡孔气体组成(纵坐标单位为vol%)的图示。正方形代表环戊烷,圆圈代表co2且三角形代表hfo。
18.图5显示了分别具有各种含量(纵坐标单位为wt.%)的环戊烷或hfo1233zd的多元醇的粘度(横坐标单位为mp*秒)的图示。正方形代表环戊烷且三角形代表hfo。
19.在第一方面,本发明因此涉及一种包含热绝缘件(也称为预绝缘管系统或热绝缘管系统)的管系统,其中所述热绝缘件包括泡沫,其泡孔气体含有氢氟烯烃(hfo)。此类管系统,但没有所提到的泡孔气体,本身是已知的,并且包括用于连接此类导管的热绝缘导管、套管和罩装置。
20.在第一实施例中,本发明涉及一种热绝缘导管(1),其包括至少一个介质管(4)、至少一个围绕介质管布置的热绝缘件(3),以及至少一个围绕热绝缘件布置的外护套(2),其特征在于,所述外护套(2)可能包括由塑料制成的屏障(9),并且所述热绝缘件(3)包括泡沫,其泡孔气体包含下文定义的组分。
21.在第二实施例中,本发明涉及一种由塑料制成的罩装置,特别地用于至少两个管件的连接点,其连接在其中罩装置具有至少一个热绝缘件(3)和至少一个围绕热绝缘件布置的外护套(2)的位置处,其特征在于,所述外护套(2)可能包括由塑料制成的屏障,并且所述热绝缘件(3)包括泡沫,其泡孔气体包含下文定义的组分。
22.在另外实施例中,本发明涉及一种由塑料制成的用于连接热绝缘导管的套管,其中套管具有至少一个热绝缘件(3)和至少一个围绕热绝缘件布置的外护套(2),其特征在于,所述外护套(2)可能包括由塑料制成的屏障,并且所述热绝缘件(3)包括泡沫,其泡孔气体包含下文定义的组分。
23.下面将更详细地解释本发明的这个方面
24.热绝缘件(3):热绝缘件部分或完全,优选地完全封闭介质管。具体地说,在其泡孔中含有泡孔气体的泡沫塑料(“泡沫”)适合作为热绝缘件。热绝缘件沿其横截面可以是均匀的,或者可以由多层构成。导管中的热绝缘件通常均匀地构造。
25.泡孔气体:热绝缘件中存在的气体称为泡孔气体。它们是生产的结果,并且由化学和物理发泡剂和/或其反应产物组成。此类泡孔气体通常在发泡过程期间加入,或者它们在发泡过程期间形成。
26.根据本技术,热绝缘件的泡沫中的泡孔气体的特征在于其含有氢氟烯烃(hfo)。泡孔气体可以仅由一种或多种hfo组成,并且可能包含另外的另外组分。泡孔气有利地含有10vol%到100vol%的hfo,优选为20vol%到100vol%的hfo,更优选为30vol%到100vol%的hfo,特别优选为40vol%到100vol%的hfo,非常特别优选为50vol%到100vol%的hfo。因此,泡孔气体可含有另外组分。
27.在一个实施例中,泡孔气体含有0vol%到50vol%的(环)烷烃,优选为0vol%到45vol%的(环)烷烃,更优选为0vol%到40vol%的(环)烷烃,特别优选为0vol%到35vol%的(环)烷烃。hfo与(环)烷烃的比例优选为至少2.5:1,优选为至少3:1。
28.在另外实施例中,泡孔气体另外地或可备选地含有高达50vol%的co2,优选为0vol%到40vol%的co2,特别优选为0vol%到30%的co2。
29.在另外实施例中,泡孔气体另外地或可备选地含有高达5vol%的氮气(n2)和/或氧气(o2)。
30.这些另外组分可以加入发泡剂等中,例如,所提及的(环)烷烃;它们可以在泡沫等的生产期间产生,例如co2;它们可以在生产过程等期间进入泡沫,例如空气、o2、n2。
31.令人惊讶地已经证实,即使在如此低的比例下,例如,在泡孔气体中10vol%的hfo,管系统,特别是热绝缘导管的性质也在一系列特征中得到改善。
32.具体地,已经发现本文描述的导管具有令人惊讶的改进的绝缘性能。在不受理论束缚的情况下,推测改善的绝缘性能不仅由hfo的材料性质(热导率)确定,而且还由改变的粘度引起的改善的发泡确定。
33.在pu泡沫和pir泡沫的情况下,将hfo添加到两种起始组分之一(分别是异氰酸酯或多元醇)和/或在混合头中直接混合期间导致显着的粘度降低。在不受理论束缚的情况下,推测粘度降低改善了两种组分的混合,从而促进了相对较小的泡孔的形成。
34.为了实现使用环戊烷作为发泡剂的相似数量级的粘度降低,可备选地其含量也可以增加例如1.86倍。这将是hfo 1233zd(130.5g/mol)和环戊烷(70.2g/mol)的分子量相差的倍数,但这会产生多种不利后果:
35.a)一方面,在发泡过程期间双倍量的发泡剂气体会膨胀,这将导致泡沫结构的不可控制的变化。现有的pu泡沫和生产设备针对较少量的环戊烷进行了优化,并且相对于膨胀的发泡剂的大量相关变化将导致广泛的新发展。
36.b)环戊烷充当pu泡沫的增塑剂。数量增加1.86倍导致其显着软化。一方面,这是不希望的,因为泡沫起支撑作用,即它对于整个复合材料的机械稳定性是必不可少的。另一方面,这是不希望的,因为在生产过程中泡沫的柔软性增加导致整个管复合材料越来越偏离理想的圆形横截面几何形状。因此已经发现,通过hfo完全或部分地取代环戊烷改善了泡沫
的机械性能。通常将环戊烷加入起始原料中以降低其粘度;然而,最大量受到限制,因为生产的泡沫必须具有足够的机械强度。通过用hfo替代环戊烷可以实现这些矛盾的目标。使用相当量的hfo导致起始原料具有降低的粘度和最终泡沫的均匀机械强度。因此,可以通过均匀的产品质量来改善可生产性。
37.此外,已经发现,将hfo添加到一种起始组分中和/或直接添加到混合头中的两种起始组分中会降低其可燃性。这种效果是非常有利的,因为此类生产设备的安全技术要求因此降低并且因此可以显着简化相应的生产设备的设计并且因此可以节省成本,否则当使用可燃发泡剂时成本会上升。
38.总之,因此可以说可通过由hfo部分或完全替代环戊烷(cp)以优雅的方式解决已知问题。一方面,可以添加更多的发泡剂,这导致所需的粘度降低。然而,与此同时,膨胀效应基本保持不变,并且不需要对配方和生产设备进行根本性调整。最后,通过不可燃的hfo替代可燃的环戊烷改善了工作保护,并且降低了此类生产设备的投资成本。
39.此外还发现,高含量的(环)烷烃,特别是环戊烷,对产品质量有负面影响。经验表明,多元醇中过高的环戊烷含量导致在泡沫中形成大气泡,这是因为发泡剂(特别是环戊烷)由于形成的pu泡沫的温度而从泡沫中排出而发生。
40.在连续操作的生产过程中,外护套通常通过挤出施加并且在此时发现,因为通常80℃到250℃的高温,处于其可以容易地变形的状态下。然后,气泡在绝缘管的外侧变得可见,因为逸出的发泡剂使外护套膨胀。这类似地适用于具有波浪形、光滑和波纹状外护套的绝缘管。通过挤出成型外护套的温度促进发泡剂的逸出。具有此类缺陷的管被认为是丢弃物,并且不再能提供给实际目的。
41.如果所得绝缘泡沫的泡孔气体组成中的环戊烷的含量为0vol%到50vol%,优选为0vol%到45vol%,特别优选为0vol%到40vol%,最优选为0vol%到35vol%,则防止气泡的形成。
42.令人惊讶地已经确定,在使用hfo作为发泡剂时,不会发生所提及的气泡形成。这特别适用于所得绝缘泡沫的泡孔气体组成中的hfo含量在上述限度内的情况。所描述的性能全部更令人惊讶,因为在hfo 1233zd的情况下和在hfo 1336mzz的情况下沸点分别为19℃和33℃。这与环戊烷相比,环戊烷的沸点为49℃。由于这些沸点,在使用较低沸点的hfo作为发泡剂时,使用较高沸点的(环)烷烃,例如,cp时,期望气泡的形成更加明显。观察到相反的情况。
43.氢氟烯烃(hfo)是已知的并且可商购和/或可根据已知方法生产。它们适合作为发泡剂气体,特别地由于其低全球变暖潜能值(gwp)并且由于其对大气的臭氧层无害(臭氧消耗潜能值odp)。所述术语包括两种化合物,其仅包括碳、氢和氟,以及另外含有氯(也称为hfco)并且在每种情况下分子中至少一个不饱和键的那些化合物。hfo可以各种组分的混合物形式或以纯组分的形式提供。此外,hfo可以异构体混合物,特别是e/z异构体形式,或以异构体纯化合物形式提供。
44.在本发明的范围内,特别合适的hfo选自包括具有式(i)的化合物的组
45.46.其中r5表示h、f、cl、cf3,优选为cl、cf3,且r6表示h、f、cl、cf3,优选为h。
47.特别合适的hfo是r1233zd(例如,solstice lba,霍尼韦尔(honeywell))和r1336mzz(例如,formacel 1100,杜邦(dupont))。
48.令人惊讶地发现,如果绝缘层的泡孔气体含有至少10vol%,优选为至少30vol%,特别优选为至少50vol%的hfo,则本文描述的导管具有改善的绝缘性能。此外,已经表明,将此类hfo添加到泡沫绝缘层的起始原料中可以提高生产率。
49.已知(环)烷烃是热绝缘管中的绝缘的泡孔气体。所述烷烃或环烷烃有利地选自包括丙烷、丁烷、戊烷、环戊烷、己烷和环己烷的组。通过(环)烷烃与hfo的组合,可以进行产品性能的精细调节,和/或可以改善生产率和/或在可接受的质量损失下发生成本降低。所提及的(环)烷烃可以纯化合物形式或以混合物形式提供;脂族烷烃可以异构体纯的化合物形式或以异构体混合物形式提供。特别合适的(环)烷烃是环戊烷。
50.二氧化碳:如果泡沫由pu或聚异氰脲酸酯(pir)形成,则co2通常以一定量产生,因为工业质量的起始原料多元醇通常含有少量水。然后,所述水与异氰酸酯反应形成氨基甲酸,其自发地分解co2。因此,泡孔气体的co2含量与起始原料的纯度相关,并且通常小于50vol%。如果起始原料是无水的,例如,如果形成聚烯烃,则泡孔气体的co2含量因此为0vol%。因此,通过选择起始原料(和/或其纯度)可以影响泡孔气体的co2含量。
51.其它泡孔气体:由于生产,组分可以从大气/环境空气进入泡孔气体。它们基本上是n2和/或o2,例如空气。泡孔气体的含量通常小于5vol%。如果生产设备是特殊配置的,则可以避免与大气/环境空气接触,并且另外的泡孔气体的含量为0vol%。
52.泡沫:所述热绝缘件(3)包括泡沫(即,包含泡沫或由泡沫组成)。此类泡沫本身是已知的,符合din en 253:2015-12(特别是对于pjp)和en15632-1:2009/a1:2014,en15632-2:2010/a1:2014和en15632-3:2010/a1:2014规范的泡沫(特别是对于pmp)特别适合。所述术语包括硬泡沫和软泡沫。泡沫可以是闭孔的或开孔的,优选为闭孔的,特别是如din en 253:2015-12规范中所示。此类泡沫优选选自下组:聚氨酯(pu)、聚异氰脲酸酯(pir)、热塑性聚酯(特别是pet)和热塑性聚烯烃(特别是pe和pp)。
53.已经表明泡沫和泡孔气体的以下组合是特别有利的:
[0054]-含有50vol%到100vol%的r1233zd和0vol%到50vol%的cp的pu;
[0055]-含有50vol%到100vol%的r1336mzz和0vol%到50vol%的cp的pu;
[0056]-含有50vol%到100vol%的r1233zd和0vol%到50vol%的cp的pir;
[0057]-含有50vol%到100vol%的r1336mzz和0vol%到50vol%的cp的pir;
[0058]-含有50vol%到100vol%的r1233zd和0vol%到50vol%的cp的pet;
[0059]-含有50vol%到100vol%的r1336mzz和0vol%到50vol%的cp的pet;
[0060]-含有50vol%到100vol%的r1233zd和0vol%到50vol%的cp的pe;
[0061]-含有50vol%到100vol%的r1336mzz和0vol%到50vol%的cp的pe。
[0062]
在一个实施例中,所提及的泡孔气体加起来为100vol%。在另外实施例中,这些泡孔气体与co2和空气一起加起来为100%。在另外实施例中,hfo:cp的比例为至少2.5:1。
[0063]
此外,已经表明泡沫和泡孔气体的以下组合是特别有利的:
[0064]-含有50vol%到100vol%的r1233zd和0vol%到50vol%的cp和0vol%到50vol%的co2的pu;
[0065]-含有50vol%到100vol%的r1336mzz和0vol%到50vol%的cp和0vol%到50vol%的co2的pu;
[0066]-含有50vol%到100vol%的r1233zd和0vol%到50vol%的cp和0vol%到50vol%的co2的pir;
[0067]-含有50vol%到100vol%的r1336mzz和0vol%到50vol%的cp和0vol%到50vol%的co2的pir;
[0068]-含有50vol%到100vol%的r1233zd和0vol%到45vol%的cp和10vol%到40vol%的co2的pu;
[0069]-含有50vol%到100vol%的r1336mzz和0vol%到45vol%的cp和10vol%到40vol%的co2的pu;
[0070]-含有50vol%到100vol%的r1233zd和0vol%到45vol%的cp和10vol%到40vol%的co2的pir;
[0071]-含有50vol%到100vol%的r1336mzz和0vol%到45vol%的cp和10vol%到40vol%的co2的pir。
[0072]
在一个实施例中,所提及的泡孔气体加起来为100vol%。在另外实施例中,这些泡孔气体与空气一起加起来为100%。在另外实施例中,hfo:cp的比例为至少3:1。
[0073]
在另外实施例中,热绝缘件由所提及的泡沫和所提及的泡孔气体组成。
[0074]
屏障(9):扩散屏障本身在导管/管系统领域中是已知的。如果存在屏障,则所述屏障形成为层。优选的是,提供如下所述的至少一个屏障(9)。特别优选的是,提供如下所述的一个屏障(9)。
[0075]
所述层(9)能使泡孔气体从热绝缘件中扩散出来和导管外部的气体(特别是空气)扩散进入热绝缘件中被减少。所述性质对于确保导管/管系统的长期绝缘能力是重要的。
[0076]
在一个有利的实施例中,所述层进一步能使水从热绝缘件中扩散出来。所述性质对于导管/管系统、由塑料制成的中介质管(4)尤其重要。如果在此类导管/管系统中输送水性介质,则水可以通过导管从介质进入绝缘层,从而降低绝缘能力并损坏绝缘材料。
[0077]
在一个有利的实施例中,所述层进一步能够提供co2的一定的渗透性。co2渗透性的特别合适的值在0.5cm3/m2*天*巴到100cm3/m2*天*巴的范围内。
[0078]
因此,具有选择的性质的屏障是有利的,特别是:(i)可渗透水和水蒸汽,(ii)不可渗透具有低热导率的泡孔气体,(iii)可渗透由于生产而产生但具有相对高的固有热率导的泡孔气体(例如,co2),(iv)不可渗透来自周围环境的气体,特别是氮气、氧气和空气。
[0079]
已经表明,其中屏障包括下文提及的一种或多种聚合物的开始所提及类型的导管非常好地满足要求。根据本发明,屏障可以单层形式或彼此分开的多层形式提供。此外,可以通过附加层将屏障附着到绝缘层或外护套上或外护套中(“粘合促进剂层”(8)、(10))。
[0080]
屏障(9)可以布置成外护套(2)中的层;这是优选的,特别是所述实施例优选具有两个与如图2所示的屏障(9)邻接的粘合促进剂层(8,10)。
[0081]
此外,屏障可布置为外护套的外侧和/或内侧上的层。此外,屏障可以由外护套形成。此外,屏障(9)可以布置为热绝缘件(3)和外护套(2)之间的层。在所述实施例中,通常省略粘合促进剂层。
[0082]
阻挡层(9)有利地具有0.05mm到0.5mm,优选为0.1mm到0.3mm的层厚度。如果屏障
形成外护套,则屏障有利地具有0.5mm到5mm的层厚度。如果提供,则粘合促进剂层(8,10)彼此独立地具有0.02mm到0.2mm的层厚度。
[0083]
阻挡层优选包含乙烯与一氧化碳或与乙烯醇的共聚物。
[0084]
在一个有利的实施例中,屏障包含聚合物,其含有聚酮或由聚酮组成。因此,聚合物层包含聚酮和聚酮的共混物以及含有聚酮的层压物。聚酮是本身已知的物质,其特征在于聚合物链中的酮基(c=o)。在所述实施例中,聚合物有利地具有高达50wt.%到100wt.%,优选高达80wt.%到100wt.%的具有式(ii)或式(iii)的结构单元。
[0085][0086]
其中
[0087]
o表示1或2,优选为1,
[0088]
p表示1或2,优选为1,
[0089]
q表示1到20,和
[0090]
r表示1到20。
[0091]
聚酮可通过一氧化碳与相应的烯烃如丙烯和/或乙烯的催化反应获得。此类酮也称为脂族酮。这些聚合物可商购,例如,来自韩国晓星的聚酮共聚物(式ii)或聚酮三元共聚物(式iii)。此外,此类聚酮可以商品名pk商购获得。合适的聚合物的熔化温度大于200℃(根据iso11357-1/3使用dsc10k/min测量的)和/或具有根据din en iso 62测量的低于3%的低吸水率(在23℃下在水中饱和)。
[0092]
在一个有利的实施例中,屏障包含聚合物,其含有乙基乙烯醇或由乙基乙烯醇组成。
[0093]
在所述实施例中,聚合物具有高达50wt.%到100wt.%,优选为高达80wt.%到100wt.%的具有式(iv)的结构单元。
[0094][0095]
其中
[0096]
m表示1到10,
[0097]
n表示2到20。
[0098]
合适的乙基乙烯醇特别是无规共聚物,其中m/n比为30/100至50/100。这些聚合物可商购,例如,来自日本可乐丽(kuraray)的eval fp系列或ep系列。它们的特征在于良好的加工能力,特别是它们可以通过共挤出与通常使用的护套材料聚乙烯(pe)一起很好地加
工,因为其熔融粘度和熔化温度在相似的范围内。
[0099]
来自根据本文所述的式(ii)、(iii)、(iv)的氢氟烯烃和阻挡层的泡孔气体的组合产生了热绝缘导管的特别好的超加性绝缘性能。这些组分的此类积极相互作用是令人惊讶的。不受一种理论束缚,此类超加性效应可归因于根据式(ii)、(iii)、(iv)的材料的屏障性质。
[0100]
介质管(4):原则上,可以使用适用于热绝缘管的所有介质管。因此,介质管可以形成为波浪管、光滑管或具有波纹夹套的管;它可以是刚性和线性管件、刚性弯曲管件或柔性管件。
[0101]
介质管可由聚合物材料或金属材料组成,优选由聚合物材料组成。此类材料本身是已知的并且可商购或根据已知方法生产。本领域技术人员可根据预期用途,可能在常规实验后选择材料。
[0102]
在一个实施例中,所述介质管(4)是柔性塑料管,所述塑料选自以下材料组成的组:丙烯腈-丁二烯-苯乙烯(abs)、交联聚乙烯(pexa、pexb、pexc)、pe、聚丁烯(pb)、耐热聚乙烯(pe-rt)和聚酮(pk)。
[0103]
在另外实施例中,所述介质管(4)是具有外金属层的柔性塑料管,所述塑料选自由以下组成的群组:abs、pexa、pexb、pexc、pe、pb、pe-rt和pk,金属选自由以下组成的群组:铝,包括其合金。此类内管也称为复合管。
[0104]
在另外实施例中,所述介质管(4)是刚性塑料管,所述塑料选自由以下组成的群组:abs、pexa、pexb、pexc、pe、pb,pe-rt和pk。
[0105]
在另外实施例中,所述介质管(4)是柔性金属管,所述金属选自由以下组成的群组:铜,包括其合金、铁,包括其合金(例如,防锈钢)和铝,包括其合金。
[0106]
在另外实施例中,所述介质管(4)是刚性金属管,所述金属选自包括其合金的铜,包括其合金的铁(例如,防锈钢)和包括其合金的铝。
[0107]
在介质管(4)的另外实施例中,上述提及的由塑料制成的屏障可以布置在内管的外侧,或者它们可以由介质管本身形成。介质管上的阻挡层或由介质管本身形成的阻挡层减少了蒸汽从介质管扩散到热绝缘件中。根据本发明,此类(“第二”)屏障与热绝缘件上方的另外(“第一”)屏障结合。
[0108]
外护套(2):原则上,可以使用适用于热绝缘管的所有外护套。因此,外护套可以形成为波纹管或光滑管或具有波纹护套的一种。它可以是刚性和线性管件、刚性弯曲管件或柔性管件。
[0109]
外护套可由聚合物材料或金属材料组成,优选由聚合物材料组成。此类材料本身是已知的并且可商购或根据已知方法生产。本领域技术人员可根据预期用途,可能在常规实验后选择材料。有利地使用热塑性聚合物,例如商业pe类型。高密度pe(hdpe)、低密度pe(ldpe)和线性低密度pe(lldpe)是合适的。外护套(2)的层厚度可在宽范围内变化,但通常为0.5mm到20mm,包括可能提供的屏障和阻挡层。
[0110]
在本发明的一个实施例中,外护套包含如上所述的本文描述的屏障。所述实施例是有利的,因为夹套和屏障可以通过共挤出同时生产并因此具有成本效益。
[0111]
在本发明的替代实施例中,外护套不包含如上所述的本文描述的屏障。在所述实施例中,屏障作为单独的层提供。所述实施例是有利的,因为护套和屏障可以单独生产并因
此灵活地生产。
[0112]
在一个有利的实施例中,本发明涉及一种如本文所述的导管,其中所述外护套(2)形成为波状管;且所述介质管形成为柔性管件,特别是具有至少一个基于聚乙烯的介质管和基于pu的热绝缘件和基于聚乙烯的外护套。
[0113]
在另外的有利实施例中,本发明涉及一种本文所述的导管,其中所述导管是刚性线性管件,并且特别地具有至少一个基于聚乙烯或钢的介质管和基于pu的热绝缘件和基于聚乙烯的外护套。
[0114]
在另外的有利实施例中,本发明涉及一种本文所述的导管,其中所述外护套(2)形成为波纹管。此类导管有利地与介质管组合,所述介质管形成为柔性管件,并且特别地包括至少一个基于聚乙烯或交联聚乙烯的介质管。此类导管有利地还布置有热绝缘件(3),所述热绝缘件包括泡沫,其泡孔气体具有上述提及的组成(其中泡孔气体特别优选含有至多35%的(环)烷烃)。
[0115]
在第二方面,本发明涉及用于生产如本文所述的热绝缘导管、套管和罩装置的方法。因此,本发明基于提供一种用于生产导管、套管或罩装置的改进方法的目的,其可以连续地和不连续地进行。
[0116]
下面将更详细地解释本发明的这个方面。
[0117]
原则上,可以与已知方法类似地生产本文描述的热绝缘装置(参见本发明的第一方面)。在这种情况下,已知的发泡剂(例如,环戊烷、co2)被本文描述的hfo部分或完全替代。因此,可能在适应新参数之后,本身已知的设备可用于生产,如本领域技术人员可以作为常规措施进行的。ep0897788和ep2213440和ep2248648和wo2008/019791和ep1355103和ep2340929中描述的方法通过引用结合在此。
[0118]
在所述方法的一个有利实施例中,热绝缘件(3)通过使塑料组合物发泡而形成,所述塑料组合物包含用于泡沫形成的聚合物组分和作为发泡剂的hfo。根据本发明,hfo可以加入到组分之一中然后加工,或者起始组分和hfo在计量装置(例如,混合头)中同时混合。
[0119]
在所述方法的另外的有利实施例中,塑料组合物包含两种液体组分,其中第一组分含有多元醇和hfo,且第二组分含有异氰酸酯。异氰酸酯组分是优选基于亚甲基二异氰酸酯的一种。然而,也可以使用其它异氰酸酯,例如基于甲苯-2,4-二异氰酸酯或脂族异氰酸酯的那些。
[0120]
在所述方法的另外的有利实施例中,塑料组合物包含两种液体组分,其中第一组分含有多元醇,且第二组分含有异氰酸酯和hfo。特别地,优选那些与两种液体组分具有良好混溶性并且其沸点不过低(特别地不低于10℃)的hfo组分。因此,生产中的设备费用很低;只需要在很小程度上提供冷却系统。
[0121]
在所述方法的另外的有利实施例中,塑料组合物由熔融组分组成,并且所述熔体在压力下与hfo混合。
[0122]
变体1:如果本发明的热绝缘管包括一个或多个柔性介质管并且外护套(13)包括由塑料制成的屏障,则方法变体是有利的,其中
[0123]
(a)至少一个介质管连续供应并且用形成为管的塑料膜包裹,
[0124]
(b)将可发泡的塑料组合物引入介质管和管之间的空间作为热绝缘层,
[0125]
(c)将介质管和管引入由相伴的模具部件形成的模具中,并将所述模具留在其端
部,然后
[0126]
(d)将外护套挤出在管的表面上,
[0127]
其中可发泡塑料组合物含有用于泡沫形成的一种或多种聚合物组分和作为发泡剂的hfo。在所述方法变体中,
[0128]-通过由聚合物形成的管,可以在泡沫热绝缘层和外护套的内侧之间引入屏障;或者
[0129]-可以通过与外护套共挤出来施加屏障;或者
[0130]-屏障可直接施加于管;或者
[0131]-首先,可以施加一层外护套,然后是屏障,然后是外护套的至少一个第二层。
[0132]
在所述方法变体中,此外在步骤a中,内管
[0133]-可以从供应中连续抽出;或者
[0134]-可以通过挤出连续生产。
[0135]
变体2:如果本发明的热绝缘管包括一个或多个刚性介质管并且外护套(2)具有由塑料制成的屏障,则方法变体是有利的,其中
[0136]
(a)介质管在外护套内部居中,且
[0137]
(b)将可发泡塑料组合物作为热绝缘层引入介质管和外管之间的空间,
[0138]
其特征在于,可发泡塑料组合物含有用于泡沫形成的聚合物组分和作为发泡剂的hfo。如上所述,所述hfo可以在混合头中与两种液体组分混合,或者所述hfo预先与两种组分中的一种混合,然后供给混合头。在所述方法变体中,
[0139]-屏障可以管的形式引入到泡沫热绝缘件和外护套的外侧之间;或者
[0140]-屏障可以应用于外管的内侧;或者
[0141]-屏障可以布置在外管中;或者
[0142]-屏障可以应用于外管的外侧。
[0143]
变体3:如果本发明的热绝缘管包含由热塑性泡沫制成的热绝缘件,即例如由pet、pe或pp制成的,则方法变体是有利的,其中将hfo直接压入熔融聚合物基质中并且随后由于膨胀导致所用热塑性塑料的发泡。这可以例如,在聚合物混合物在挤出机中熔化并且在压力下将hfo供应到所述熔体中的情况下进行。离开模具后,所提供的发泡剂导致发泡。
[0144]
在第三方面,本发明涉及hfo的新用途。
[0145]
下面将更详细地解释本发明的这个方面。
[0146]
在第一实施例中,本发明涉及氢氟烯烃在热绝缘管系统中,特别是在塑料介质管系统(pmp)和塑料夹套管系统(pjp)中作为泡沫绝缘的泡孔气体的用途。
[0147]
hfo可有利地用作导管、罩装置和套管,特别是如本文所述(第一方面)的导管、罩装置和套管的泡沫绝缘中的泡孔气体。
[0148]
在以下实例的基础上更详细地解释本发明;这些并不以任何方式限制本发明。
[0149]
实例1:根据本发明的导管的生产
[0150]
从供应滚筒上连续解绕由pexa组成的外径为63mm且壁厚为5.8mm的介质管。在泡沫站之前不久,所述介质管被pe膜包围,pe膜反过来从供应中解绕并通过翻领成型器供应。将具有的nco含量为31%,且多元醇的oh值为410mg koh/g(根据astmd4274d测定的)并具有0.8%的水含量的相应量的由基于二苯基亚甲基二异氰酸酯(mdi)的聚合物异氰酸酯制成
的混合物分配到管膜中,管膜在上侧仍然是敞开的。在这种情况下,相对于反应性oh基团稍微超化学计量地使用异氰酸酯组分。在分配之前,将两种组分在150巴的压力下在高压混合头中剧烈混合。依次,预先将相应量的hfo/环戊烷搅拌到多元醇组分中。在分配双组分混合物之后,立即在上端焊接管膜。通过模制钳口将之后立即产生的pu泡沫迫使成为圆柱形几何形状,并且在固化之后连续挤出由pe制成的护套。
[0151]
相对于泡沫中含有的泡孔气体分析所得到的管。为此目的,从泡沫中冲压出约3cm3尺寸的小样品,并在封闭系统中机械破坏它们,使得泡孔气体可以进入测量装置。在气相色谱仪中定性和定量测定存在的气体。
[0152]
此外,根据din en 253:2015-12和en iso 8497:1996((λ
50
值)规范,在50℃下在3m长的管件上测量热导率值。此外,测定泡孔气体的组成(根据chalmers方法;在等人,泡沫塑料期刊(j.cellular plastics),31,375-388,1995中描述的);所述方法也用于以下实施例中。结果的概述在下表获悉,图3中显示了图形表示:
[0153]
泡孔气体单位第1.1号第1.2号第1.3号第1.4号第1.5号co
2*
[vol%]10051343132cp[vol%]0461490hfo 1233zd[vol%]00495965o2+n2[vol%]03313λ
50
值[mw/m*k]25.823.121.720.219.6
[0154]
*co2作为副产物从起始组分自动形成,并且不添加(化学发泡剂)。
[0155]
数据清楚地证明了hfo对热导率的积极影响。
[0156]
实例2:可发泡混合物的模型实验
[0157]
在每种情况下,在烧杯中提供380g到420g的多元醇,并将表中所示的量的发泡剂搅拌。溶液的粘度在来自博勒菲的类型粘度计dv i-prime的旋转粘度计中测定。记录三次测量的平均值。
[0158]
结果总结在表中并显示在图5中的图表中。
[0159][0160]
数据清楚地证明了hfo对粘度的积极影响。
[0161]
实例3:pu泡沫中的孔径
[0162]
根据din en 253:2015-12测定含有不同泡孔气体的pu泡沫的平均孔径。在每种情况下由三次测量形成平均值。
[0163]
结果总结在表中并显示在图4中的图表中:
[0164]
泡孔气体单位第3.1号第3.2号第3.3号co2[vol%]1005132
cp[vol%]0460hfo 1233zd[vol%]0065o2+n2[vol%]033孔径[μm]151.0138.1130.6
[0165]
数据清楚地证明了hfo对泡孔大小的积极影响。
[0166]
实例4:起始原料的闪点的测定
[0167]
根据pensky-martens(din en iso 2719:2003-9)的方法,测定第1号和第3号样品的闪点。根据abel-pensky(din 51755)的方法测量试样第2号。在每种情况下使用与实施例1中相同的多元醇。结果总结在表中。
[0168][0169]
样品第3号的闪点明显高于对比样品第2号,其含有等摩尔含量的环戊烷。特别地,根据eg 440/2008的规定,样品第3号不分类为易燃品。
[0170]
实例5:依赖于发泡剂的气泡形成
[0171]
综述:根据实例1制备具有各种泡孔气体组成的热绝缘导管。
[0172]
实例5.1(对比实验):借助于静态混合物将一定量的环戊烷(cp)加入到多元醇组分中,使得所得的7wt.%的含量与多元醇的量有关。在如此生产的管的表面上,在30cm的长度上计数12个气泡,其直径大于10mm并且甚至在没有另外辅助的情况下也容易识别。
[0173]
实施例5.2向多元醇中加入一定量的2wt.%的环戊烷和11wt.%的hfo1233zd。在生产的长度为400m的如此生产的管表面上没有发现气泡。
[0174]
实施例5.3:向多元醇中加入一定量的15wt.%的hfo 1233zd。在生产的长度为350m的如此生产的管表面上没有发现气泡。
[0175]
实例5.1到5.3的结果:如实例1中那样通过gc测定如此获得的泡孔气体的组成,目视检查所得的管。
[0176]
[0177]
数据证明,大量的cp导致无法使用的绝缘导管,而相反,其被hfo的部分或完全替换导致无瑕疵的绝缘管。
[0178]
尽管在本说明书中描述了本发明的优选实施例,但应注意,本发明不限于此,并且还可以在所附权利要求的范围内以另一种方式执行。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1