一种碳纤维复合材料及其制备方法和应用

文档序号:31343576发布日期:2022-08-31 11:10阅读:220来源:国知局
一种碳纤维复合材料及其制备方法和应用

1.本发明涉及摩擦纳米发电机和碳纤维复合材料领域,具体涉及一种碳纤维复合材料及其制备方法和应用。


背景技术:

2.滨海环境下基础设施长期处于荷载和腐蚀环境等多因素侵蚀下,基础设施面临严重的腐蚀劣化问题,其安全服役面临巨大挑战。目前对于桥梁结构劣化主要通过碳纤维布加固并定期进行检测,存在无法及时发现问题的隐患以及能源消耗等问题。
3.微小振动机械能如车辆行驶、人员走动、潮汐拍打、风吹雨打、昼夜交替导致的热胀冷缩均会导致建筑结构产生微小变形,若能将这些机械能利用起来将会产生可观的绿色能源。近几年来,纳米发电技术快速发展,纳米发电技术在于将环境中微小振动机械能转变为电能的方式产生能源。摩擦纳米发电技术因其有更好俘获低频、弱机械振动条件下微小机械能、高发电效率、受环境影响小和成本低等优点,成为解决分布式能源问题的途径之一。
4.例如,专利cn106787930a公开了一种弹性结构的摩擦纳米发电机,包括弹性基底、若干个发电单元和质量块,弹性基底为蛇形弯折的多层折叠结构,相邻两层基底互相连接形成u型或v型凹陷结构;发电单元包括面对面设置的第一摩擦单元和第二摩擦单元,分别设置在相邻两层基底上;在振动能量作用下,质量块上下振动,弹性基底作用下使第一摩擦单元和第二摩擦单元互相接触分离,第一摩擦单元的电极和第二摩擦单元的电极之间产生电信号。其中,弹性基底选自表面包括绝缘层的金属薄膜材料、无机非金属材料和有机高分子材料或其组合,在车载传感器供电、大型装备健康状况监控,无线传感网络节点、环境气象监测、环境水质监测等领域有着广泛的应用前景。再如专利cn110601585a公开了一种用于收集波浪能的高性能摩擦纳米发电机,采用腔体结构,通过增加摩擦纳米发电机的有效接触面积,进而提高摩擦纳米发电机的发电性能,提高了摩擦纳米发电机的输出功率和稳定性,,可用于将自然环境中的丰富的波浪能或振动能转化为可利用的电能,结构简单,制造成本低,能量收集及转换效率高,应用范围广泛,具有极大的实用价值。
5.针对现有技术存在的问题,寻找一种能够利用微小振动机械能进而达到绿色环保目的的碳纤维复合材料十分必要。


技术实现要素:

6.本发明针对现有技术存在的问题,提供了一种碳纤维复合材料及其制备方法和应用,能够兼顾结构增强/加固和电能输出功能,解决远程、分布式实时监测能源消耗问题,及时发现桥梁结构的安全隐患,同时多余能源可供桥梁路灯系统工作,是解决绿色清洁能源需求问题的方式之一。
7.为实现上述目的,本发明采用的技术方案如下:
8.本发明提供了一种碳纤维复合材料,包括卷材a和卷材b;
9.所述卷材a包括碳纤维布和/或碳纤维板;
10.所述卷材b包括teng薄膜、导电树脂层和绝缘层;
11.所述teng薄膜的原料包括纳米金属颗粒、石蜡、热塑性树脂、改良剂。
12.进一步地,所述绝缘层为环氧树脂。
13.进一步地,所述纳米金属颗粒包括铝、铜、钢、镍、银中的一种或多种。
14.进一步地,所述热塑性树脂包括聚二甲基硅氧烷、聚丙烯、聚乙烯、聚氯乙烯、聚四氟乙烯、聚苯乙烯和聚偏二氯乙烯中的一种或多种。
15.进一步地,所述导电树脂层由导电颗粒和环氧树脂分散混合而成。
16.进一步地,所述导电颗粒包括纳米银颗粒、石墨烯片和炭黑中的一种或多种。
17.进一步地,所述纳米金属颗粒的直径为100nm-1000nm。
18.进一步地,所述纳米金属颗粒、石蜡、热塑性树脂的质量比为1:0.5-8:3-15。
19.进一步地,所述改良剂包括主抗氧剂、辅抗氧剂、相容剂和分散剂中的一种或多种,所述主抗氧剂包括受阻酚和/或受阻胺,所述辅抗氧剂包括硫代二丙酸酯类和/或亚磷酸酯类,所述相容剂包括马来酸酐接枝聚丙烯和/或马来酸酐接枝聚乙烯,所述分散剂包括硬脂酸钙和/或硬脂酸镁。
20.进一步地,所述teng薄膜具体为接触-分离式纳米核壳结构teng薄膜,薄膜的厚度为20-100μm;所述导电树脂层的厚度为10-50μm,所述绝缘层的厚度为10-50μm。
21.进一步地,所述卷材b的厚度为0.5-3mm,使卷材a加固作用下传递的微小变形满足卷材b接触-分离起电的变形条件。
22.进一步地,本发明还提供了上述的碳纤维复合材料的制备方法,包括以下步骤:
23.(1)将纳米金属颗粒与石蜡混合,搅拌均匀,冷却后进行破碎、筛选得到混合物颗粒;
24.(2)将步骤(1)得到的混合物颗粒和改良剂在热塑性树脂中混合炼制,挤出成型得到teng薄膜;
25.(3)将导电颗粒与环氧树脂混合,喷涂到步骤(2)得到的teng薄膜上表面,固化,再涂覆绝缘层,继续固化得到复合膜;
26.(4)将步骤(3)得到的复合膜以导电树脂层在同侧方式,按导电树脂层-teng薄膜层-绝缘层-导电树脂层进行层叠制备,利用环氧树脂封装,得到卷材b;
27.(5)在基材表面涂上浸渍胶,依次贴上卷材a、卷材b,在裁剪端涂上导电树脂并连接导线,自然环境养护固化。
28.进一步地,步骤(1)中所述炼制的温度为200-400℃,压强为0.2-0.4mpa,时间为4-8h;步骤(3)中所述固化的温度均为80-150℃,时间均为1-5h。
29.进一步地,上述碳纤维复合材料制备方式,根据实际环境应用对材料强度、刚度要求以及实际环境受力变形大小,选用满足结构加固要求的宽度和厚度卷材a(碳纤维)。改变纳米金属颗粒、石蜡和热塑性树脂配比、teng膜厚度、导电树脂层厚度、封装环氧树脂层厚度及层叠层数,使卷材b(发电薄膜)发电效率最大化所需起电形变与环境变形相适配,卷材b(发电薄膜)起电变形要求低于结构变形。
30.本发明所取得的技术效果是:
31.本发明的材料为多层复合结构,通过碳纤维布进行加固的同时将上部结构微小变
形传递给发电薄膜,发电薄膜收集微小机械能转变为电能提供分布式能源,解决远程实时监测能源消耗问题,及时发现桥梁结构的安全隐患,同时多余能源可供桥梁路灯系统工作,是解决绿色清洁能源需求问题的方式之一,对推进“双碳”战略目标实现有重要意义。
附图说明
32.图1为碳纤维复合材料结构示意图,其中
①‑
卷材a(碳纤维布),
②‑
teng薄膜层,
③‑
导电树脂层,
④‑
环氧树脂层(绝缘层);
33.图2为碳纤维复合材料施工流程图;
34.图3为实施例1输出电压和电流密度随负载电阻的变化曲线图。
具体实施方式
35.以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
36.在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。
37.当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本文中使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同意义。
38.图1为碳纤维复合材料结构示意图;图2为碳纤维复合材料施工流程图;
39.值得说明的是,本发明中使用的原料均为普通市售产品,因此对其来源不做具体限定。
40.实施例1:
41.一种碳纤维复合材料的制备方法,包括以下步骤:
42.纳米金属颗粒选择为铜,将纳米金属铜和石蜡按照1:1的比例,加热至80℃搅拌均匀。用破碎机将固化后的混合物粉碎,并用40目和50目筛网筛选出混合物。在温度300℃、压力为0.3兆帕下,将50份混合物、200份pdms、2份马来酸酐接枝聚丙烯、1份分散剂充分混合炼制6小时。通过螺杆挤压成型70μm的teng薄膜层,并在上侧喷涂上10μm的导电环氧树脂。并在100℃烘箱下真空固化。再在表层涂上10μm环氧树脂,并在100℃烘箱下真空固化,按导电树脂层-teng薄膜层-环氧树脂绝缘层顺序多层层叠10层,并用环氧树脂整体封装,并在100℃烘箱下真空固化。得到厚度为1mm的卷材b。
43.将碳纤维浸渍胶均匀涂在加固基材上,贴上厚度为0.111mm、宽度为100mm卷材a(碳纤维布)并刮刀刮平,贴两层,再贴上厚度为1mm的卷材b,并在裁剪端涂抹导电树脂胶及预设导线。
44.其中,图3为实施例1输出电压和电流密度随负载电阻的变化曲线图。
45.实施例2:
46.一种碳纤维复合材料的制备方法,包括以下步骤:
47.纳米金属颗粒选择为铝,将纳米金属铝和石蜡按照1:0.5的比例,加热至80℃搅拌均匀。用破碎机将固化后的混合物粉碎,并用50目和60目筛网筛选出混合物。在温度250℃、压力为0.25兆帕下,将30份混合物、150份聚四氟乙烯、1份马来酸酐树脂、1份分散剂、1份硬脂酸钠(抗氧化剂)充分混合炼制5小时。通过螺杆挤压成型80μm的teng薄膜层,并在上侧喷涂上15μm的导电环氧树脂,并在100℃烘箱下真空固化。再在表层涂上15μm环氧树脂,并在100℃烘箱下真空固化,得到发电单元膜。按导电树脂层-teng薄膜层-环氧树脂绝缘层顺序多层层叠15层,并用环氧树脂整体封装,并在100℃烘箱下真空固化。得到厚度为1.9mm的卷材b。
48.将碳纤维浸渍胶均匀涂在加固基材上,贴上厚度为0.111mm、宽度为100mm卷材a(碳纤维布)并刮刀刮平,贴三层,再贴上厚度为1.9mm的卷材b,并在裁剪端涂抹导电树脂胶及预设导线。
49.实施例3:
50.一种碳纤维复合材料的制备方法,包括以下步骤:
51.纳米金属颗粒选择为钢,将纳米金属铜和石蜡按照1:2的比例,加热至80℃搅拌均匀。用破碎机将固化后的混合物粉碎,并用30目和40目筛网筛选出混合物。在温度350℃、压力为0.3兆帕下,将60份混合物、180份聚丙烯、2份马来酸酐树脂、1份分散剂充分混合炼制5小时。通过螺杆挤压成型90μm的teng薄膜层,并在上侧喷涂上20μm的导电环氧树脂,并在100℃烘箱下真空固化。再在表层涂上20μm环氧树脂,并在100℃烘箱下真空固化,按导电树脂层-teng薄膜层-环氧树脂绝缘层顺序多层层叠20层,并用环氧树脂整体封装,并在100℃烘箱下真空固化。得到厚度为2.8mm的卷材b。
52.将碳纤维浸渍胶均匀涂在加固基材上,贴上厚度为0.111mm、宽度为100mm卷材a(碳纤维布)并刮刀刮平,贴两层,再贴上厚度为2.8mm的卷材b,并在裁剪端涂抹导电树脂胶及预设导线。
53.对比例1
54.与实施例1的区别仅在于卷材b制备过程中,纳米金属铜和石蜡按照1:0.2的比例制备混合物。将20份混合物、200份pdms制备teng薄膜层。其余添加剂种类和组份、各薄膜层厚度、层叠次数及制备工艺均相同。卷材a的设置均相同。
55.对比例2
56.与实施例1的区别仅在于卷材b制备过程中,teng薄膜厚度为160μm;导电层厚度为60μm;绝缘层厚度60μm。其余各物质参量、层叠次数及制备工艺均相同。卷材a的设置均相同。
57.试样制备:按以上实例1-3和对比例1-2配比制备,并将复合碳纤维布从基材上脱下,裁剪成核心区100mm
×
100mm的样品(不包括加载段)。
58.测试方法:通过将试样水平放置,在水平方向对样品进行周期性拉伸试验,并测预设导线所导出的短路电流和开路电压,如表1所示。
59.表1
60.实例(100mm
×
100mm)短路电流开路电压实施例10.327a77.4v实施例20.434a82.9v
实施例30.503a70.3v对比例10.063a15.4v对比例20.117a27.9v
61.最后应当说明的是,以上内容仅用以说明本发明的技术方案,而非对本发明保护范围的限制,本领域的普通技术人员对本发明的技术方案进行的简单修改或者等同替换,均不脱离本发明技术方案的实质和范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1