本发明涉及激光加工方法,特别是一种实现无碎屑的激光加工的方法。
背景技术:
激光烧蚀加工是通过在极短的时间内将激光能量集中在微小的区域,从而使固体升华、蒸发的加工方法。例如切割、划线、打标、刻槽、图案化、钻孔,都是利用脉冲激光在聚光点处的高功率密度输出,使得材料瞬间气化或融化,从而实现材料的去除。
到目前为止,激光烧蚀加工技术的主要困难在于加工过程中材料碎屑的形成。这些碎屑是由于激光烧蚀产生的高温蒸气过度冷却、凝固形成的,粘附性较强,很难清除掉。碎屑通常散布在烧蚀图样表面附近和刻槽内,并且可能挡住下一次扫描时激光光束传播的路径。因此,碎屑的形成不仅影响了器件的外观和性能,也降低了烧蚀效率。近年来,已有一些方法来解决烧蚀碎屑的沉积问题。比如用快速流动的水形成液体薄膜来辅助加工(参见cn201220023351.0),但水膜容易被激光破坏,产生的气泡大量地向外喷射,阻挡了激光光束的传播。另一种解决途径是在待加工表面涂敷水溶性的高分子保护膜作为保护层(参见cn201611040545.0),以收集碎屑颗粒。该方法虽然可抑制碎屑附着于待加工表面,但不能解决碎屑在侧壁上沉积的问题。
技术实现要素:
本发明目的在于提供一种激光加工方法,该方法的核心是采用制冷装置使蒸气在被加工物表面冷凝形成冰霜层,然后再进行激光加工,激光烧蚀产生的碎屑溅落在冰霜层上,冰霜层融化或脱落时可以方便地将碎屑清除可以降低在烧蚀加工中产生的碎屑附着于被加工物的风险,显著提高加工质量。
本发明的技术解决方案如下:
一种激光加工的方法,特点在于该方法包括下列步骤:
1)冰霜层形成:利用制冷装置在待加工物的表面冷凝形成一薄层冰霜层;
2)激光烧蚀加工:隔着所述覆盖层对待加工物照射激光束,从而对待加工物面实施烧蚀加工;
3)去除冰霜层:使被加工物表面升温,冲洗去除含有碎屑的冰霜层,获得高质量的激光烧蚀结构。
所述的激光加工是实施通孔或切割加工时,则应在待加工物的双面都形成一薄层冰霜层。
所述的被加工物表面为平面或任意曲面。
所述冰霜层由气态物质在低温的被加工物表面冷凝形成,冰霜层的厚度在0.5微米至1毫米之间。
所述的待加工物表面的温度在0℃至零下40℃之间。
所述冰霜层由气态物质在低温的被加工物表面冷凝形成,所述气态物质包括水蒸气、其他气体或其组合;
所述的制冷装置为半导体制冷装置、蒸发制冷装置或其他制冷装置。
所述的待加工物的材质包括介电材料、半导体材料、玻璃、金属或其组合。
所述的加工包括激光切割、激光划线、激光打标、激光刻槽、激光图案化、激光钻孔或其组合。
所述的激光包括纳秒激光、皮秒激光、飞秒激光或其他激光。
本发明与现有技术相比具有下列优点:
(1)采用成熟的半导体制冷或蒸发制冷工艺,成本较低;
(2)冰霜层由蒸气在被加工物的表面冷凝而成,成型方法简单,而且适用于被加工物表面为曲面的情况;
(3)冰霜层作为保护层可以有效避免碎屑在烧蚀坑周围的沉积;
(4)在烧蚀坑内部,冰霜层融化后产生的液体将碎屑分散,避免碎屑的堆积;液体在激光辐照下生成微小的气泡,通过该气泡的破裂将碎屑从烧蚀坑的内侧去除;
(5)在激光烧蚀过程中,被加工物体处于低温状态,减轻了激光烧蚀热效应带来的负面影响;
(6)所述的激光加工方法适用于多种应用领域,包括但不限于激光切割、激光划线、激光打标、激光刻槽、激光图案化、激光钻孔等。
附图说明
图1是本发明实施例1冰霜辅助激光表面烧蚀加工的流程图
图2是本发明实施例2冰霜辅助激光穿孔加工的流程图
图中:
1-单面结霜制冷装置;2-被加工物;3-蒸气;4-冰霜层;5-聚焦透镜;6-激光束;7-凹槽;8-双面结霜制冷装置;9-通孔
具体实施方式
下面结合实施实例和附图对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
下面是本发明激光加工的方法实施例1,在被加工物表面刻槽的实施例,包括如下步骤:
(1)将制冷装置固定在与计算机相连的电动xy平移台上,将待加工样品固定地放置于制冷装置中,使待加工样品可以在计算机控制下按预设的路径移动;将带有温度、湿度、流速控制的蒸气产生装置的出口对准待加工样品表面(如图1中3所示),控制样品表面的温度在0℃以下,在被加工物的表面冷凝形成一层冰霜层(如图1中4所示);通过调节蒸气的湿度、温度、流速、流量,以及样品表面的温度来控制冰霜层的厚度,作为优选,制冷装置启动后,所述被加工物表面的温度控制在0℃至零下40℃之间;冰霜层的厚度在0.5微米至1毫米之间;
(2)调节各项参数,保持样品表面冰霜层的厚度不变,隔着所述覆盖层对被加工物照射激光束,同时使被加工物在电动xy平移台的带动下按预设的路径移动,通过激光烧蚀实现表面刻槽加工;在激光扫描区域的冰霜层很快融化,在刻槽内形成很薄的液体层,该液体层在激光辐照下生成微小的气泡,通过该气泡的破裂将碎屑从烧蚀坑的内侧去除;而未照射区域的冰霜层作为保护层可以有效避免碎屑在烧蚀坑周围的沉积。
(3)使被加工物表面升温,冲洗去除含有碎屑的冰霜层,获得高质量的激光刻槽结构。
2、下面是本发明激光加工的方法实施例2,在被加工物表面加工通孔的实施例,包括如下步骤:
(1)将制冷装置固定在与计算机相连的电动xy平移台上,将待加工样品固定放置于制冷装置中,使待加工样品可以在计算机控制下按预设的路径移动;将带有温度、湿度、流速控制的蒸气产生装置的出口对准待加工样品的上、下两个表面(如图2中3所示),控制样品表面的温度在0℃以下,在被加工物的上、下两个表面冷凝形成冰霜层(如图2中4所示);通过调节蒸气的湿度、温度、流速、流量,以及样品表面的温度来控制冰霜层的厚度,作为优选,制冷装置启动后,所述被加工物表面的温度控制在0℃至零下40℃之间;冰霜层的厚度在0.5微米至1毫米之间;
(2)调节各项参数,保持样品表面冰霜层的厚度不变,隔着所述覆盖层对被加工物照射激光束,通过激光烧蚀实现穿孔加工;在激光辐照区域,上、下两个表面冰霜层很快融化,在微孔内形成很薄的液体层,该液体层在激光辐照下生成微小的气泡,通过该气泡的破裂将碎屑从烧蚀坑的内侧去除;在未经激光照射区域,被加工物上、下两个表面冰霜层可以收集打孔过程中的蒸汽和熔融的沉积物,有效避免碎屑在通孔周围表面的沉积。
(3)使被加工物表面升温,冲洗去除含有碎屑的冰霜层,获得高质量的激光通孔结构。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。