用于冷却电力单元电机和至少一另外部件的冷却装置及包括该冷却装置的车辆的制作方法

文档序号:19487466发布日期:2019-12-21 04:00阅读:120来源:国知局
用于冷却电力单元电机和至少一另外部件的冷却装置及包括该冷却装置的车辆的制作方法

本发明涉及一种根据权利要求1的前序部分的用于冷却电力单元的电机和至少一个另外部件的冷却装置。本发明还涉及一种包括这种冷却装置的车辆。



背景技术:

混合动力车辆可以由与一些其他形式的动力单元(例如内燃机)结合的动力单元提供动力。电力单元可包括部件,所述部件诸如交替地用作马达和发电机的电机、存储电能的电能存储件以及控制电能存储件和电机之间的电能流动的电力电子器件。电力电子器件可包括dc转换器和逆变器,用于在电能存储件和电机之间传导电能。电机、电能存储件和电力电子器件在操作过程中会被加热并且需要被冷却。

电能存储件设计为在特定温度范围内操作。电能存储件的最佳有效工作温度可以在20-40℃的温度范围内。电力电子器件经常可以承受大约60-70℃的温度。因此,适合用不同温度的冷却剂冷却电能存储件和电力电子器件。此外,当温度太低时,电能存储的效率降低。因此,在温度太低的操作条件下,加热电能存储件也是合适的。不允许将电机加热到高于最大可接受温度的温度。

已知在车辆中使用冷却装置,该冷却装置包括用于冷却电力电子器件的第一冷却剂回路和用于冷却电能存储件的第二冷却剂回路。第一冷却剂回路中的冷却剂在冷却剂散热器中被冷却。当环境空气温度较低时,第二冷却剂回路中的冷却剂在单独的冷却剂散热器中冷却;当环境空气温度较高时,通过制冷系统进行冷却。可以通过在油路中循环的油来冷却电机。油可以喷在电机的定子绕组上。

de102008015897示出了一种油流回路,其被设置用于润滑和冷却混合动力车辆的第一动力单元和第二动力单元。第一动力单元包括电马达。在油被引导到电马达之前,油在第一热交换器中被冷却剂冷却,在第二热交换器中被空气冷却。



技术实现要素:

本发明的目的是提供一种冷却装置,其提供对电力电子单元的电机和至少一个另外部件的有效冷却。

上述目的是通过根据权利要求1的冷却装置来实现的。该冷却装置包括:具有循环油的油回路,其配置为冷却电力单元的电机,以及第一冷却剂回路,其配置为冷却该电力单元的另外部件。油回路包括:油散热器,其中油被空气冷却;和热交换器,其中热量在第一冷却剂回路中的冷却剂与油之间传递。油散热器和热交换器的存在使得可以在将油引导至电机之前,分两步将油回路中的油温度变化到所需温度。由于第一冷却剂回路不需要提供油回路中的油的全部冷却,因此可以为第一冷却剂回路配备相对小的冷却剂散热器装置。第一冷却剂回路的热惯性使得当电机的冷却需求迅速变化时,第一冷却剂回路可提供电机的稳定冷却。此外,热交换器的存在使得可以改变第一冷却剂回路中的冷却剂的温度。在当油的温度低于第一冷却剂回路中的冷却剂时的操作条件下,可以由热交换器中的油冷却第一冷却剂回路中的冷却剂。

根据本发明的实施方式,油散热器可布置在热交换器上游的位置,该热交换器又布置在油回路中的电机上游的位置。在这种情况下,在将油引导至电机之前,在油冷却器中的第一步中对其进行冷却,并在热交换器中的第二步骤中对其进行加热或冷却。在大多数操作条件下,在将油导入电机之前,首先要在油散热器中冷却油,然后在第二步中要在热交换器中冷却油。然而,也可以将热交换器布置在油回路中的油散热器和电机上游的位置。

根据本发明的实施方式,冷却装置包括控制单元,该控制单元配置为控制油散热器中的油的冷却。控制单元可以接收关于热交换器中的油的冷却的信息,随后冷却单元控制油散热器中的油的冷却,使得油在被引导至电机之前被冷却至合适的温度。

根据本发明的实施方式,控制单元配置为控制油散热器风扇的速度。油散热器风扇可以由电马达驱动。在这种情况下,很容易调节油散热器风扇的速度,以改变通过油散热器的空气流,从而改变油散热器中油的冷却效果。控制单元还可配置为控制循环油通过油回路的油泵的速度。油散热器风扇可以由电马达驱动。在这种情况下,容易调节油泵的速度和通过油冷却器循环的油流动,从而调节油散热器中油的冷却效果。

根据本发明的实施方式,控制单元配置为从温度传感器接收关于与电机的温度相关的温度的信息,并且控制单元配置为根据此信息,控制油散热器中的油的冷却。温度传感器可以感测电机的下游位置中的油的温度,在该下游位置,油具有与电机的温度有关的温度。可替代地,温度传感器布置在电机的合适的部分上,在该合适的部分上感测电机的所述部分的温度。

根据本发明的实施方式,油散热器布置在油被环境温度的空气冷却的位置中。在这种情况下,可以将油散热器中的油的温度冷却至接近在油散热器风扇的高速下的环境温度。

根据本发明的实施方式,电力单元的另外部件配置为在第一冷却剂回路中热交换器的上游位置中被冷却。在这种情况下,在冷却剂进入热交换器之前,可以冷却所述另外部件。所述另外部件可以为电力单元的电力电子器件,其控制电机与电能存储件之间的电能流动。可替代地,电力单元的另外部件配置成在第一冷却剂回路中在热交换器下游的位置中被冷却。

根据本发明的实施方式,冷却装置包括冷却剂散热器风扇,该冷却剂散热器风扇配置成提供通过冷却剂散热器装置的变速空气流。冷却剂散热器风扇可以由电马达驱动,从而可以无级地调节风扇的速度和通过冷却剂散热器装置的空气流。控制单元可配置为控制冷却剂散热器风扇的速度,以便调节引导至热交换器的冷却剂的温度。在这种情况下,可以控制引导至热交换器的冷却剂的温度,并因此在热交换器中控制冷却剂与油之间的热传递。冷却剂散热器装置可布置在冷却剂被环境温度的空气冷却的位置中。在这种情况下,可以在当冷却剂散热器风扇被高速驱动时操作条件期间,将冷却剂散热器装置中的冷却剂冷却至接近环境温度的温度。

根据本发明的实施方式,控制单元配置为控制冷却剂散热器风扇的速度和油散热器风扇的速度,使得油被冷却至其提供电机所需的冷却的温度而能耗最低。控制单元可以访问所存储的关于油散热器风扇和冷却剂散热器风扇的速度组合的信息,在该组合处以最小的能量消耗来驱动风扇,以提供所需的油冷却效果。可替代地,控制单元可以以最小的噪声来操作风扇。

根据本发明的实施方式,冷却装置包括第二冷却剂回路,该第二冷却剂回路配置成冷却电力单元的电能存储件。电能存储件需要被冷却到比电力电子器件更低的温度。鉴于这一事实,第二冷却剂回路设计成将冷却剂以与第一冷却剂回路中引导到电力电子器件相比更低的温度引导至电能存储件。

根据本发明的实施方式,冷却装置配置为,在当环境空气温度低于特定温度的情况下,将第一冷却剂回路中的冷却剂引导到冷却剂散热器装置的第一冷却剂散热器和冷却剂散热器装置的第二冷却剂散热器,并且在在当环境空气温度低于特定温度的情况下,将第一冷却剂回路中的冷却剂引导至第一冷却剂散热器和第二冷却剂散热器,并借助于制冷回路冷却第二冷却剂回路中的冷却剂。使用具有不同冷却剂温度的两个冷却剂回路使得可以将电能存储件和电力电子器件单独冷却到所需温度。在环境空气温度低的情况下,可以在第一冷却剂散热器中将第一冷却剂回路中的冷却剂冷却到提供电力电子器件所需冷却的温度。此外,可以在第二冷却剂散热器中将第二冷却剂回路中的冷却剂冷却至提供冷却电能存储件所需的温度。在环境空气温度高于或接近电能存储件的最佳有效操作温度的情况下,无法将第二冷却剂回路中的冷却剂冷却到可提供电能存储件所需冷却的温度。在这种情况下,第二冷却剂回路中的冷却剂被制冷回路冷却。因此,在高环境温度下,低温冷却装置不使用第二冷却剂散热器。这使得可以在第一冷却剂散热器和第二冷却剂散热器中,冷却第一冷却剂回路中的冷却剂。因此,第一冷却剂回路中的冷却剂接收与环境空气一起增加的热传递面积,这使得可以将第一冷却剂回路中的冷却剂冷却至较低的温度,并提供电力电子器件和电机的更高效率的冷却。

根据本发明的实施方式,第一冷却剂回路配置为冷却制冷回路的冷凝器中的制冷剂。所述第一冷却剂回路可包括:第一平行管线,其包括热交换器;和第二平行管线,其包括制冷回路的冷凝器。阀构件可以在两个平行管线之间分配冷却剂流。

本发明还包括一种车辆,该车辆包括根据权利要求1-14中任一项所述的冷却装置。

附图说明

在下文中,作为示例并参考附图描述了本发明的优选实施方式,其中:

图1示出了根据本发明实施方式的冷却装置,以及

图2更详细地示出了图1中的冷却剂散热器装置。

具体实施方式

图1示出了用于示意性示出的混合动力车辆1的冷却装置。混合动力车辆1由电机2和示意性示出的内燃机3提供动力。电机交替地作为电马达和发电机工作。混合动力车辆1包括呈电机2形式的电力单元,用于存储电能的电能存储件4和控制在电能存储件4与电机2之间的电能流动的电力电子器件5。电机2、电能存储件4和电力电子器件5在操作中被加热。因此,电机2、电能存储件4和电力电子器件5需要被冷却。电能存储件4必须被冷却以具有比电机2和电力电子器件5更低的温度。电能存储件4的最佳效率温度可以在20-40℃的温度范围内。电机2和电力电子器件5经常可以承受高达约60-70℃的温度。在某些操作条件下,诸如在冷启动之后,电能存储件4的温度可能太低。在这种情况下,将冷却装置用于加热电能存储件4是合适的。

冷却装置包括具有循环冷却剂的第一冷却剂回路6。第一冷却剂回路6经由第一脱气管线7a连接至膨胀箱7。第一冷却剂回路6还包括冷却剂散热器装置8,在该冷却剂散热器装置中冷却剂被冷却。冷却剂经由冷却剂散热器入口管线9被引导至冷却剂散热器装置8,并且其经由冷却剂散热器出口管线10离开冷却剂散热器装置8。冷却剂散热器出口管线10将冷却剂引导至第一冷却剂泵11,所述第一冷却剂泵使冷却剂在第一冷却剂回路6中循环。第一冷却剂泵11将冷却剂引导至电力电子器件5。三通阀12接收来自电力电子器件的冷却剂,并将一部分冷却剂流引导至第一冷却剂环路13或第二冷却剂环路14。冷却剂环路13、14平行地布置在第一冷却剂回路6的一部分中。第一冷却剂环路13包括热交换器15,在该热交换器15中,冷却剂与用于冷却电机2的油回路16中循环的油热传递接触。三通阀12将冷却剂流的剩余部分引向第二冷却环路14,在此冷却剂在制冷回路18的冷凝器17中冷却制冷剂。制冷回路18可以将整个冷却剂流引导至第二冷却环路14以绕过热交换器15。在这种情况下,第一冷却剂回路6和油回路16彼此热断开。离开第一冷却剂环路13和第二冷却环路14的冷却剂在共同的管线中被引导至恒温器19。在冷却剂的温度低于恒温器19的调节温度的情况下,其被引导回到第一冷却剂泵11而无需冷却。在冷却剂的温度高于恒温器19的调节温度的情况下,冷却剂经由冷却剂散热器入口9被引导至冷却剂散热器装置8以进行冷却。冷却剂散热器入口管线9分支为第一入口管线9a和第二入口管线9b。第二入口管线9b包括阀构件20。

该冷却装置包括具有循环冷却剂的第二冷却剂回路21。第二冷却剂回路21中的冷却剂也在冷却剂散热器装置8中被冷却。第二冷却剂回路21经由第二脱气管线7b连接到与第一冷却剂回路6相同的膨胀箱7。冷却剂经由冷却剂散热器入口管线22进入冷却剂散热器装置8,并经由冷却剂散热器出口管线23离开冷却剂散热器装置8。第二冷却剂回路21中的冷却剂由第二冷却剂泵24循环。第二冷却剂泵24从冷却剂散热器出口管线23吸入冷却剂并将其引导至电能存储件4。第二冷却剂回路21包括控制冷却剂流向制冷剂系统18中的冷却器27的阀构件25和控制冷却剂流向冷却剂散热器装置8的阀构件26。在阀构件25关闭且阀构件26打开的情况下,离开第二冷却剂泵24的冷却剂经由冷却剂散热器入口管线9被导向到冷却剂散热器装置8。在阀构件25打开并且阀构件26关闭的情况下,离开第二冷却剂泵24的冷却剂被引导到冷却器27,在此处,冷却剂被制冷系统18中的制冷剂冷却。离开冷却器27的冷却剂进入热交换器29,在该热交换器中,所述冷却剂被来自冷却内燃机3的冷却装置的冷却剂加热。在冷却剂的温度过高的情况下,冷却剂在冷却器27中冷却。在冷却剂温度过低的情况下,冷却剂在热交换器29中被加热。只要阀构件25打开并且阀构件26关闭,第二冷却剂泵24就将冷却剂在闭环中循环,所述闭环由电能存储件4冷却器27、和热交换器29限定。

因此,冷却装置还包括具有循环制冷剂的制冷回路18。制冷回路18包括压缩机31,该压缩机31循环并压缩制冷回路18中的制冷剂。制冷剂从压缩机31被引导至冷凝器17。制冷剂在冷凝器17中被冷却至一温度,在所述温度处,由在第一冷却回路6中的冷却剂冷凝制冷剂。

离开冷凝器17的液化制冷剂的一部分被引导至第一冷却环路33,以冷却车辆1中的驾驶室。第一冷却环路33包括第一膨胀阀34,在该第一膨胀阀34中,制冷剂在进入蒸发器35之前经历压降和温度显着降低。电风扇36设计为提供通过蒸发器35的气流,其在冷却状态下被引导至机舱。制冷剂被空气流加热使得其蒸发。汽化的制冷剂被引导回到压缩机31。液化制冷剂的其余部分被引导至包括第二膨胀阀38的第二冷却环路37,在该第二膨胀阀38中,制冷剂经历压降并且温度明显降低。此后,制冷剂进入冷却器27,在制冷器中,制冷剂被第二冷却剂回路21中的冷却剂加热至其蒸发温度。汽化的制冷剂被引导回到压缩机31。

冷却剂散热器风扇装置39和冲压空气提供通过冷却剂散热器装置8的冷却空气流。相对于气流的预期方向,增压空气冷却器40布置在冷却剂散热器风扇装置8的下游位置。相对于气流的预期方向,在冷却剂散热器装置8和增压空气冷却器40的下游位置处布置有用于冷却冷却内燃机3的冷却剂的主冷却剂散热器41。因此,冷却剂在第一冷却剂散热器8a和第二冷却剂散热器8b中被周围温度的空气冷却。借助于来自温度传感器43的关于环境温度、来自温度传感器44的关于离开电能存储件4的冷却剂的温度、来自温度传感器45的关于冷却剂离开电力电子装置5的温度、和来自温度传感器50的关于油离开电机2的温度的信息,控制单元42控制冷却装置的操作。

因此,冷却装置包括配置成冷却电机2的油回路16。油回路16包括油散热器46,油在该油散热器中被空气冷却。冷却剂散热器风扇47迫使冷却空气强制通过油散热器46。冷却剂散热器风扇47迫使环境温度的冷却空气强制通过油散热器46。冷却剂散热器风扇47由电马达48驱动。油泵49使油通过油回路16循环。油回路16还包括热交换器15,在热交换器15中,热量在第一回路6中的冷却剂和油回路16中的油之间传递。

图2更详细地示出了冷却剂散热器装置8。冷却剂散热器装置8包括第一冷却剂散热器8a和第二冷却剂散热器8b。第一冷却剂散热器8a和第二冷却剂散热器8b布置在车辆1的前部的同一平面中。第一冷却剂散热器8a包括入口管8a1,该入口管8a1接收在第一冷却剂中来自第一冷却剂散热器入口管线9a的冷却剂。第一冷却剂散热器8a包括连接到第一冷却剂回路6中的冷却剂散热器出口管线10的出口管8a2。第二冷却剂散热器8b包括入口管8b1,其接收来自第一冷却剂回路6中的第二冷却剂散热器入口管线9b,或第二冷却剂回路21的入口管线22的冷却剂。第二冷却剂散热器8b包括出口管8b2,该出口管经由连接管线10a连接至第一冷却剂回路6的冷却剂散热器出口管线10或第二冷却剂回路21中的出口管线23中。

在混合动力车辆1的操作期间,控制单元42从上述温度传感器43、44、45、50基本上连续地接收关于与环境空气、电机2、电能存储件4和电力电子器件5有关的温度的信息。可替代地,可以使用直接测量所述部件的温度的温度传感器。第一冷却剂散热器8a和第二冷却剂散热器8b中的冷却剂的冷却与流过冷却剂散热器8a、8b的空气流动和环境空气温度有关。

在环境空气温度低的情况下,第一冷却剂回路6中的冷却剂在第一冷却剂散热器8a中获得有效的冷却,第二冷却剂回路21中的冷却剂在第二冷却剂散热器8b中获得有效的冷却。在这种情况下,控制单元42将阀构件20设置在关闭位置,并且阀构件25设置在关闭位置,同时将阀构件26设置在打开位置。因此,第一冷却剂回路中的冷却剂经由第一冷却剂散热器入口管线9a被引导至第一冷却剂散热器8a的入口管8a1。当冷却剂已经在第一冷却剂散热器8a中冷却时,其进入第一冷却剂回路6中的冷却剂散热器出口管线10。第二冷却剂回路21中的冷却剂经由冷却剂散热器入口22被引导至第二冷却剂散热器8b的入口管8b1。在冷却剂已经在第二冷却剂散热器8b中冷却之后,它进入第二冷却剂回路6中的冷却剂散热器出口管线23。因此,在当环境温度低的操作条件下,第一冷却剂回路6中的冷却剂在第一冷却剂散热器8a中被冷却,并且第二冷却剂回路21中的冷却剂在第二冷却剂散热器8b中被冷却。

在电能存储件4和/或电力电子器件5的温度太低或太高的情况下,控制单元42控制冷却剂散热器风扇装置39的速度,以便增加或降低在第一冷却剂散热器8a和第二冷却剂散热器8b中的冷却剂的冷却效率。当环境温度低时,经常将第一冷却剂回路6中的冷却剂在第一冷却剂散热器8a中冷却至低温。从第一冷却剂散热器8a经由电力电子器件5引导至热交换器15的冷却剂经常具有足够低的温度,以提供将热交换器15中的油冷却至其提供冷却电机2所需的温度。在当环境温度较低同时冲压空气以高速流通过冷却剂散热器装置8a、8b的操作条件下,经常无需启动油散热器风扇47以及提供油散热器46中的油的额外冷却。在第一回路6中的冷却剂温度非常低的情况下,可以借助于来自电机2的油,在热交换器2中加热冷却剂。由于第一冷却剂回路和第二冷却剂回路具有共同的膨胀箱7,该措施还加热第二冷却剂回路21中的冷却剂的温度。

在环境空气温度较高的情况下,冷却剂在冷却剂散热器装置8中的冷却效率较低。当环境温度高于特定温度时,无法将第二冷却剂回路21中的冷却剂冷却至足够低温度,以提供所需的电能存储件4的冷却。在这种情况下,控制单元42将阀构件20设置在打开位置,同时将阀构件25设置在打开位置,并且阀构件26在关闭位置。由于该措施,第一冷却剂回路6中的冷却剂流的第一部分经由第一冷却剂散热器入口管线9a被引导至第一冷却剂散热器8a,并且第一冷却剂回路6中的冷却剂流的第二部分经由打开的阀构件20和第二冷却剂散热器入口管线9b,被引导到冷却剂散热器入口管线22和第二冷却剂散热器8b。因此,在环境空气温度高的操作条件下,第一冷却剂回路6中的冷却剂在第一冷却剂散热器8a和第二冷却剂散热器8b中被冷却。由于阀构件25是打开的并且阀构件26是关闭的,所以第二冷却剂回路21中的冷却剂在由第二冷却剂泵24、冷却器27、加热装置29和电能存储件4限定的闭合环路循环。因此,第二冷却剂回路21中的冷却剂被制冷剂系统在冷却器27中冷却。

由制冷剂系统的冷却确保将冷却剂冷却至足够低的温度,以将电能存储件4的温度保持在约20-40℃的范围内。在电能储存器4在操作期间温度太低或太高的情况下,控制单元42控制制冷回路中的压缩机31,以便增加或降低第二冷却剂回路6中的冷却剂的冷却效率。冷却剂的温度太低,可激活加热装置29。如果电机2和电力电子器件5的温度太低或太高,控制单元42控制冷却剂散热器风扇装置39的速度和油散热器风扇46的速度。控制单元42改变冷却剂散热器风扇装置39的速度,使得期望温度的冷却剂被引导至热交换器15。控制单元42改变油散热器风扇47的速度,以便将所需温度的油引导到热交换器15。控制单元42可以访问有关风扇39、47适当转速组合的信息,使得在使风扇39、47的能量消耗最小的情况下,实现所需的冷却效果。以一方式选择至热交换器15的冷却剂和油的温度,所述方式使得,离开热交换器15的冷却剂具有合适温度用于冷却电力电子器件5并且离开热交换器15的油具有用于冷却电机2的合适温度。

冷却剂散热器装置在车辆1的与环境空气接触的前部位置中的布置使得可以将冷却剂冷却至接近环境温度的温度。此外,冲压空气减少用于风扇装置39的操作的能量供应。在低环境空气温度下,冷却剂散热器装置8的使用确保第一冷却剂回路6中的冷却剂以及在第二冷却剂回路21中的冷却剂的非常有效的冷却。在高环境空气温度下,在第一冷却剂回路6中的冷却剂由于在两个冷却剂散热器8a、8b中都被冷却,因此冷却效率提高。因此,当必须通过制冷剂系统18冷却低温回路21中的冷却剂时,可以使用第二冷却剂散热器8b来冷却第一冷却剂回路中的冷却剂。

在非常高的环境温度下,当冷却剂散热器8a、8b不能将第一回路中的冷却剂冷却到足够低的温度以将电力电子器件5冷却到所需温度时,可以提高油散热器风扇47的速度,从而将油散热器46中的油冷却到比第一冷却回路6中的冷却剂温度低的温度。在这种情况下,第一回路6中的冷却剂通过油在热交换器15中冷却。

在内燃机重负荷并且环境空气具有非常高的温度时的操作条件下,存在增压空气没有在增压空气冷却器40中冷却到足够低温的风险。控制单元42可接收关于增压空气的温度。在所述信息指示增压空气温度过高的情况下,控制单元42关闭阀构件20,使得第一冷却剂回路中的冷却剂仅被引导至第一冷却剂散热器8a。由于环境空气温度高,所以阀构件25打开并且阀构件26关闭。在这种情况下,将没有冷却剂流动,因此在第二冷却剂散热器8b中没有热传递,并且环境温度的空气被引导至布置在第二冷却剂散热器8b下游的增压空气冷却器40的部分。该措施提供了对增压空气冷却器40中的增压空气的增强的冷却。为了在这样的操作条件期间进一步提高增压空气冷却器40中的增压空气的冷却,第一冷却剂散热器8a可布置在增压空气冷却器40的最冷部分的上游的位置。改善增压空气冷却器中的增压空气的冷却的另一种方法是增加油散热器风扇47的速度。

本发明绝不限于附图所参考的实施方式,而是可以在权利要求的范围内自由地变化。例如可以在纯电动车辆中使用冷却装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1