1.一种基于红外光谱分析物质成分含量的方法,其特征在于,包括以下步骤:
S1,根据源域红外光谱数据和与所述源域红外光谱数据对应的源域物质成分含量建立第一回归模型,求取所述第一回归模型中的参数;
S2,获取目标域红外光谱数据,建立目标域红外光谱数据与源域红外光谱数据之间的转移模型,求取所述转移模型中的参数;
S3,根据所述目标域红外光谱数据、所述转移模型,利用所述第一回归模型获取与所述目标域红外光谱数据对应的目标域物质成分含量。
2.根据权利要求1所述的基于红外光谱分析物质成分含量的方法,其特征在于,所述第一回归模型为偏最小二乘回归模型,所述步骤S1包括,对所述源域红外光谱数据进行特征提取获取第一光谱特征,根据所述第一光谱特征和源域物质成分含量建立所述偏最小二乘回归模型,求出回归系数。
3.根据权利要求2所述的基于红外光谱分析物质成分含量的方法,其特征在于,所述目标域红外光谱数据包括目标域红外光谱标准数据和目标域红外光谱测试数据,所述步骤S2包括根据所述目标域红外光谱标准数据进行特征提取获取第二标准光谱特征;根据所述第一光谱特征和所述第二标准光谱特征建立所述转移模型,求出转移矩阵。
4.根据权利要求3所述的基于红外光谱分析物质成分含量的方法,其特征在于,所述步骤S3包括,根据所述目标域红外光谱测试数据获取第三光谱特征,将所述第三光谱特征和所述转移模型带入到所述最小偏二乘回归模型中获取所述目标域物质成分含量。
5.根据权利要求2所述的基于红外光谱分析物质成分含量的方法,其特征在于,所述对所述源域红外光谱数据进行特征提取获取第一光谱特征的步骤包括,对所述源域红外光谱数据和源域物质成分含量进行中心化处理,根据中心化处理后的源域红外光谱数据和源域物质成分含量建立最小二乘回归模型获取所述第一光谱特征。
6.根据权利要求3所述的基于红外光谱分析物质成分含量的方法,其特征在于,还获取包括目标域标准物质成分含量,所述根据所述目标域红外光谱标准数据进行特征提取获取第二标准光谱特征的步骤包括:对所述目标域红外光谱标准数据和所述目标域标准物质成分含量进行中心化处理,根据中心化处理后的目标域红外光谱标准数据和目标域标准物质成分含量建立偏最小二乘回归模型获取第二标准光谱特征。
7.根据权利要求4所述的基于红外光谱分析物质成分含量的方法,其特征在于,所述步骤S2中,获取第二标准光谱特征的同时,还获取了第二标准投影数据和第二标准载荷数据;所述步骤S3中根据所述目标域红外光谱测试数据获取第三光谱特征的步骤包括,利用所述目标域红外光谱标准数据的均值对所述目标域红外光谱测试数据进行中心化处理,利用中心化处理后的目标域红外光谱测试数据按照下式依次递推获取第三光谱特征:其中,i大于等于1且小于等于k,TT_test为第三光谱特征,k为第三光谱特征的个数,为第二标准投影数据的第i个分量,为中心化处理后的目标域红外光谱测试数据的第i个残差,为第二标准载荷数据的第i个分量的转置。
8.根据权利要求2所述的基于红外光谱分析物质成分含量的方法,其特征在于,求解下式的最优化问题,其中,B表示基于源域特征回归模型的系数,M表示目标域特征到源域特征的转移矩阵,WS和WT分别表示源域和目标域的投影;通过TS=XS*WS求解第一光谱特征,其中第一光谱特征为i大于等于1且小于等于k,k为第一光谱特征的个数;通过计算回归系数ΒT=[b1,b2,...,bk],y表示源域物质成分含量。
9.根据权利要求3所述的基于红外光谱分析物质成分含量的方法,其特征在于,通过下式求取第二标准光谱特征,TT=XT*WT,其中第二标准光谱特征为i大于等于1且小于等于k,k为第二光谱特征的个数。
10.根据权利要求3所述的基于红外光谱分析物质成分含量的方法,其特征在于,利用第二标准光谱特征和第一光谱特征通过下式获取转移矩阵Μ=[m1,m2,...,mk],i大于等于1且小于等于k,k为标准光谱特征的个数,其中从中选取。