基于核空间自解释稀疏表示的分类器设计方法与流程

文档序号:12062289阅读:来源:国知局
技术总结
本发明涉及一种基于核空间自解释稀疏表示的分类器设计方法,含有以下步骤:读取训练样本,将训练样本映射到高维的核空间,在高维核空间对每一类训练样本进行学习,找出该类训练样本中每个个体对于构造该类训练样本子空间所做的贡献(即权重),该类训练样本与权重矩阵的乘积构成词典,将所有类别的词典依次排列构成一个大的词典矩阵;对测试样本通过词典矩阵获得该测试样本在核空间的稀疏编码,用每一类的词典及词典所对应的稀疏编码拟合测试样本,并计算该拟合误差;拟合误差最小的类即为测试样本的类别。与现有技术相比,本发明结合核技巧和词典学习方法,一方面,考虑了特征的非线性结构,能够更加精确的对特征进行稀疏编码,另一方面,通过学习的方式训练词典,有效地降低拟合误差。从而大大提升分类器的性能。

技术研发人员:刘宝弟;王立;韩丽莎;王延江
受保护的技术使用者:中国石油大学(华东)
文档号码:201610070445
技术研发日:2016.01.31
技术公布日:2017.05.24

当前第3页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1