基于连续功率谱分析的电力负荷预测优化方法与流程

文档序号:12306225阅读:来源:国知局

技术特征:

技术总结
本发明公开了一种基于连续功率谱分析的电力负荷预测优化方法,采用连续功率谱分析方法,提取电力负荷时间序列中隐含的显著周期序列并分离得到残差序列,采用基于粒子群算法优化的BP神经网络对显著周期序列进行预测,获得各显著周期序列的预测结果;采用粒子群算法优化的RBF神经网络对残差序列的一阶差分序列进行预测,后经差分反运算得到残差序列的预测结果,最后将平均电力负荷时间序列的平均值与各显著周期序列的预测结果以及残差序列的预测结果相加获得最终预测结果。本发明针对电力负荷数据的周期性特点,建立预测模型能够大幅提高短期电力负荷预报精度。

技术研发人员:杜杰;彭丽霞;王雷
受保护的技术使用者:南京信息工程大学
技术研发日:2017.06.21
技术公布日:2017.10.27
当前第2页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1