皮克林乳液的制备方法及应用

文档序号:31160822发布日期:2022-08-17 07:52阅读:1886来源:国知局
皮克林乳液的制备方法及应用

1.本发明涉及乳液制备技术领域,具体涉及一种皮克林乳液的制备方法及应用。


背景技术:

2.油莎豆(cyperus esculentus)又名油莎草、铁荸荠和人参豆等,在国外又称虎坚果、老虎豆等。油莎豆原产于非洲北部、地中海和尼罗河沿岸地区,广泛种植于温带邻近热带区、温带及亚寒带地区。油莎豆营养丰富,其中油脂占块茎的20~36%,蛋白质占3~15%,淀粉占20~25%、糖占15~20%,膳食纤维 8~10%,维生素8~14%。
3.油莎豆蛋白是一种优良蛋白,含有18种氨基酸,总氨基酸含量为29.8822 g/100g,必需氨基酸含量46%;蛋白质化学评分为78.90,必需氨基酸指数为 93.80,生物价为90.54,营养指数为28.03,氨基酸比值系数分为82.41,其各项指标与鸡蛋蛋白接近,具有极高的研究价值。


技术实现要素:

4.本发明的目的在于克服现有技术的缺陷,提供一种皮克林乳液的制备方法及应用,以解决现有技术中油莎豆没有得到很好利用的问题。
5.为实现上述目的,本发明提出皮克林乳液的制备方法,包括:
6.油莎豆分离蛋白的制备:油莎豆经过正己烷脱脂后得脱脂粉,采用碱提酸沉法制备油莎豆分离蛋白;
7.油莎豆分离蛋白-茶多酚复合纳米颗粒制备:油莎豆分离蛋白溶解于磷酸盐缓冲溶液,磁力搅拌1h至完全溶解,调节ph至9.0,称取0.005~0.025g 茶多酚溶于蛋白溶液,避光且在氧气存在条件下,恒温搅拌16h,通过加热法,将所有样品在90℃水浴15min,然后立即在冰水浴中冷却至室温,调节ph 7.0,得到油莎豆分离蛋白-茶多酚复合纳米颗粒;
8.复合纳米颗粒稳定皮克林乳液制备:以油莎豆油为油相,油莎豆分离蛋白
ꢀ‑
茶多酚复合纳米颗粒为固相,由油固体积分数比为0.5,进行混合,以10000rpm 均质2min,得到所述皮克林乳液。
9.优选地,所述碱提酸沉法制备油莎豆分离蛋白,包括:脱脂粉以料液比 1:15溶解于蒸馏水中,于ph 10下40℃水浴2h,7000rpm离心20min,取上清液调ph至4.5,4℃酸沉过夜,于8000rpm离心20min后水洗沉淀,用少量水溶解沉淀后用naoh调节至中性,冷冻干燥后得油莎豆分离蛋白粉。
10.优选地,所述油莎豆油的制备包括:通过正己烷将油莎豆粉末以料液比 1:10混合,温度40℃,于摇床中震荡3~4h,直至回收的正己烷呈现透明,表示脱脂结束,将油回收并用吹氮仪排除残留正己烷,得到油莎豆油。
11.优选地,所述油莎豆分离蛋白的制备还包括对所述油莎豆预处理,所述油莎豆预处理包括将选出的油莎豆冲洗至表面无泥土后,加入5%naoh于60℃水浴中浸泡10min,搓皮,去皮油莎豆恢复至室温后放入0.3%的柠檬酸与0.2%硫代硫酸钠浸泡10min。
12.优选地,所述油莎豆分离蛋白-茶多酚复合纳米颗粒的粒径大小在100~ 200nm之间。
13.优选地,所述磷酸盐缓冲溶液的浓度为0.01mol/l、ph值为7.4。
14.本发明还提出一种蓝靛果花青素的皮克林乳液制备方法,包括:
15.提供蓝靛果花青素;
16.将蓝靛果花青素以0.1wt%的浓度加入皮克林乳液中,均质后,得到所述花青素的皮克林乳液。
17.优选地,所述蓝靛果花青素的制备包括:将蓝靛果破碎,以料液比为1:10 加入酸性乙醇溶液,于50℃水浴2h,蒸发浓缩得粗提物,纯化粗提物,以95%酸性乙醇为洗脱液进行洗脱,所得洗脱液浓缩、冻干,得到冻干蓝靛果花青素。
18.本发明还提出一种黑果腺肋花楸花青素的皮林克乳液制备方法,包括:
19.提供黑果腺肋花楸花青素;
20.将黑果腺肋花楸花青素以0.1wt%的浓度加入皮克林乳液中,均质后,得到所述黑果腺肋花楸花青素的皮克林乳液。
21.优选地,所述黑果腺肋花楸花青素的制备包括:将黑果腺肋花楸破碎,以料液比为1:10加入酸性乙醇溶液,于50℃水浴2h,蒸发浓缩得粗提物。利用ab-8型大孔树脂对其纯化,以95%酸性乙醇为洗脱液进行洗脱,所得洗脱液浓缩、冻干,得到冻干黑果腺肋花楸花青素。
22.本发明还提供一种皮克林乳液在抑制游离脂肪酸释放作用中的应用,所述皮克林乳液由上述皮克林乳液的制备方法制备得到。
23.本发明的有益效果是:
24.根据本发明实施例的皮克林乳液的制备方法,油莎豆分离蛋白-茶多酚复合纳米颗粒粒径均随茶多酚加入而减小,zeta电位绝对值增加,粒径分布逐渐均匀,二者之间存在较强的相互作用。油莎豆分离蛋白-茶多酚复合纳米颗粒的加入可以起到稳定pickering乳液的作用,同时抑制游离脂肪酸在肠胃中的释放。
附图说明
25.图1是本发明的cepi和cepi-tp复合纳米颗粒粒径分布图;
26.图2是本发明的cepi和cepi-tp复合纳米颗粒平均粒径柱形图;
27.图3是本发明的cepi和cepi-tp复合纳米颗粒的zeta电位图;
28.图4是本发明的cepi和cepi-tp复合纳米颗粒的多分散指数柱形图;
29.图5是本发明的cepi和cepi-tp复合纳米颗粒的扫描电镜图;
30.图6是本发明的cepi和cepi-tp复合纳米颗粒稳定pickering乳液平均粒径柱形图;
31.图7是本发明的cepi和cepi-tp复合纳米颗粒稳定pickering乳液的zeta 电位图;
32.图8是本发明的cepi和cepi-tp复合纳米颗粒稳定pickering乳液乳化指数柱形图;
33.图9是本发明的pickering乳液游离脂肪酸释放曲线图;
34.图10是本发明的花青素在pickering乳液中光稳定性变化曲线图;
35.图11是本发明的花青素在pickering乳液中储存稳定性变化曲线图;
36.图12是本发明的花青素在pickering乳液中热稳定性柱形图;
37.图13是本发明的花青素在pickering乳液中ph稳定性柱形图;
38.图14是本发明的体外模拟胃液(sgf)和模拟肠液(sif)下pickering乳液中花青素的释放率变化曲线图。
具体实施方式
39.下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
40.下面对本发明的皮克林乳液的制备方法的各步骤进行描述
41.根据本发明实施例的皮克林乳液的制备方法,包括:
42.步骤1,油莎豆分离蛋白的制备:油莎豆经过正己烷脱脂后得脱脂粉,采用碱提酸沉法制备油莎豆分离蛋白;
43.步骤2,油莎豆分离蛋白-茶多酚复合纳米颗粒制备:油莎豆分离蛋白溶解于磷酸盐缓冲溶液,磁力搅拌1h至完全溶解,调节ph至9.0,称取0.005~ 0.025g茶多酚溶于蛋白溶液,避光且在氧气存在条件下,恒温搅拌16h,通过加热法,将所有样品在90℃水浴15min,然后立即在冰水浴中冷却至室温,调节ph 7.0,得到油莎豆分离蛋白-茶多酚复合纳米颗粒;
44.步骤3,复合纳米颗粒稳定皮克林乳液制备:以油莎豆油为油相,油莎豆分离蛋白-茶多酚复合纳米颗粒为固相,由油固体积分数比为0.5,进行混合,以10000rpm均质2min,得到所述皮克林乳液。
45.下面结合具体实施例对各个步骤进行详细描述。
46.步骤1,油莎豆分离蛋白的制备
47.1)预处理,选取丰满、无病虫的油莎豆,冲洗至表面无泥土后加入5% naoh于60℃水浴中浸泡10min,手动搓皮。去皮油莎豆恢复至室温后放入 0.3%的柠檬酸(c6h8o7)与0.2%硫代硫酸钠(na2s2o2)浸泡10min,以防止油莎豆表面发生褐变。置于40℃干燥箱1~2d,粉碎机研磨,过60目筛,贮藏备用。
48.2)制备,油莎豆经正己烷脱脂后得脱脂粉,采用碱提酸沉法制备油莎豆分离蛋白。即脱脂粉以料液比1:15(m:v)溶解于蒸馏水中,于ph 10下40℃水浴2h。7000rpm离心20min,取上清液调ph至4.5,4℃酸沉过夜。于8000 rpm离心20min后水洗沉淀,用少量水溶解沉淀后用naoh调节至中性,冷冻干燥后得油莎豆分离蛋白粉。
49.步骤2,油莎豆分离蛋白-茶多酚复合纳米颗粒制备
50.1)试验材料
51.表1试验材料
[0052][0053]
2)试验试剂
[0054]
表2试验试剂
[0055][0056]
3)仪器与设备
[0057]
表3试验仪器与设备
[0058][0059][0060]
4)制备,将油莎豆分离蛋白溶解于pbs缓冲溶液(0.01mol/l,ph 7.4),磁力搅拌1h至完全溶解,调节ph至9.0。分别称取0、0.005、0.010、0.015、0.020、 0.025g茶多酚溶于蛋白溶液,避光且在氧气存在条件下,恒温搅拌16h。随后,通过加热法,将所有样品在90℃水浴15min,然后立即在冰水浴中冷却至室温,调节ph 7.0,得到复合纳米颗粒,并分别命名为ntp0、ntp1、ntp2、 ntp3、ntp4、ntp5。
[0061]
步骤3,复合纳米颗粒稳定皮克林乳液制备
[0062]
1)采用有机溶剂提油方法,通过正己烷将油莎豆粉末以料液比1:10混合,温度40℃,于摇床中震荡3-4h,直至回收的正己烷呈现透明,表示脱脂结束,将油回收并用吹氮仪排除残留正己烷,将油莎豆油存于4℃冰箱,备用。
[0063]
2)将油莎豆油与复合纳米颗粒以油体积分数为0.5混合,以10000rpm均质2 min,制得新鲜pickering乳液(乳液为对应复合纳米颗粒制备而成,分别为 etp0、etp1、etp2、etp3、etp4、etp5)。
[0064]
下面结合具体实施例对cepi-tp复合纳米颗粒粒径分布、zeta电位、pdi 测定进行描述。
[0065]
利用zeta电位仪对所有样品进行测定。测定前将纳米颗粒进行稀释,避免颗粒之间相聚产生影响。
[0066]
1)cepi-tp复合纳米颗粒粒径分布
[0067]
如图1和图2所示,cepi和cepi-tp复合纳米颗粒粒径分布。颗粒的粒径大小(包括粒径分布)是分析乳液的基本参数,如图1所示。由图可知, ntp1~4颗粒粒径于100~200nm分布较多,且在此范围内峰面积增大,表明粒径分布更为均一。由图2可知,复合纳米颗粒粒径大小随着tp添加量的增加都显著(p<0.05)减小,且ntp2、ntp3、ntp4、ntp5呈现纳米级别,这是由于tp所带的负电荷使颗粒斥力增加,造成粒径减小,二者结合更为紧密,使蛋白粒径分布更加均匀。
[0068]
2)复合纳米颗粒zeta电位分析
[0069]
如图3所示的cepi和cepi-tp复合纳米颗粒的zeta电位图,未加入tp 的纳米颗粒ntp0呈现的负电性相对较低,为-18.43mv,随着茶多酚添加量的增加,纳米颗粒zeta电位绝对值显著增加,表明随着cepi和tp共价作用的增强,使蛋白等电点降低,颗粒稳定性也随之增强。其中,ntp2~5的zeta 电位值分别为-34.10mv、-46.36mv、-58.38mv、-62.22mv。有关研究表明,电位绝对值超过30mv的颗粒可以通过静电斥力抑制聚集,有利于稳定乳液。
[0070]
3)复合纳米颗粒多分散指数分析
[0071]
由图4可知,纳米颗粒pdi随着茶多酚含量的增加都发生显著性下降,表明粒径分布逐渐均匀,这与粒径分布结果一致,且样品ntp4多分散指数小于0.2,表明具有有良好的分散性。
[0072]
4)复合纳米颗粒扫描电镜分析
[0073]
由图5可知,cepi和cepi-tp复合纳米颗粒之间存在明显差异。cepi呈规则的圆球状,cepi-tp复合纳米颗粒存在球状颗粒,表面光滑,但颗粒粘连现象较为严重。说明cepi和tp之间存在较强的相互作用。而存在的片状结构可能是由于cepi与tp发生共价相互作用时,蛋白质肽链展开并发生折叠,同时通过共价结合得到的醌类物质与蛋白分子的亲核基团发生相互作用,从而改变了蛋白所呈现的表面结构。
[0074]
乳液的指标的测定
[0075]
1)乳化指数测定
[0076]
乳化指数(ci)一般用于视觉评价在不同条件下形成的乳状液的成乳稳定性。于样品瓶中制备乳液密封3h后开始测量。ci计算公式如3-1所示:
[0077][0078]
式中:
[0079]hs
:血清层高度(cm);
[0080]ht
:总乳液高度(cm)。
[0081]
2)游离脂肪酸测定
[0082]
模拟液配制如表4和表5
[0083]
表4模拟胃液(sgf)配制
[0084][0085]
表5模拟肠液(sif)配制
[0086][0087]
模拟胃液消化:sgf在37℃预热后与乳液以1:1混合,将体系ph调至2.5,于37℃、100rpm条件下消化1h。
[0088]
模拟肠液消化:乳液在胃液中消化完成后,用1mol/l naoh迅速将混合体系ph调整至7.0以终止sgf消化。然后依次将配制好的盐溶液、胆盐溶液、胰脂肪酶按比例加入到上述胃消化液中。于37℃恒温摇床消化2h。期间每隔 30min用0.25mol/l naoh维持混合体系的ph为7.0,记录添加naoh体积,游离脂肪酸(ffa)计算公式如3-2所示:
[0089][0090]
式中:
[0091]cnaoh
:naoh溶液摩尔浓度(m);
[0092]vnaoh
:所用naoh溶液的体积(l),
[0093]m油
:油的平均分子量(g/mol);
[0094]m油
:油总质量(g)。
[0095]
3)结果分析
[0096]
图6为本发明实施例的cepi和cepi-tp复合纳米颗粒稳定pickering乳液平均粒径
图。如图6所示,etp0的液滴平均粒径最大,接近20μm,而经 cepi-tp复合纳米颗粒稳定的pickering乳液平均粒径在5~15μm内,说明 cepi-tp复合纳米颗粒可有效改善乳液粒径大小。一般认为,颗粒的大小应小于(至少一个数量级)由它们稳定的乳液,较小的颗粒具有较快的吸附动力学,它们能更快、更准确地吸附于界面内的油水中,使界面更大程度地被填充,从而形成更稳定的pickering乳液。
[0097]
图7为本发明实施例的cepi和cepi-tp复合纳米颗粒稳定pickering乳液的zeta电位图。如图7所示,由于乳液表面吸附了阴离子,因此,zeta电位呈现负值,由图可知,未经过cepi-tp复合纳米颗粒稳定的pickering乳液电位最低,为-35.67mv,其中,乳液3~5电位绝对值都显著性增加,表明乳液稳定性增强。
[0098]
图8为本发明实施例的cepi和cepi-tp复合纳米颗粒稳定pickering乳液乳化指数柱形图。如图8所示,etp0的ci值最高,高达54%,且经cepi-tp 复合纳米颗粒稳定的pickering乳液ci值相对于etp0都有所降低,表明乳液稳定性增强。
[0099]
图9为本发明实施例的pickering乳液游离脂肪酸释放曲线图,如图9所示,样品etp0的ffa释放率明显较高。随茶多酚添加量的增加,cepi-tp复合纳米颗粒制备的pickering乳液的ffa释放率降低。消化结束时,etp0组ffa 释放率高达76.63%,经cepi-tp复合纳米颗粒稳定的pickering乳液的ffa分别降低至67.47%、56.47%、50.05%、46.38%和42.72%。这可能是由于cepi-tp 复合纳米颗粒在pickering乳液内部形成了一层较为牢固的界面结构,并以此作为物理屏障,在空间上延缓了脂肪酶从界面层穿过,抑制了与脂质底物反应
[81]
。表明由cepi-tp复合纳米颗粒稳定的pickering乳液可以在肠胃内限制脂质以及高热量食品的摄入。
[0100]
本发明实施例的皮克林乳液的制备方法,通过加热法制备出油莎豆分离蛋白-茶多酚复合纳米颗粒,颗粒粒径随茶多酚添加量的增加而减小、zeta电位绝对值增加,且分散性得到改善。通过均质法成功制备了水包油型的pickering 乳液,表明富含多不饱和脂肪酸的油莎豆油也能作为制备pickering乳液的一种油相,以相对应的纳米颗粒制备的pickering乳液液滴尺寸减小,电位绝对值增加,乳化指数降低,证明油莎豆分离蛋白-茶多酚复合纳米颗粒可以起到稳定pickering乳液的作用,且ntp4稳定的pickering乳液(etp4)稳定性最佳。经过复合纳米颗粒稳定的pickering乳液游离脂肪酸的释放率分别降低至 67.47%、56.47%、50.05%、46.38%和42.72%,对于脂肪的堆积有抑制作用。
[0101]
下面结合具体实施例对本发明的蓝靛果花青素的皮克林乳液制备方法和黑果腺肋花楸花青素的皮克林乳液制备方法进行描述。
[0102]
1、试验材料
[0103]
表6试验材料
[0104][0105]
2、试验试剂
[0106]
表7试验试剂
[0107][0108]
3、仪器与设备
[0109]
表8仪器与设备
[0110][0111]
4、蓝靛果花青素的制备
[0112]
将蓝靛果破碎,以料液比为1:10加入酸性乙醇溶液,于50℃水浴2h,蒸发浓缩得粗提物。利用ab-8型大孔树脂对其纯化,以95%酸性乙醇为洗脱液进行洗脱,所得洗脱液浓缩、冻干,得到冻干蓝靛果花青素粉(anthocyanins from lonicera caerulea,alc),避光保存。
[0113]
将花青素以0.1wt%的浓度加入油莎豆油中,超声辅助以确保花青素在油莎豆油中溶解。然后将加入复合纳米颗粒(ntp4)以10000rpm均质3min,分别得到装载蓝靛果花青素的pickering乳液(etp4/alc),以未加入茶多酚的蛋白颗粒制备的乳液作对照(etp0/alc)。
[0114]
黑果腺肋花楸花青素的pickering乳液的制备可参考蓝靛果花青素的制备方法,
此处不再描述。通过上述方法得到装载黑果腺肋花楸花青素的pickering 乳液(etp4/aam),和未加入茶多酚的蛋白颗粒制备的乳液作对照 (etp0/aam)。
[0115]
5、测定
[0116]
1)花青素含量采用ph示差法进行计算:
[0117]
a=(a
520-a
710
)ph
1.0-(a
520-a
710
)ph
4.5
ꢀꢀꢀꢀꢀꢀ
(4-1)
[0118]
花青素含量(mg/g)=(a
×
mw
×
df
×
v)/(ε
×
l
×
wt) (4-2)
[0119]
式中:
[0120]a520
:520nm处吸光值;
[0121]a710
:710nm处吸光值;
[0122]
ε:消光系数,26900l/(mol
·
cm);
[0123]
mw:分子量(449.2g/mol);
[0124]
v:最终体积(ml);
[0125]
df:稀释倍数;
[0126]
l:比色皿距离(1cm);
[0127]
wt:样品质量(g)。
[0128]
2)光稳定性测定
[0129]
图10为本发明实施例的cepi-tp复合纳米颗粒稳定的pickering乳液包埋花青素的光稳定性曲线图,与etp0/alc、etp0/aam相比,在正常光照1 天的条件下,pickering乳液中alc、aam下降率分别为16.96%、36.68%,传统乳液中下降率分别为63.46%、60.18%。而第3天pickering乳液中alc、aam 下降率分别为51.87%、60.09%,而传统乳液中下降率已高达81.00%、79.87%。这是由于茶多酚的加入填充了颗粒之间的界面间隙,使得其在乳液结构表面形成一个相对牢固的保护层从而延缓了光的透入。
[0130]
3)储存稳定性分析
[0131]
图11为本发明实施例的cepi-tp复合纳米颗粒稳定的pickering乳液包埋花青素的储存稳定性曲线图。如图11所示,与etp0/alc、etp0/aam相比,在4℃避光储存条件14d后,经cepi-tp复合纳米颗粒稳定的pickering乳液中花青素含量分别下降了40.3%,41.4%,而etp0/alc、etp0/aam下降率高达89.9%、84.4%。有研究发现,利用壳聚糖-阿拉伯树胶纳米颗粒稳定的 pickering乳液对姜黄素进行包埋,储存10d发现姜黄素含量减少60%左右。
[0132]
4)热稳定性分析
[0133]
图12为本发明实施例的cepi-tp复合纳米颗粒pickering乳液包埋花青素的热稳定性柱形图。如图12所示,pickering乳液中经过热处理之后,花青素含量都有不同程度的减少,etp4/alc中蓝靛果花青素含量减少了17.65%, etp4/aam中花青素含量减少了21.67%,etp0/alc、etp0/aam花青素含量分别减少37.71%、40.55%。相比之下,未经过cepi-tp复合纳米颗粒稳定的乳液在经过热处理之后其花青素含量都明显下降,这表明经过复合纳米颗粒稳定的乳液可以提高花青素在高温环境中的稳定性。
[0134]
5)ph稳定性分析
[0135]
图13为本发明实施例的cepi-tp复合纳米颗粒pickering乳液包埋花青素的ph稳定性柱形图,如图13所示,花青素在经过cepi-tp复合纳米颗粒制备的pickering乳液在不同的ph条件下,相对于传统乳液都有较高的保留率,而在酸性条件花青素的保留率相对于
其他ph都较低,可能是由于不同 pickering乳液在不同ph条件下稳定性不同,且有研究表明,乳液在酸性条件下缺少静电吸引,很难形成致密的多层界面,从而削弱了液滴间的空间斥力,导致乳液稳定性降低。
[0136]
以上可知,经cepi-tp复合纳米颗粒稳定的pickering乳液可以改善花青素的稳定性,这可能是由于cepi-tp复合纳米颗粒稳定的pickering乳液液滴直径减小,提高了乳液稳定性。同时,由于当tp自身的抗氧化能力可以清除界面上的自由基,从而阻止其进入乳液,因此抑制了乳液中花青素的氧化和降解。而未经过复合纳米颗粒稳定的乳液其自身容易发生物理降解,从而导致花青素在体系内没有较好的稳定性。
[0137]
6)花青素在pickering乳液中的释放率
[0138]
图14为本发明实施例的pickering乳液中花青素在体外模拟肠胃条件下随时间变化的释放率变化曲线图。如图14所示,在经体外模拟胃液中孵育60min 后,即图中0~60min所示,alc在pickering乳液中的释放率15.94%,未经 cepi-tp复合纳米颗粒稳定的乳液中alc释放率为19.22%,aam释放率分别为34.67%和14.09%。随即在模拟肠液中模拟消化2h,即图中60~180min所示,结果表明,添加cepi-tp复合纳米颗粒稳定的pickering乳液在体外模拟肠液中消化2h后,释放出约46.13%alc,而未添加复合粒子的乳液未测出花青素。此外,以aam释放率分别为71.67%和50.65%。在模拟胃液条件下,其花青素释放率随时间变化其释放率有所增加,其中,在未经过cepi-tp复合颗粒稳定乳液包埋的alc在经胃部消化后,在肠道孵育30min后无检测结果,参考其在酸性条件下的稳定性结果分析可知,这可能是由于其在酸性条件下的极不稳定性导致其大部分在胃液中被释放,从而导致其在后续的消化部分释放率降低。此外,经过cepi-tp复合纳米颗粒稳定的pickering乳液在胃液酸性条件下,tp中的羟基与氢离子二者发生酯化反应,影响了cepi和tp之间的结合,促进了花青素在胃液中的释放。在体外模拟肠液消化过程中,由于ph、胆盐和蛋白质水解的共同作用下,花青素释放量均有所增加,且花青素在经 cepi-tp复合纳米颗粒稳定的pickering乳液包埋后,释放率较低,且释放较为平缓,这表明cepi-tp复合纳米颗粒稳定的pickering乳液具有较好的控释性能。
[0139]
根据本发明实施例的蓝靛果花青素的皮克林乳液制备方法,制备得到的蓝靛果花青素的皮克林乳液经cepi-tp复合纳米颗粒稳定的乳液所包埋的蓝靛果花青素和黑果腺肋花楸花青素光稳定性分别提高了35%、19%,储存稳定性提高了49%、43%,热稳定性分别提高20%、28%,在ph 2.0、6.5、8.5条件下,蓝靛果花青素提高85%、86%、37%,黑果腺肋花楸花青素提高14%、10%、 4%。分析两种类型的乳液包埋的花青素在体外模拟消化过程中的释放率,乳液中未添加cepi-tp复合纳米颗粒的花青素在消化过程中释放速率快,经过 cepi-tp纳米颗粒稳定的pickering乳液中的花青素在肠道消化过程中释放平缓,表明花青素在pickering乳液中有较好的控释效果。
[0140]
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1