一种镍基高钨多晶高温合金的制备工艺的制作方法

文档序号:21501834发布日期:2020-07-14 17:40阅读:330来源:国知局
一种镍基高钨多晶高温合金的制备工艺的制作方法

本发明属高温用合金材料领域,具体涉及一种镍基高钨多晶高温合金的制备工艺。



背景技术:

随着我国用电需求不断增加,能源紧缺及环境污染问题日益凸显,发展高效、节能、环保发电方式的需求越发紧迫。火力发电作为我国长期以来最主要的发电技术,提高机组蒸汽参数被认为是解决上述问题最有效的途径。以往大量实践表明,关键部件材料的服役性能是制约锅炉机组蒸汽参数提高的最主要原因,而作为火电机组锅炉中服役工况最严苛的关键部件之一,过/再热器管道对材料的服役性能提出了极高的要求。过/再热器在服役期间将承受高温蠕变、热疲劳、氧化及高温烟气腐蚀等多重因素的影响。随着火电机组主蒸汽参数的大幅提高,开发出可以满足高参数机组过/再热器管使用性能需求的高温合金材料已成为火力发电行业亟待解决的课题。

过/再热器作为火电机组锅炉中服役工况最严苛的部件,对其候选材料的持久强度提出了极高的要求。针对高参数火电机组锅炉再热器管对材料使用性能的需求,目前国外已开发出了一系列镍基变形高温合金材料,如美国特殊金属公司开发的inconel740h、美国哈氏公司开发的haynes282、德国蒂森克虏伯公司开发的cca617、英国rolls-royce公司开发的nimonic263、日本日立公司开发的fenix700、日本东芝公司开发的tos1x、日本三菱公司开发的ltesr700等镍基变形高温合金。为确保合金具有优异的持久强度,目前的候选材料中往往具有较高的al、ti元素含量。然而,al、ti元素的添加虽然有助于强化相的析出,但后者在合金长期服役过程中难以避免的出现粗化长大现象,进而对合金的性能造成严重危害。近年来开发的一些新型合金如haynes282/usc800等均具有较高的w、mo等人固溶强化元素含量,在提高合金持久性能的同时也有助于降低合金的热膨胀系数。然而,mo元素的添加对合金的抗腐蚀性能将造成不利影响,并且显著危害合金组织稳定性。w元素的固溶强化效果与mo元素相比更加显著,但其添加将显著降低合金的热加工性能,进而增大合金的制备成型难度。



技术实现要素:

本发明的目的在于提供一种镍基高钨多晶高温合金的制备工艺。

为了实现以上发明目的,本发明所采用的技术方案为:

一种镍基高钨多晶高温合金的制备工艺,包括以下步骤:

1)合金熔炼:按质量百分比计,将cr:15~18%,co:15~20%,ti:0.5~1.5%,al:3.5~4.5%,w:7.0~8.5%,si:≤0.5%,mn:≤0.5%,nb:0.5~1.5%,c:0.03~0.08%,余量为ni,在真空度为0.3~0.5pa下以及氩气保护下进行熔炼,然后采用电渣重熔工艺精炼,得到铸锭;

2)锻造开坯:将铸锭在900~1000℃保温0.5~1.0小时,随后在1160~1200℃进行均匀化处理,完成后在1180~1200℃进行锻造开坯,每道次变形量为5~10%,总变形量不低于60%;

3)高温轧制:将锻造完成后的板坯在1180~1200℃进行轧制,每道次变形量为5~10%,总变形量不低于60%;

4)热处理。

本发明进一步的改进在于,步骤1)中,熔炼采用氧化镁碱性炉衬。

本发明进一步的改进在于,步骤2)中,以10~20℃/min的速率自室温升温至900~1000℃。

本发明进一步的改进在于,步骤2)中,每道次锻造完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t。

本发明进一步的改进在于,进行步骤2)后,将轧辊加热至500℃以上,再进行步骤3)。

本发明进一步的改进在于,步骤3)中,采用厚度1.0~1.5mm的304的不锈钢板对合金进行包套后进行高温轧制。

本发明进一步的改进在于,步骤3)中,以10~20℃/min的速率自室温升温至1180~1200℃。

本发明进一步的改进在于,步骤3)中,每道次轧制完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量不低于90%。

本发明进一步的改进在于,步骤4)的具体过程为:将轧制后的合金在1100~1130℃保温3~5小时进行再结晶处理,空冷至温室后在750~770℃保温7~9小时,随后升温至840~870℃保温1.5~2.5小时,然后空冷至室温。

与现有技术相比,本发明具有的有益效果:

高w镍基合金具有难加工的特点,因此目前的镍基变形高温合金中一般都将w含量控制在较低的范围内。而本发明在高强化相体积分数的基础上,开发了具有高w含量合金的制备加工成型工艺。通过多道次小变形量高温加工,最终获得的合金总变形量可到90%。采用本发明的热处理工艺方案,可以控制其晶粒尺寸,确保合金具备优异的强度、耐腐蚀/氧化性能与组织稳定性,同时获得良好的加工成型性能。

按本发明所述方法制备的合金具备优异的强度性能及加工成型性能,其经热处理后完全再结晶,其晶粒尺寸30-50mm,晶内弥散分布ni3al相,且其体积分数不低于35%,其在850℃条件下屈服强度不低于700mpa。

本发明通过控制合金开坯锻造温度及变形量改善合金组织结构,并随后在合理温度范围内通过多道次小变形量对其进行高温轧制,同时采用304不锈钢包套降低轧制期间板材降温速率并避免横向剪切应力导致的开裂等问题,最终获得高钨含量的镍基多晶高温合金板材,且其总变形量不低于90%。

附图说明

图1为实施例1的包套热轧板图。

图2为实施例1的板材图。

图3为实施例1的组织照片。

图4为对比例1的未包套热轧板图。

图5为对比例1的板材图。

图6为对比例1的组织照片。

具体实施方式

下面结合实施例对本发明作进一步详细说明。

本发明的一种镍基高钨多晶高温合金的制备工艺,包括合金冶炼、锻造开坯、高温轧制及热处理四步:

1)合金熔炼:采用真空感应熔炼炉对配制的合金原料进行熔炼,当真空度达到0.3-0.5pa范围内时通入高纯氩气并进行熔炼,然后采用电渣重熔工艺精炼以降低夹杂物含量;其中,该合金成分按质量百分比满足如下范围要求:cr:15~18%,co:15~20%,ti:0.5~1.5%,al:3.5~4.5%,w:7.0~8.5%,si:≤0.5%,mn:≤0.5%,nb:0.5~1.5%,c:0.03~0.08%,余量为ni。

合金熔炼采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理,确保合金冶炼完成后期p、s含量均不高于0.03%、n元素含量不超过200ppm。

2)锻造开坯:将铸锭以10-20℃/min的速率自室温升温至900-1000℃保温0.5-1.0小时,随后升温至1160-1200℃进行均匀化处理,完成后再1180-1200℃进行锻造开坯,每道次变形量5~10%,总变形量不低于60%;

3)高温轧制:合金轧制前需将轧辊加热至500℃以上,且每道次锻造及轧制完成后回炉保温,其保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量不低于90%。

采用厚度1.0-1.5mm的304的不锈钢板对合金进行包套,随后将锻造完成后的板坯以10-20℃/min的速率自室温升温至1180-1200℃范围内进行轧制,每道次变形量5~10%,总变形量不低于60%;

4)热处理:将轧制后的合金在1100~1130℃保温3-5小时进行再结晶处理,空冷至温室后在750~770℃保温7~9小时,随后升温至840~870℃保温1.5~2.5小时,然后空冷至室温;

合金经热处理后完全再结晶,其晶粒尺寸30-50mm,晶内弥散分布ni3al相,且其体积分数不低于35%,其在850℃条件下屈服强度不低于700mpa。

实施例1

本实施例的镍基高钨多晶高温合金材料(耐热钢),按质量百分比计包括:cr:17%,co:20%,ti:1.5%,al:4.5%,w:8.5%,si:0.2%,mn:0.3%,nb:1.0%,c:0.07%,余量为ni;

本实施例的制备方法包括合金冶炼、锻造开坯、高温轧制及热处理四步:

1)合金熔炼:采用真空感应熔炼炉对配制的合金原料进行熔炼,当真空度达到0.35p时通入高纯氩气并进行熔炼,然后采用电渣重熔工艺精炼以降低夹杂物含量。其中,合金熔炼采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理,确保合金冶炼完成后期p、s含量均不高于0.03%、n元素含量不超过200ppm。

2)锻造开坯:将铸锭以10℃/min的速率升温至1000℃保温0.5小时,随后升温至1200℃进行均匀化处理,完成后再1180-1200℃进行锻造开坯,每道次变形量5~10%,总变形量60%;

3)高温轧制:采用厚度1.0mm的304的不锈钢板对合金进行包套,随后以10℃/min的速率将锻造完成后的板坯升温至1180-1200℃范围内进行轧制,每道次变形量10%,总变形量60%。其中,合金轧制前需将轧辊加热至500℃以上,且每道次锻造及轧制完成后回炉保温,其保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量90%;

4)热处理:将轧制后的合金在1120℃保温4小时进行再结晶处理,空冷至温室后在760℃保温8小时,随后升温至860℃保温2小时,然后空冷至室温;

图1与图2为合金包套轧制板材照片,其表面采用厚度1.0mm的304合金包套避免降温幅度过快及剪切应力开裂等的影响,并通过多道次小变形量的方式轧制成型合金板材。

图3为实施例1组织形貌照片,可见合金经轧制后完全再结晶,其晶粒尺寸在30-50微米范围内。对合金热处理后力学性能测试结果表明,其在850℃屈服强度707mpa。

实施例2

本实施例的镍基高钨多晶高温合金材料,按质量百分比计包括:cr:17%,co:20%,ti:1.0%,al:4.0%,w:7.0%,si:0.2%,mn:0.3%,nb:1.5%,c:0.07%,余量为ni;

本实施例的制备方法包括合金冶炼、锻造开坯、高温轧制及热处理四步:

1)合金熔炼:采用真空感应熔炼炉对配制的合金原料进行熔炼,当真空度达到0.35p时通入高纯氩气并进行熔炼,然后采用电渣重熔工艺精炼以降低夹杂物含量。其中,合金熔炼采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理,确保合金冶炼完成后期p、s含量均不高于0.03%、n元素含量不超过200ppm。

2)锻造开坯:将铸锭以10℃/min的速率升温至1000℃保温0.5小时,随后升温至1200℃进行均匀化处理,完成后再1180-1200℃进行锻造开坯,每道次变形量5~10%,总变形量60%;

3)高温轧制:采用厚度1.0mm的304的不锈钢板对合金进行包套,随后以10℃/min的速率将锻造完成后的板坯升温至1180-1200℃范围内进行轧制,每道次变形量10%,总变形量60%。其中,合金轧制前需将轧辊加热至500℃以上,且每道次锻造及轧制完成后回炉保温,其保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量90%;

4)热处理:将轧制后的合金在1120℃保温4小时进行再结晶处理,空冷至温室后在760℃保温8小时,随后升温至860℃保温2小时,然后空冷至室温;

实施例3

一种镍基高钨多晶高温合金的制备工艺,包括以下步骤:

1)合金熔炼:按质量百分比计,将cr:15%,co:18%,ti:0.5%,al:4.5%,w:8.0,si:0.5%,mn:0.1%,nb:0.5%,c:0.08%,余量为ni,采用氧化镁碱性炉衬,在真空度为0.3-0.5pa下以及氩气保护下进行熔炼,然后采用电渣重熔工艺精炼,得到铸锭;

2)锻造开坯:将铸锭以10℃/min的速率自室温升温至900℃保温1.0小时,随后在1160℃进行均匀化处理,完成后在1180℃进行锻造开坯,每道次变形量为5%,总变形量不低于60%;每道次锻造完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t。

3)高温轧制:将轧辊加热至500℃以上,并采用厚度1.0-1.5mm的304的不锈钢板对合金进行包套后,再将锻造完成后的板坯以20℃/min的速率自室温升温至1200℃进行轧制,每道次变形量为8%,总变形量不低于60%;每道次轧制完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量不低于90%。

4)热处理:将轧制后的合金在1100℃保温5小时进行再结晶处理,空冷至温室后在750℃保温9小时,随后升温至840℃保温2.5小时,然后空冷至室温。

实施例4

一种镍基高钨多晶高温合金的制备工艺,包括以下步骤:

1)合金熔炼:按质量百分比计,将cr:16%,co:20%,ti:1%,al:4%,w:7.0,si:0.2%,mn:0.5%,nb:1%,c:0.05%,余量为ni,采用氧化镁碱性炉衬,在真空度为0.3-0.5pa下以及氩气保护下进行熔炼,然后采用电渣重熔工艺精炼,得到铸锭;

2)锻造开坯:将铸锭以20℃/min的速率自室温升温至1000℃保温0.5小时,随后在1180℃进行均匀化处理,完成后在1190℃进行锻造开坯,每道次变形量为7%,总变形量不低于60%;每道次锻造完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t。

3)高温轧制:将轧辊加热至500℃以上,并采用厚度1.0-1.5mm的304的不锈钢板对合金进行包套后,再将锻造完成后的板坯以15℃/min的速率自室温升温至1180℃进行轧制,每道次变形量为5%,总变形量不低于60%;每道次轧制完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量不低于90%。

4)热处理:将轧制后的合金在1120℃保温4小时进行再结晶处理,空冷至温室后在770℃保温5小时,随后升温至870℃保温1.5小时,然后空冷至室温。

实施例5

一种镍基高钨多晶高温合金的制备工艺,包括以下步骤:

1)合金熔炼:按质量百分比计,将cr:18%,co:15%,ti:1.5%,al:3.5%,w:8.5,nb:1.5%,c:0.03%,余量为ni,采用氧化镁碱性炉衬,在真空度为0.3-0.5pa下以及氩气保护下进行熔炼,然后采用电渣重熔工艺精炼,得到铸锭;

2)锻造开坯:将铸锭以15℃/min的速率自室温升温至950℃保温0.8小时,随后在1200℃进行均匀化处理,完成后在1200℃进行锻造开坯,每道次变形量为10%,总变形量不低于60%;每道次锻造完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t。

3)高温轧制:将轧辊加热至500℃以上,并采用厚度1.0-1.5mm的304的不锈钢板对合金进行包套后,再将锻造完成后的板坯以10℃/min的速率自室温升温至1190℃进行轧制,每道次变形量为10%,总变形量不低于60%;每道次轧制完成后回炉保温,保温时间t与炉外时间t满足5t≤t≤10t,最终轧制成板材时其总变形量不低于90%。

4)热处理:将轧制后的合金在1130℃保温3小时进行再结晶处理,空冷至温室后在760℃保温8小时,随后升温至850℃保温2小时,然后空冷至室温。

对比例1

本对比例的镍基高钨多晶高温合金(耐热钢)材料,按质量百分比计包括:cr:17%,co:20%,ti:1.5%,al:4.5%,w:8.5%,si:0.2%,mn:0.3%,nb:1.0%,c:0.07%,余量为ni;

本实施例的制备方法包括合金冶炼、锻造开坯、高温轧制及热处理四步:

1)合金熔炼:采用真空感应熔炼炉对配制的合金原料进行熔炼,当真空度达到0.35pa范围内时通入高纯氩气并进行熔炼,然后采用电渣重熔工艺精炼以降低夹杂物含量。其中,合金熔炼采用氧化镁碱性炉衬,熔炼前采用纯镍洗炉,合金原料加入前进行抛丸处理,确保合金冶炼完成后期p、s含量均不高于0.03%、n元素含量不超过200ppm。

2)锻造开坯:将铸锭以10℃/min的速率升温至1000℃保温0.5小时,随后升温至1200℃进行均匀化处理,完成后再1180-1200℃进行锻造开坯,每道次变形量10%,总变形量60%;

3)高温轧制:以10-20℃/min的速率将锻造完成后的板坯升温至1180-1200℃范围内进行轧制,每道次变形量15%,总变形量30%。其中,合金轧制前将轧辊加热至500℃以上;

4)热处理:将轧制后的合金在1120℃保温4小时进行再结晶处理,空冷至温室后在760℃保温8小时,随后升温至860℃保温2小时,然后空冷至室温;

图4与图5为合金未包套轧制板材照片,经两道次轧制后表面出现大量裂纹,表明合金将温过快导致其加工性能大幅下降,同时较高变形量也是导致其开裂的原因之一。

图6为比较例1组织形貌照片,可见合金经轧制后卫完全再结晶,晶粒内部仍可见明显的偏析现象。对合金热处理后力学性能测试结果表明,其在850℃屈服强度628mpa。

本发明的合金成分按质量百分比满足如下范围要求:cr:15~18%,co:15~20%,ti:0.5~1.5%,al:3.5~4.5%,w:7.0~8.5%,si:≤0.5%,mn:≤0.5%,nb:0.5~1.5%,c:0.03~0.08%,余量为ni;其制备工艺包括合金冶炼、锻造开坯、高温轧制及热处理四步。其中冶炼过程控制合金中夹杂物含量,同时在304不锈钢包套的同时采用高温多道次小变形量进行轧制,最终获得高钨含量镍基多晶高温合金板材。本发明的合金经热处理后完全再结晶,其晶粒尺寸30-50mm,晶内弥散分布ni3al相,且其体积分数不低于35%,其在850℃条件下屈服强度不低于700mpa。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1