本发明属于超高温结构材料领域,具体涉及到一种将陶瓷高含量均匀引入三维碳纤维编织体的方法。
背景技术:
近些年来,航空航天领域对于能够在超高温环境下,长时间有效服役的高温结构材料的需求日益迫切。纵观目前高温结构材料体系,超高温陶瓷材料(主要包括过渡族金属的难熔硼化物、碳化物和氮化物,如ZrB2、HfB2、TaC、HfC、ZrC、HfN等,其熔点均在3000℃以上)由于具有优异的高温综合性能而受到了广泛的关注和研究。但超高温陶瓷材料作为一种典型的脆性材料,较低的抗损伤容限和抗热冲击性能限制了其服役可靠性,成为其应用在航空航天领域的瓶颈问题。于是如何实现超高温陶瓷材料的增韧成为了近些年来材料科学领域关注的焦点。研究者们围绕超高温陶瓷的增韧方法陆续开展了相关研究,先后探索并建立了多种增韧方法。其中三维碳纤维增韧被认为是最有效的方法,通过纤维拔出,纤维桥联等机制能够有效提高材料裂纹扩展阻力,能够大幅度优化其本征脆性,提高增韧效果。于是如何实现超高温陶瓷材料与碳纤维的有效复合,将超高温陶瓷高含量均匀引入三维碳纤维编织体成为了工程师和科学家们聚焦的热点。当前传统的将超高温陶瓷引入三维碳纤维编织体的方法主要有:化学气相渗透法(CVI)、先驱体裂解法(PIP)以及反应熔渗法(RMI)等,但是这些方法由于受前驱体种类约束、产率低,难以实现超高温陶瓷组分和含量的调控,而且存在分布不均匀,工艺周期长(1周以上)、制备成本较高等缺点。因此急需研究和发明一种新方法,能够将超高温陶瓷高含量均匀引入三维碳纤维编织体中,而且成本低廉,工艺周期短,从而为高性能三维碳纤维增韧超高温陶瓷材料的制备提供高品质的坯体。
技术实现要素:
本发明是为了解决目前将超高温陶瓷引入三维碳纤维编织体的方法中超高温陶瓷分布不均匀、组分含量较低、工艺周期长的问题,而提供一种工艺周期短且制备成本低廉的将超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法。
本发明超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法按以下步骤实现:
一、将超高温陶瓷粉体与无水乙醇以及聚丙烯酸(PAA)混合装入球磨罐,其中超高温陶瓷粉体的固相含量为35~45vol%,聚丙烯酸(PAA)占超高温陶瓷粉体质量的1%~2%,然后将球磨罐置于行星球磨机中球磨处理,得到超高温陶瓷浆料;
二、通过注浆装置将超高温陶瓷浆料注入碳纤维编织体内部,待注入出现阻力时,碳纤维编织体转移至装有超高温陶瓷浆料的反应器中,再施加超声振动,随后继续进行注浆,完成一次振动辅助注浆过程,反复振动辅助注浆过程多次,得到振动辅助注浆后的坯体;
三、将超高温陶瓷浆料和振动辅助注浆后的坯体放入反应器中,超高温陶瓷浆料浸没振动辅助注浆后的坯体,反应器放入真空浸渍桶中,在真空环境下浸渍处理,然后对反应器进行超声振动,完成一次振动辅助真空浸渍过程,反复振动辅助真空浸渍过程多次,完成超高温陶瓷组分高含量均匀引入三维碳纤维编织体。
本发明将超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法,首先添加聚丙烯酸(PAA)作为分散剂与陶瓷粉体、无水乙醇混合,借助高能球磨制备出具有高固相含量和良好分散流动性的超高温陶瓷浆料;然后通过振动辅助注浆将陶瓷浆料直接注入三维碳纤维编织体中;最后再经过振动辅助真空浸渍进一步将陶瓷浆料填充在三维碳纤维编织体中。
本发明超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法包含如下有益效果:
1.本发明借助简便易得的注射器,通过注浆的方式高效地将超高温陶瓷浆料快速引入碳纤维编织体的骨架中,而且通过从碳纤维编织体的径面和轴面处以不同位置和深度注入,能够确保坯体内部各个位置都能够被陶瓷填充,保证了组分和含量的均匀性。
2.本发明采用了超声波高频振动,使三维碳纤维骨架中纳米陶瓷颗粒能够始终保持跳跃堆垛的状态,将原本粉体颗粒之间以及粉体与纤维之间的静摩擦转变成动摩擦。一方面改善了粉体在三维碳纤维骨架中的分散均匀性;另一方面打破了粉体团聚,使碳纤维坯体内部的通道和孔隙始终保持,减小了注浆和浸渍的阻力,提高了注浆和浸渍的效率。
3.本发明设备要求简单,相比于化学气相渗透法(CVI)、先驱体裂解法(PIP)以及反应熔渗法(RMI)等,本方法工艺周期缩短(3小时)、制备成本低廉、设备要求简单。所用的设备主要有注射器,真空浸渍桶和超声波清洗器,引入过程中无有害物质排出,对环境无污染。
4.本发明适用于其他种类的陶瓷浆料与三维碳纤维编织体的复合,可大规模推广和产业化。
附图说明
图1为实施例一中原始三维碳纤维骨架内部x-y面的微观结构扫描电镜图(放大倍数500倍);
图2为实施例一中原始三维碳纤维骨架内部z面的微观结构扫描电镜图(放大倍数500倍);
图3为实施例一中采用振动辅助注浆和振动辅助真空浸渍后三维碳纤维骨架内部x-y面的微观结构扫描电镜图(放大倍数400倍);
图4为实施例一中采用振动辅助注浆和振动辅助真空浸渍后三维碳纤维骨架内部z面的微观结构扫描电镜图(放大倍数200倍)。
具体实施方式
具体实施方式一:本实施方式超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法按以下步骤实施:
一、将超高温陶瓷粉体与无水乙醇以及聚丙烯酸(PAA)混合装入球磨罐,其中超高温陶瓷粉体的固相含量为35~45vol%,聚丙烯酸(PAA)占超高温陶瓷粉体质量的1%~2%,然后将球磨罐置于行星球磨机中球磨处理,得到超高温陶瓷浆料;
二、通过注浆装置将超高温陶瓷浆料注入碳纤维编织体内部,待注入出现阻力时,碳纤维编织体转移至装有超高温陶瓷浆料的反应器中,再施加超声振动,随后继续进行注浆,完成一次振动辅助注浆过程,反复振动辅助注浆过程多次,得到振动辅助注浆后的坯体;
三、将超高温陶瓷浆料和振动辅助注浆后的坯体放入反应器中,超高温陶瓷浆料浸没振动辅助注浆后的坯体,反应器放入真空浸渍桶中,在真空环境下浸渍处理,然后对反应器进行超声振动,完成一次振动辅助真空浸渍过程,反复振动辅助真空浸渍过程多次,完成超高温陶瓷组分高含量均匀引入三维碳纤维编织体。
具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中所述的超高温陶瓷粉体为碳化锆粉体、碳化铪粉体、碳化硅粉体、碳化钽粉体、硼化锆粉体、硼化铪粉体、氮化铪粉体中一种或多种混合物。
具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤一中控制球磨的转速为250~300r/min,球磨时间为8~10h。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤二中所述的注浆装置为注射器。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是步骤二中超高温陶瓷浆料从碳纤维编织体的不同位置和深度注入碳纤维编织体内部。
本实施方式从碳纤维编织体的径面和轴面处以不同位置和深度将陶瓷浆料注入编织体内部。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤二中超声振动的频率为40~60KHz。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤二中反复振动辅助注浆过程3~5次。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是步骤三中在真空度为0.09~0.10MPa的真空环境下浸渍处理1小时。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤三中超声振动的频率为40~60KHz。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤三中反复振动辅助真空浸渍过程3~5次。
实施例一:本实施例超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法按以下步骤实施:
一、将碳化锆粉体(粉体的平均粒径为200nm,北京华威锐科化工有限公司生产)和碳化硅粉体(粉体的平均粒径为500nm,上海阿拉丁试剂有限公司生产)混合作为超高温陶瓷粉体与无水乙醇以及聚丙烯酸(分散剂)混合装入球磨罐,其中碳化硅粉体占超高温陶瓷粉体体积分数为30%,超高温陶瓷粉体(在浆料中的)固相含量为35vol%,PAA占超高温陶瓷粉体质量的2%,然后将球磨罐置于行星球磨机中在250r/min转速下球磨处理10h,得到超高温陶瓷浆料;
二、通过注射器将超高温陶瓷浆料从碳纤维编织体的径面和轴面的不同位置和深度注入碳纤维编织体内部,待注入出现(明显)阻力时(推动注射器困难),碳纤维编织体转移至装有超高温陶瓷浆料的烧杯中,再施加超声振动,超声频率设置为40KHz,通过超声振动使三维碳纤维中的陶瓷颗粒保持振动堆垛的状态,打破粉体团聚,减小注浆阻力,随后继续进行注浆,完成一次振动辅助注浆过程,反复振动辅助注浆过程3次,得到振动辅助注浆后的坯体;
三、将振动辅助注浆后的坯体连同装有超高温陶瓷浆料的烧杯整体放入真空浸渍桶中,,超高温陶瓷浆料浸没坯体,在真空环境下浸渍处理1小时,再对烧杯进行超声振动,超声频率设置为40KHz,完成一次振动辅助真空浸渍过程,反复振动辅助真空浸渍过程3次,完成超高温陶瓷组分高含量均匀引入三维碳纤维编织体。
本实施例通过图1和图2的扫描电镜图可以观察到:三维碳纤维编织体骨架内部存在着大量的微米级孔隙和通道,这为亚微米陶瓷粉体浆料的注浆和浸渍提供了良好的基础。通过将图1、图2与图3、图4对比可以发现:经过振动辅助注浆和振动辅助真空浸渍后,原始的三维碳纤维编织体骨架内部存在的微米级孔隙和通道均被超高温陶瓷组分以高含量均匀填充,通过称量振动辅助注浆和振动辅助真空浸渍前后质量以及体积计算,本实施例向三维碳纤维骨架中引入了体积含量为40%的超高温陶瓷组分。
实施例二:本实施例与实施例一不同的是步骤一将硼化锆粉体(粉体的平均粒径为200nm,北京华威锐科化工有限公司生产)和碳化硅粉体(粉体的平均粒径为500nm,上海阿拉丁试剂有限公司生产)混合作为超高温陶瓷粉体与无水乙醇以及聚丙烯酸(分散剂)混合装入球磨罐,其中碳化硅粉体占超高温陶瓷粉体体积分数为30%,超高温陶瓷粉体固相含量为35vol%,PAA占超高温陶瓷粉体质量的1%,然后将球磨罐置于行星球磨机中在250r/min转速下球磨处理10h,得到超高温陶瓷浆料。
本实施例通过称量振动辅助注浆和振动辅助真空浸渍前后质量以及体积计算,本实施例向三维碳纤维骨架中引入了体积含量为35%的超高温陶瓷组分。
实施例三:本实施例与实施例二不同的是步骤二和步骤三中的超声频率设置为60KHz。
本实施例通过称量振动辅助注浆和振动辅助真空浸渍前后质量以及体积计算,本实施例向三维碳纤维骨架中引入了体积含量为38%的超高温陶瓷组分。