一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法与流程

文档序号:24046576发布日期:2021-02-23 19:00阅读:183来源:国知局
一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法与流程

[0001]
本发明属于磁性材料技术领域,涉及一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法。


背景技术:

[0002]
微波暗室是电磁兼容(emc)试验、测试的关键装备和理想场地.微波暗室又称屏蔽暗室、电波暗室、无反映屏蔽室等.目前用于emc微波暗室的吸波材料主要有三类:介电损耗型吸波材料、铁氧体磁性吸收材料以及复合吸波材料等。铁氧体吸波体直接贴在屏蔽暗室的金属壁上,可最大限度地吸收电磁波的低频部分。fcc和欧盟标准要求emc测试的频率下限为30mhz,因此,emc微波暗室必须在这一频率范围内提供可接受的测试精度。国际电工委员会(iec)定义了测试电子设备辐射敏感度的均匀场要求的频率范围最低到26mhz,所以微波暗室的低频性能十分引人注目,铁氧体磁性吸波材料因此成了微波暗室质量的关键。
[0003]
根据铁氧体吸波材料的一般原理:当磁导率ui>200时,ui*fm=1.5x105mhz,fm为铁氧体电磁波吸收体的匹配频率,随着emc测试频率标准往低频移,铁氧体的磁导率ui需要提高。当emc测试频率在30mhz时,铁氧体的磁导率需要5000左右,镍锌铁氧体材料磁导率一般只有2000以下,所以对于这种低频率的吸波材料只能采用锰锌铁氧体材料。为了达到一定频率电磁波在铁氧体中吸收效果最佳,铁氧体材料的的复数磁导率u需满足u=λ/(2πt),λ为电磁波波长,t为吸波材料的厚度,所以用于一定频率的吸波锰锌铁氧体材料,与常规的锰锌铁氧体材料还要有所区别。
[0004]
cn110845228a公开了一种贫铁软磁铁氧体,它由主成分和副成分组成,以摩尔百分比计,所述主成分包括46.0~49.9mol%的fe2o3、21.0~26.0mol%的zno以及余量的mno;以主成分质量和为基准,所述副成分至少含有500~2500ppm的tio2或1000-5000ppm的sno2。
[0005]
cn105272194a公开了一种镍锌系铁氧体吸波材料配方、粉末及其制造方法,配方包括主成份和添加物,主成份是三氧化二铁fe2o3、氧化锌zno、氧化亚镍nio,主成份的重量百分含量是:fe2o3为64~70wt%,zno为15~25wt%,nio为6~21wt%,主成份含量总计重量百分比100wt%;添加物为钽氧化物和/或铌氧化物。
[0006]
cn109688780b公开了一种铁硅铝电磁波吸收剂的制备方法,将锰锌铁氧体与铁硅铝合金粉混合球磨,料球比为1:14~16,球磨5~50h,然后烘干得到铁硅铝电磁波吸收剂,所述锰锌铁氧体占所述铁硅铝电磁波吸收剂的0.5~5at%,所述锰锌铁氧体的配比为:52~55at%fe2o3、33~36at%mno、10~14at%zno。
[0007]
但目前的电磁波吸收体的反射损耗仍较高,材料的吸收电磁波能力并不理想,因此急需对其组分和配方加以优化改进。


技术实现要素:

[0008]
针对现有技术存在的不足,本发明的目的在于提供一种电磁吸收与屏蔽的铁氧体
材料、电磁波吸收体及其制备方法,本发明通过对主成分和副成分中各组分进行特殊选择并对配比进行优化,使制造得到的电磁波吸收体整体性能优异,在100khz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。
[0009]
为达此目的,本发明采用以下技术方案:
[0010]
第一方面,本发明提供了一种电磁吸收与屏蔽的铁氧体材料,所述的铁氧体材料包括主组分和副组分;所述的主组分包括fe2o3、zno和mno,所述的副组分包括cuo、nio和co2o3。
[0011]
本发明限定了副组分包括cuo、nio和co2o3,添加cuo的作用一方面在于降低烧结温度,使晶粒更加完整、组织更加致密,另一方面cu
2+
可以部份替换晶格中的mn离子,从而提高磁导率、性能稳定性,添加nio的作用在于取代部份mn离子,从而提高材料的饱和磁感应强度和烧结密度,添加co2o3的作用在于置换晶格中的mn离子,co铁氧体具有较大正k1值,锰锌铁氧体为负k1值,适当添加可以起到补偿作用,从而降低磁晶各项异性场,提高材料的磁导率和截止频率,副组分中的三种物质相互协同,使制造得到的电磁波吸收体整体性能优异,在100khz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。
[0012]
作为本发明一种优选的技术方案,以主组分的摩尔百分比为100mol%计,其中,fe2o3占44~46mol%,例如可以是44mol%、44.2mol%、44.6mol%、44.8mol%、45mol%、45.2mol%、45.4mol%、45.6mol%、45.8mol%或46mol%,zno占20~24mol%,例如可以是20mol%、20.5mol%、21mol%、21.5mol%、22mol%、22.5mol%、23mol%、23.5mol%或24mol%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,余量为mno。
[0013]
优选地,以主组分的质量分数为100wt%计,所述的副组分中包括0~3wt%的cuo、0~0.1wt%nio以及0~1wt%的co2o3,cuo可以是0.5wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%或3.0wt%,nio可以是0.01wt%、0.02wt%、0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%或0.1wt%,co2o3的含量可以是0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1.0wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,cuo、nio和co2o3的含量均不包括0。
[0014]
本发明通过对副成分中各组分配比进行优化,使制备得到的电磁波吸收体整体性能优异,在100khz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。具体而言,本申请限定了副组分中包括0~3wt%的cuo,当cuo的添加量高于3wt%时,会导致晶粒异常长大,形成巨晶,使晶粒一致性变差,从而使材料性能恶化,这是由于cuo是低熔点物质,添加量过多,形成液相烧结,加速晶粒生长,造成晶粒异常长大;本申请还限定了副组分中包括0~0.1wt%的nio,当nio的添加量高于0.1wt%时,会导致磁导率显著下降,这是由于ni+在晶格中站b位,使b位置离子磁矩降低,从而降低磁导率显著下降;本申请还限定了副组分中包括0~1wt%的co2o3,当co2o3的添加量高于1wt%时,会导致磁导率显著下降,这是由于co铁氧体具有较大的正k1,过量添加会造成最终铁氧体中的k1增大,从而降低综合性能。
[0015]
第二方面,本发明提供了一种电磁波吸收体,所述的电磁波吸收体由第一方面所
述的铁氧体材料制备得到。
[0016]
作为本发明一种优选的技术方案,所述的电磁波吸收体在25℃下的磁导率为3500~6000,例如可以是3500、4000、4500、5000、5500或6000,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0017]
优选地,所述的电磁波吸收体的最高反射损耗为-24db。
[0018]
优选地,所述的电磁波吸收体的最佳匹配频率为25~50mhz,例如可以是25mhz、30mhz、35mhz、40mhz、45mhz或50mhz,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0019]
优选地,所述的电磁波吸收体为片状结构,所述的电磁波吸收体的中心处开设有沿厚度方向贯穿的通孔。
[0020]
优选地,所述的电磁波吸收体的厚度为3~10mm,例如可以是3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0021]
第三方面,本发明提供了一种第二方面所述的电磁波吸收体的制备方法,所述的制备方法包括:
[0022]
按照主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno,与副组分cuo、nio和co2o3混合后经造粒成型后得到坯体,坯体经保温烧结得到所述的电磁波吸收体。
[0023]
作为本发明一种优选的技术方案,所述的制备方法具体包括如下步骤:
[0024]
(ⅰ)按照主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno,加水砂磨,喷雾造粒得到喷雾料;
[0025]
(ⅱ)喷雾料经预烧后加水进行二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
[0026]
(ⅲ)向砂磨料中加入pva和消泡剂后进行二次喷雾造粒得到颗粒,颗粒经成型处理得到坯体;
[0027]
(ⅳ)坯体经保温烧结得到所述的电磁波吸收体。
[0028]
本发明提供的制备方法采用预烧和二次砂磨,通过预烧使得各种原材料部分发生反应,部份铁氧体化,有利于毛坯成型和烧结收缩率的控制;二次砂磨的作用在于使颗粒的粒度达到一定的分布范围,有利于烧结过程中晶粒均匀生长。
[0029]
作为本发明一种优选的技术方案,步骤(ⅰ)中,所述的砂磨时间为50~70min,例如可以是50min、52min、54min、56min、58min、60min、62min、64min、66min、68min或70min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为60min。
[0030]
优选地,砂磨后的混料循环混合20~40min后再进行喷雾造粒,例如可以是20min、22min、24min、26min、28min、30min、32min、34min、36min、38min或40min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为30min。
[0031]
优选地,所述的喷雾造粒的温度为200~400℃,例如可以是200℃、220℃、240℃、260℃、280℃、300℃、320℃、340℃、360℃、380℃或400℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0032]
作为本发明一种优选的技术方案,步骤(ⅱ)中,所述的二次砂磨的时间为100~150min,例如可以是100min、105min、110min、115min、120min、125min、130min、135min、
140min、145min或150min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为120min。
[0033]
作为本发明一种优选的技术方案,步骤(ⅲ)中,所述的pva占砂磨料总质量的0.05~0.1wt%,例如可以是0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%或0.1wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为0.08wt%。
[0034]
优选地,所述的消泡剂占砂磨料总质量为0.001~0.005wt%,例如可以是0.001wt%、0.002wt%、0.003wt%、0.004wt%或0.005wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,优选为0.004wt%。
[0035]
优选地,二次喷雾造粒得到的颗粒评价粒径为50~200μm,例如可以是50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0036]
优选地,所述的坯体的密度为2.9~3.1g/cm3,例如可以是2.9g/cm3、2.92g/cm3、2.94g/cm3、2.96g/cm3、2.98g/cm3、3.0g/cm3、3.02g/cm3、3.04g/cm3、3.06g/cm3、3.08g/cm3或3.1g/cm3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0037]
优选地,所述的坯体为片状结构,所述的坯体的中心处开设有沿厚度方向贯穿的通孔。
[0038]
作为本发明一种优选的技术方案,步骤(ⅳ)中,所述的保温烧结过程包括:
[0039]
坯体在空气气氛下,以v1的升温速率由常温加热至t1,保温一段时间;随后,坯体在保护性气氛下以v2的降温速率降温至t2;最后,坯体在保护性气氛下以v3的降温速率继续降至常温。
[0040]
本发明采用梯度烧结工艺,有利于毛坯中胶水和有机添加剂的排出,有利于晶粒的均匀生长,并适当控制烧结成本。
[0041]
优选地,所述的空气气氛中氧气的体积浓度为2~6%,例如可以是2.0%、2.5%、3.0%、3.5%、4.0%、4.5%、5.0%、5.5%或6.0%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0042]
优选地,所述的v1为0.3~2℃/min,例如可以是0.3℃/min、0.4℃/min、0.5℃/min、0.6℃/min、0.7℃/min、0.8℃/min、0.9℃/min、1.0℃/min、1.1℃/min、1.2℃/min、1.3℃/min、1.4℃/min、1.5℃/min、1.6℃/min、1.7℃/min、1.8℃/min、1.9℃/min或2.0℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0043]
优选地,所述的t1为1300~1450℃,例如可以是1300℃、1310℃、1320℃、1330℃、1340℃、1350℃、1360℃、1370℃、1380℃、1390℃、1400℃、1410℃、1420℃、1430℃、1440℃或1450℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
[0044]
优选地,在t1温度下保温3~8h,例如可以是3h、4h、5h、6h、7h或8h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为5h。
[0045]
优选地,所述的保护性气氛为氮气气氛。
[0046]
优选地,所述的v2为1.5~1.7℃/min,例如可以是1.5℃/min、1.52℃/min、1.54℃/min、1.56℃/min、1.58℃/min、1.6℃/min、1.62℃/min、1.64℃/min、1.66℃/min、1.68℃/min或1.7℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为1.67℃/min。
[0047]
优选地,所述的t2为800~1000℃,例如可以是800℃、820℃、840℃、860℃、880℃、900℃、920℃、940℃、960℃、980℃或1000℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为900℃。
[0048]
优选地,所述的v3为1~5℃/min,例如可以是1.0℃/min、1.5℃/min、2.0℃/min、2.5℃/min、3.0℃/min、3.5℃/min、4.0℃/min、4.5℃/min或5.0℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步优选为3℃/min。
[0049]
与现有技术相比,本发明的有益效果为:
[0050]
本发明通过对主成分和副成分中各组分进行特殊选择并对配比进行优化,使制造得到的电磁波吸收体整体性能优异,在100khz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。
附图说明
[0051]
图1为本发明实施例1制备得到的电磁波吸收体的结构示意图。
具体实施方式
[0052]
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
[0053]
实施例1
[0054]
本实施例提供了一种电磁波吸收体的制备方法,所述的制备方法包括如下步骤:
[0055]
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno(mno与mn3o4通过mn的摩尔百分比进行等价转换),加水砂磨50min,随后循环混合40min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为200℃;
[0056]
(2)喷雾料经预烧后加水进行100min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
[0057]
(3)向砂磨料中加入pva和消泡剂后进行二次喷雾造粒得到平均粒径为200μm的颗粒,pva占砂磨料总质量的0.05wt%,消泡剂占砂磨料总质量为0.001wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm3,坯体为片状结构,所述的坯体的中心处开设有沿厚度方向贯穿的通孔。
[0058]
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以0.3℃/min的升温速率由常温加热至1300℃,保温3h;随后,坯体在氮气气氛下以1.5℃/min的降温速率降温至800℃;最后,坯体在氮气气氛下以1℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
[0059]
采用e4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100khz和0.25mt;将制备得到的电磁波吸收体放入同轴腔,采用5232a在25~300mhz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗和最佳匹配频率见表2。
[0060]
实施例2
[0061]
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno(mno与mn3o4通过mn的摩尔百分比进行等价转换),加水砂磨55min,随后循环混合35min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为250℃;
[0062]
(2)喷雾料经预烧后加水进行110min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
[0063]
(3)向砂磨料中加入pva和消泡剂后进行二次喷雾造粒得到平均粒径为170μm的颗粒,pva占砂磨料总质量的0.06wt%,消泡剂占砂磨料总质量为0.003wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm3,坯体为片状结构。
[0064]
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以0.8℃/min的升温速率由常温加热至1350℃,保温4h;随后,坯体在氮气气氛下以1.6℃/min的降温速率降温至850℃;最后,坯体在氮气气氛下以2℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
[0065]
采用e4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100khz和0.25mt;将制备得到的电磁波吸收体放入同轴腔,采用5232a在25~300mhz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗和最佳匹配频率见表2。
[0066]
实施例3
[0067]
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno(mno与mn3o4通过mn的摩尔百分比进行等价转换),加水砂磨60min,随后循环混合30min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为300℃;
[0068]
(2)喷雾料经预烧后加水进行120min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
[0069]
(3)向砂磨料中加入pva和消泡剂后进行二次喷雾造粒得到平均粒径为150μm的颗粒,pva占砂磨料总质量的0.08wt%,消泡剂占砂磨料总质量为0.004wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm3,坯体为片状结构。
[0070]
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为4%,以1.2℃/min的升温速率由常温加热至1400℃,保温5h;随后,坯体在氮气气氛下以1.67℃/min的降温速率降温至900℃;最后,坯体在氮气气氛下以3℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
[0071]
采用e4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100khz和0.25mt;将制备得到的电磁波吸收体放入同轴腔,采用5232a在25~300mhz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗和最佳匹配频率见表2。
[0072]
实施例4
[0073]
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno(mno与mn3o4通过mn的摩尔百分比进行等价转换),加水砂磨65min,随后循环混合25min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为350℃;
[0074]
(2)喷雾料经预烧后加水进行140min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
[0075]
(3)向砂磨料中加入pva和消泡剂后进行二次喷雾造粒得到平均粒径为100μm的颗粒,pva占砂磨料总质量的0.09wt%,消泡剂占砂磨料总质量为0.004wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm3,坯体为片状结构。
[0076]
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以1.6℃/min的升温速率由常温加热至1420℃,保温7h;随后,坯体在氮气气氛下以1.68℃/min的降温速率降温至950℃;最后,坯体在氮气气氛下以4℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
[0077]
实施例5
[0078]
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取fe2o3、mn3o4和zno(mno与mn3o4通过mn的摩尔百分比进行等价转换),加水砂磨70min,随后循环混合20min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为400℃;
[0079]
(2)喷雾料经预烧后加水进行150min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
[0080]
(3)向砂磨料中加入pva和消泡剂后进行二次喷雾造粒得到平均粒径为50μm的颗粒,pva占砂磨料总质量的0.1wt%,消泡剂占砂磨料总质量为0.005wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm3,坯体为片状结构。
[0081]
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以2℃/min的升温速率由常温加热至1450℃,保温8h;随后,坯体在氮气气氛下以1.7℃/min的降温速率降温至1000℃;最后,坯体在氮气气氛下以5℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
[0082]
对比例1
[0083]
本实施例与实施例5的区别在于,将副组分中cuo的含量调整为3.5wt%,主组分和副组分中各组分含量见表1,工艺步骤和操作参数与实施例1完全相同。
[0084]
对比例2
[0085]
本实施例与实施例5的区别在于,将副组分中nio的含量调整为0.15wt%,主组分和副组分中各组分含量见表1,工艺步骤和操作参数与实施例1完全相同。
[0086]
对比例3
[0087]
本实施例与实施例5的区别在于,将副组分中co2o3的含量调整为1.5wt%,主组分和副组分中各组分含量见表1,工艺步骤和操作参数与实施例1完全相同。
[0088]
对比例4
[0089]
本对比例与实施例5的区别在于,省去副组分中的cuo,仅添加nio和co2o3,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
[0090]
对比例5
[0091]
本对比例与实施例5的区别在于,省去副组分中的nio,仅添加cuo和co2o3,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
[0092]
对比例6
[0093]
本对比例与实施例5的区别在于,省去副组分中的co2o3,仅添加cuo和nio,cuo和nio的含量、其他工艺步骤和操作参数与实施例1完全相同。
[0094]
对比例7
[0095]
本对比例与实施例5的区别在于,省去副组分中的nio和co2o3,仅添加cuo,主组分
和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
[0096]
对比例8
[0097]
本对比例与实施例5的区别在于,省去副组分中的cuo和co2o3,仅添加nio,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
[0098]
对比例9
[0099]
本对比例与实施例5的区别在于,省去副组分中的cuo和nio,仅添加co2o3,co2o3的含量、其他工艺步骤和操作参数与实施例1完全相同。
[0100]
对比例10
[0101]
本对比例为cn110845228a公开的实施例1,具体包括如下步骤:
[0102]
(1)准备作为主成分的fe2o3、mn3o4和zno(fe2o3的摩尔百分比为47mol%,mno的摩尔百分比为29mol%,zno的摩尔百分比为24mol%,其中,mno与mn3o4通过mn的摩尔百分比进行等价转换),准备作为副成分的tio2、sno2、na2o(以na2co3形式)和ta2o5;按表1称取主成分和副成分在砂磨机中进行湿式混合0.5小时,干燥后在空气中900℃下预烧2小时得到预烧料;
[0103]
(2)将预烧料在砂磨机中砂磨2小时,干燥后(相对于干燥后的预烧料,100wt%)添加1.0wt%的聚乙烯醇(市售)作为粘接剂进行造粒、成型、烧结,最终得到外径为7.0mm、内径为3.0mm、高为10.0mm的圆环形坯体;
[0104]
(3)将坯体在1300℃下进行烧结,保温时间为5小时。
[0105]
对实施例1-5以及对比例1-10制备得到的电磁波吸收体进行性能测试,采用e4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100khz和0.25mt;将制备得到的电磁波吸收体放入同轴腔,采用5232a在25~300mhz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗见表2。
[0106]
表1
[0107]
[0108][0109]
表2
[0110]
[0111][0112]
由表2提供的测试结果可以看出:
[0113]
(1)由实施例1-5可以看出配方在合适范围,材料的磁导率处于理想值,同时产品对电磁波的吸收率也比较大,插入损耗小于-24db。
[0114]
(2)由实施例1和对比例1的测试结果对比发现,当cuo添加量大于3%时,材料的磁导率降低,插入损耗增大,这是由于过量的cuo添加,导致材料过烧,晶粒异常长大。
[0115]
(3)由实施例5、对比例2-3的测试结果对比发现,当nio和co2o3添加量超过本发明公开范围,材料的磁导率显著下降,同时插入损耗增大,这是由于ni和co在烧结过程中都会进入晶格,替代原有位置的离子,从而降低磁导率。
[0116]
(4)由实施例5、对比例4-9的测试结果对比发现,当材料中缺少cuo、nio、co2o3中的一种或两种添加剂,材料的磁导率或插入损耗达不到所需效果,或磁导率和插入损耗都达不到所需效果,这是由于这三种添加剂不但具有各自添加的效果,同时三者之间还有一定的相互配合作用,复合添加对材料的特性具有更好的效果。
[0117]
(5)由对比例10发现,虽然磁导率可以达到3000以上,但是插入损耗偏高,对电磁波吸收效果要差一些。
[0118]
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1