一种萃取分离制备6n级氯化铈的方法
技术领域
1.本发明一种萃取分离制备6n级氯化铈的方法,具体涉及以4n级氯化铈水溶液为料液,通过la/ce/prnd满载三出口分馏萃取体系分离除去4n级氯化铈水溶液中的杂质元素镧、镨和钕,直接制备6n级氯化铈水溶液。本发明的具体技术领域属于6n级氯化铈的制备。
背景技术:2.6n级铈产品在高科技领域具有重要的用途。目前,未见公开报道关于6n级氯化铈等6n级铈产品的制备方法。6n级氯化铈是制备其他6n级铈产品的基础原料之一,因此分离制备6n级氯化铈是当前迫切需要研发和解决的核心技术。
3.本发明针对目前尚无制备6n级氯化铈的方法,建立一种以4n级氯化铈水溶液为料液、p229为萃取剂,通过la/ce/prnd满载三出口分馏萃取体系制备6n级氯化铈水溶液。料液4n级氯化铈水溶液中的稀土元素杂质是镧、镨和钕,高效率、低消耗分离除去4n级氯化铈水溶液中的杂质元素镧、镨和钕成为关键技术问题。
技术实现要素:4.本发明针对目前尚无制备6n级氯化铈的方法,建立一种以4n级氯化铈水溶液为料液la/ce/prnd满载三出口分馏萃取制备6n级氯化铈水溶液的方法。
5.本发明一种萃取分离制备6n级氯化铈的方法,以4n级氯化铈水溶液为料液,la/ce/prnd满载三出口分馏萃取分离除去氯化铈料液中的杂质元素镧、镨和钕,直接制备6n级氯化铈水溶液。la/ce/prnd满载三出口分馏萃取体系由前萃取段、后萃取段和洗涤段构成;la/ce/prnd满载三出口分馏萃取体系设置有水相出口、中间水相出口和有机相出口;水相出口设置于la/ce/prnd满载三出口分馏萃取体系的第一级,中间水相出口设置于前萃取段与后萃取段交界处,有机相出口设置于la/ce/prnd满载三出口分馏萃取体系的最后一级。
6.本发明一种萃取分离制备6n级氯化铈的方法,由皂化段、la/ce/prnd满载三出口分馏萃取体系和洗涤段组成,具体如下:所述的la/ce/prnd满载三出口分馏萃取体系,以皂化段制备的负载lace萃取有机相为稀土皂化有机相,负载lace萃取有机相从第一级进入la/ce/prnd满载三出口分馏萃取体系;以4n级氯化铈水溶液为料液,料液4n级氯化铈水溶液从后萃取段与洗涤段交界处进入la/ce/prnd满载三出口分馏萃取体系;以反萃段获得的氯化铈镨钕水溶液为洗涤剂,洗涤剂氯化铈镨钕水溶液从最后一级进入la/ce/prnd满载三出口分馏萃取体系。从la/ce/prnd满载三出口分馏萃取体系的第一级出口水相获得氯化镧铈水溶液,分取氯化镧铈水溶液用于皂化段制备负载lace萃取有机相;从la/ce/prnd满载三出口分馏萃取体系的中间出口水相获得6n级氯化铈水溶液;从la/ce/prnd满载三出口分馏萃取体系的最后一级有机相出口获得负载ceprnd有机相,负载ceprnd的有机相全部转入反萃段。
7.所述的皂化段,采用氨水对未负载有机相进行皂化而获得氨皂化有机相;分取la/ce/prnd满载三出口分馏萃取体系获得的氯化镧铈水溶液与氨皂化有机相发生交换反应,
制备负载lace萃取有机相;负载lace萃取有机相全部用作la/ce/prnd满载三出口分馏萃取体系的稀土皂化有机相。
8.所述的反萃段,采用浓度为3.0~3.6 mol/l 的hcl溶液为反萃剂,9级逆流反萃从la/ce/prnd满载三出口分馏萃取体系获得的负载ceprnd有机相。反萃段的水相出口获得氯化铈镨钕水溶液,分取氯化铈镨钕水溶液用作la/ce/prnd满载三出口分馏萃取体系的洗涤剂。反萃段的有机相出口获得再生的未负载有机相。
9.所述的4n级氯化铈水溶液中的稀土元素浓度分别为:la 0.12 mg/l~0.30 mg/l、ce 140 g/l~168 g/l、pr 2.0 mg/l~12 mg/l、nd 0.60 mg/l~3.0 mg/l。
10.所述的6n级氯化铈水溶液中的稀土元素浓度分别为la 0.050 mg/l~0.11 mg/l、ce 140 g/l~168 g/l、pr 0.00045 mg/l~0.0030 mg/l、nd 0.00010 mg/l~0.00072 mg/l。
11.所述的未负载有机相为p229的磺化煤油,其中p229的浓度为0.80 mol/l。
12.本发明的有益效果:1)从4n级氯化铈水溶液中直接获得6n级氯化铈水溶液。6n级氯化铈水溶液,通过浓缩结晶可以获得6n级氯化铈晶体;通过精制草酸沉淀可以获得6n级草酸铈,再经灼烧可以获得6n级二氧化铈;通过高纯碳酸氢铵沉淀可以获得6n级碳酸铈;等等。最终可以获得一系列6n级铈化合物。2)产品纯度高,铈的收率高:目标产品6n级氯化铈水溶液中的铈纯度为99.99991%~99.99996%,铈的收率为96%~98%。3)试剂消耗少:只需要la/ce/prnd满载三出口分馏萃取体系这一个分馏萃取体系,而且料液4n级氯化铈水溶液中含量最高的稀土元素铈主要从la/ce/prnd满载三出口分馏萃取体系的中间水相出口流出而获得6n级氯化铈水溶液,有机相的负载量少,因此皂化碱和反萃酸的消耗少。4)分离效果好: la/ce/prnd满载三出口分馏萃取体系分离除去4n级氯化铈料液中的杂质元素镧、镨和钕。5)工艺流程短:la/ce/prnd满载三出口分馏萃取体系直接制备6n级氯化铈水溶液。6)生产成本低:试剂消耗少,分离效果好,工艺流程短。
附图说明
13.图1:本发明一种萃取分离制备6n级氯化铈的方法的工艺流程示意图。图1中,4ncecl3表示4n级氯化铈水溶液;6n ce表示6n级氯化铈水溶液;lace表示氯化镧铈水溶液;ceprnd表示氯化铈镨钕水溶液;未负载有机相为萃取剂p229的磺化煤油。
具体实施方式
14.下面结合具体实施例对本发明一种萃取分离制备6n级氯化铈的方法作进一步描述。
15.实施例 1未负载有机相为p229的磺化煤油,其中p229的浓度为0.80 mol/l。
16.4n级氯化铈水溶液中的稀土元素浓度分别为:la 0.20 mg/l、ce 154 g/l、pr 5.5 mg/l、nd 1.2 mg/l。
17.la/ce/prnd满载三出口分馏萃取体系:以皂化段制备的负载lace萃取有机相为稀土皂化有机相,负载lace萃取有机相从第1级进入la/ce/prnd满载三出口分馏萃取体系;以4n级氯化铈水溶液为料液,料液4n级氯化铈水溶液从第66级进入la/ce/prnd满载三出口分
馏萃取体系;以反萃段获得的氯化铈镨钕水溶液为洗涤剂,洗涤剂氯化铈镨钕水溶液从第84级进入la/ce/prnd满载三出口分馏萃取体系。从la/ce/prnd满载三出口分馏萃取体系的第1级出口水相获得氯化镧铈水溶液,分取氯化镧铈水溶液用于皂化段制备负载lace萃取有机相;从la/ce/prnd满载三出口分馏萃取体系的第24级中间出口水相获得6n级氯化铈水溶液;从la/ce/prnd满载三出口分馏萃取体系的第84级有机相出口获得负载ceprnd有机相,负载ceprnd的有机相全部转入反萃段。
18.皂化段:采用氨水对未负载有机相进行皂化而获得氨皂化有机相;分取la/ce/prnd满载三出口分馏萃取体系获得的氯化镧铈水溶液与氨皂化有机相发生交换反应,制备负载lace萃取有机相;负载lace萃取有机相全部用作la/ce/prnd满载三出口分馏萃取体系的稀土皂化有机相。
19.反萃段:采用浓度为3.3 mol/l 的hcl溶液为反萃剂,9级逆流反萃从la/ce/prnd满载三出口分馏萃取体系获得的负载ceprnd的有机相。反萃段的水相出口获得氯化铈镨钕水溶液,分取氯化铈镨钕水溶液用作la/ce/prnd满载三出口分馏萃取体系的洗涤剂。反萃段的有机相出口获得再生的未负载p229有机相。
20.所述的6n级氯化铈水溶液中的稀土元素浓度分别为la 0.090 mg/l、ce 154 g/l、pr 0.0011 mg/l、nd 0.00030 mg/l。目标产品6n级氯化铈水溶液中铈的纯度为99.99994%,铈的收率为97%。
21.实施例 2未负载有机相为p229的磺化煤油,其中p229的浓度为0.80 mol/l。
22.4n级氯化铈水溶液中的稀土元素浓度分别为:la 0.30 mg/l、ce 168 g/l、pr 12 mg/l、nd 3.0 mg/l。
23.la/ce/prnd满载三出口分馏萃取体系:以皂化段制备的负载lace萃取有机相为稀土皂化有机相,负载lace萃取有机相从第1级进入la/ce/prnd满载三出口分馏萃取体系;以4n级氯化铈水溶液为料液,料液4n级氯化铈水溶液从第64级进入la/ce/prnd满载三出口分馏萃取体系;以反萃段获得的氯化铈镨钕水溶液为洗涤剂,洗涤剂氯化铈镨钕水溶液从第79级进入la/ce/prnd满载三出口分馏萃取体系。从la/ce/prnd满载三出口分馏萃取体系的第1级出口水相获得氯化镧铈水溶液,分取氯化镧铈水溶液用于皂化段制备负载lace萃取有机相;从la/ce/prnd满载三出口分馏萃取体系的第23级中间出口水相获得6n级氯化铈水溶液;从la/ce/prnd满载三出口分馏萃取体系的第79级有机相出口获得负载ceprnd有机相,负载ceprnd有机相全部转入反萃段。
24.皂化段:采用氨水对未负载有机相进行皂化而获得氨皂化有机相;分取la/ce/prnd满载三出口分馏萃取体系获得的氯化镧铈水溶液与氨皂化有机相发生交换反应,制备负载lace萃取有机相;负载lace萃取有机相全部用作la/ce/prnd满载三出口分馏萃取体系的稀土皂化有机相。
25.反萃段:采用浓度为3.6 mol/l 的hcl溶液为反萃剂,9级逆流反萃从la/ce/prnd满载三出口分馏萃取体系获得的负载ceprnd有机相。反萃段的水相出口获得氯化铈镨钕水溶液,分取氯化铈镨钕水溶液用作la/ce/prnd满载三出口分馏萃取体系的洗涤剂。反萃段的有机相出口获得再生的未负载p229有机相。
26.所述的6n级氯化铈水溶液中的稀土元素浓度分别为la 0.11 mg/l、ce 168 g/l、
pr 0.0030 mg/l、nd 0.00072 mg/l。目标产品6n级氯化铈水溶液中铈的纯度为99.99991%,铈的收率为98%。
27.实施例 3未负载有机相为p229的磺化煤油,其中p229的浓度为0.80 mol/l。
28.4n级氯化铈水溶液中的稀土元素浓度分别为:la 0.12 mg/l、ce 140 g/l、pr 2.0 mg/l、nd 0.60 mg/l。
29.la/ce/prnd满载三出口分馏萃取体系:以皂化段制备的负载lace萃取有机相为稀土皂化有机相,负载lace萃取有机相从第1级进入la/ce/prnd满载三出口分馏萃取体系;以4n级氯化铈水溶液为料液,料液4n级氯化铈水溶液从第69级进入la/ce/prnd满载三出口分馏萃取体系;以反萃段获得的氯化铈镨钕水溶液为洗涤剂,洗涤剂氯化铈镨钕水溶液从第89级进入la/ce/prnd满载三出口分馏萃取体系。从la/ce/prnd满载三出口分馏萃取体系的第1级出口水相获得氯化镧铈水溶液,分取氯化镧铈水溶液用于皂化段制备负载lace萃取有机相;从la/ce/prnd满载三出口分馏萃取体系的第27级中间出口水相获得6n级氯化铈水溶液;从la/ce/prnd满载三出口分馏萃取体系的第89级有机相出口获得负载ceprnd有机相,负载ceprnd有机相全部转入反萃段。
30.皂化段:采用氨水对未负载有机相进行皂化而获得氨皂化有机相;分取la/ce/prnd满载三出口分馏萃取体系获得的氯化镧铈水溶液与氨皂化有机相发生交换反应,制备负载lace萃取有机相;负载lace萃取有机相全部用作la/ce/prnd满载三出口分馏萃取体系的稀土皂化有机相。
31.反萃段:采用浓度为3.0 mol/l 的hcl溶液为反萃剂,9级逆流反萃从la/ce/prnd满载三出口分馏萃取体系获得的负载ceprnd有机相。反萃段的水相出口获得氯化铈镨钕水溶液,分取氯化铈镨钕水溶液用作la/ce/prnd满载三出口分馏萃取体系的洗涤剂。反萃段的有机相出口获得再生的未负载p229有机相。
32.所述的6n级氯化铈水溶液中的稀土元素浓度分别为la 0.050 mg/l、ce 140 g/l、pr 0.00045 mg/l、nd 0.00010 mg/l。目标产品6n级氯化铈水溶液中铈的纯度为99.99996%,铈的收率为96%。