一种微生物油脂及其制备方法与流程

文档序号:13157133阅读:499来源:国知局

本发明涉及微生物油脂制备技术,更具体地,涉及一种微生物油脂及其制备方法。



背景技术:

氯丙醇是丙三醇中羟基被氯取代后形成的一类化合物的总称,根据氯原子取代的个数及位置不同,可将氯丙醇分为单氯丙二醇和双氯丙醇两类。其中,3-氯-l,2-丙二醇(3-mcpd)具有干扰人体内性激素平衡,使精子数量减少从而使雄性动物生殖能力减弱的作用。此外,还具有慢性毒性、致癌性和神经毒性。

多环芳烃(polycyclicaromatichydrocarbonspahs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物。迄今已发现有200多种pahs,其中有相当部分具有致癌性,如苯并芘,苯并蒽等。pahs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工,废弃,燃烧或使用的地方都有可能产生多环芳烃。

微生物油脂是采用酵母、霉菌、细菌或藻类等微生物在一定条件下,利用碳水化合物、碳氢化合物或普通油脂为碳源、氮源,以此制备微生物油脂。由于此种制备方法具有油脂含量高、生产周期短、不受季节影响、不占用耕地等诸多优点,其应用的领域较为广泛,也应用以食品领域。

在制备微生物油脂的过程中,由于缩水甘油酯(ges)是缩水甘油和脂肪酸的酯化产物,它存在环氧基结构,属于一类末端环氧酯,环氧基的化学性质活泼,可与细胞内亲核物质反应。因此,在制备过程中或后续作为食品的食用过程中,不可避免会产生缩水甘油酯,而缩水甘油酯极易水解而形成氯丙醇。因此,在制备微生物油脂的过程中,不可避免会使最终微生物油脂中的缩水甘油酯、3-mcpd和多环芳烃的含量较高。



技术实现要素:

本发明提供一种克服上述问题或者至少部分地解决上述问题的微生物油脂及其制备方法,以解决食用微生物油脂中缩水甘油酯、氯丙醇和pahs含量高的技术问题。

根据本发明的一个方面,提供一种微生物油脂,其缩水甘油酯的含量<0.01ppm,氯丙醇含量小于0.1ppm,多环芳烃(pahs)总量<0.5μg/kg。

根据本发明的另外一个方面,还提供一种微生物油脂的制备方法,使制备好的初级微生物油脂流经吸附树脂柱吸附处理。进一步地,该吸附树脂柱中的树脂的平均孔径为6.5-17nm。

具体地,采用微生物发酵的方式制备的微生物初级微生物油脂中会含有较多的缩水甘油酯和氯丙醇。将初级微生物油脂经过含有平均孔径为6.5-17nm的树脂的吸附树脂柱处理,能够有效的同时降低初级微生物油脂中的缩水甘油酯和氯丙醇含量以及pahs的总量。

具体地,吸附树脂柱中的树脂优选采用大孔吸附树脂,平均孔径为6.5-17nm的树脂能够有效的吸附去除油脂中的缩水甘油酯和氯丙醇,但不会对油脂中的其他有益成分造成大量的吸附。因此,初级微生物油脂经树脂吸附后,能够有效的降低初级微生物油脂中的缩水甘油酯和氯丙醇含量,但初级微生物油脂中的主要有益成分,如ara等成分的损失率较小。

在一个具体的实施例中,所述树脂的平均孔径为10-10.5nm。吸附树脂柱中的树脂的孔径保持在合适的范围,能够有效去除油脂中的缩水甘油酯和氯丙醇含量,同时,能够降低油脂中的有益成分的损失率。

在另一个具体的实施例中,进入所述吸附树脂柱的初级微生物油脂的温度为45-60℃,优选为50℃。大孔吸附树脂为孔状结构,比表面积较大,温度过高或过低都可能会改变树脂的结构而影响其吸附效果。而针对于微生物油脂降低缩水甘油酯和氯丙醇,进入吸附树脂柱中的初级微生物油脂的温度保持在合适的范围,能够增强树脂对初级微生物油脂中缩水甘油酯与氯丙醇以及pahs的吸附能力。

同时,在制备微生物初级微生物油脂的过程中,在提炼或精炼过程中涉及到升温过程,并且,在初级微生物油脂中的缩水甘油酯与氯丙醇的吸附过程是一个放热过程。因此,合理地控制进入吸附树脂柱的初级微生物油脂的温度,能够合理地利用初级微生物油脂制备过程中的能量,并有效提高缩水甘油酯和氯丙醇以及pahs吸附效果。

在另一个具体地实施例中,所述吸附树脂柱的直径为10-100cm;所述吸附树脂柱装填径高比为1:7-1:9,优选为1:8。在对初级微生物油脂进行吸附处理时,吸附树脂柱的直径与高度形成的径高比保持在合适的范围,能够提高树脂对油脂中缩水甘油酯、氯丙醇和pahs的吸收效率,同时降低有益成分如ara等的损失率。

具体地,在对初级微生物油脂进行吸附处理时,吸附树脂柱的径高比的比值过小,会使得初级微生物油脂在吸附树脂柱内反复吸附,不仅会降低吸附效率,还会影响初级微生物油脂的收率。而吸附树脂柱的径高比的比值过大,初级微生物油脂在通过吸附树脂柱的时候,容易形成空穴和断流,导致吸附效果不稳定,还会对树脂本身造成损害,降低其使用寿命。

在另一个具体的实施例中,所述吸附树脂柱的初级微生物油脂的进料速度为40-60kg/h,优选为48-57kg/h,更优选为52kg/h。具体地,在一定直径范围内的吸附树脂柱,并在其径高比为1:7-1:9的范围内,进入吸附树脂柱中的初级微生物油脂的流量控制在40-60kg/h,能够显著提高树脂对油脂中缩水甘油酯和氯丙醇的吸附效果和吸附效率。

当进入吸附树脂柱中的初级微生物油脂的流量过大,会导致物料与树脂接触反应时间不足,降低吸附效果;流速过慢会延长反应时间,影响工时成本,物料在柱体内会反复吸附,降低收率。

在另一个具体的实施例中,所述吸附树脂柱中的树脂采用聚丙烯型大孔吸附树脂或苯乙烯、二乙烯苯大孔吸附树脂,优选为聚丙烯型大孔吸附树脂。

在另一个具体的实施例中,经吸附树脂柱吸附后的初级微生物油脂再经分子蒸馏处理;所述分子蒸馏处理的真空度为0-0.5pa,优选为0.1-0.2pa。

具体地,在此真空度范围内,能够使缩水甘油酯和氯丙醇分子与微生物油脂中的有效成分充分的分离,使自由程较大的缩水甘油酯和氯丙醇分子从微生物油脂中分离出去,以进一步降低所得微生物油脂中的缩水甘油酯和氯丙醇含量。

在另一个具体的实施例中,分子蒸馏的温度保持在150-200℃,优选为180-190℃。具体地,分子蒸馏的温度范围保持在此范围内,能够使缩水甘油酯和异丙醇处于气体状态,同时,利用缩水甘油酯和氯丙醇与微生物油脂中有效组分的自由程的不同而更有效的分离缩水甘油酯和氯丙醇,降低微生物油脂中的缩水甘油酯和氯丙醇含量。

在吸附树脂柱吸附的基础上,再结合分子蒸馏处理,能够进一步降低缩水甘油酯、氯丙醇、pahs的含量,但会增加生产设备及工序。

在另一个具体的实施例中,制备所述初级微生物油脂的微生物菌种发酵为:酵母、裂殖壶藻、双鞭甲藻、微球藻、破囊壶菌或高山被孢霉。

具体地,初级微生物油脂可以由上述微生物菌种经发酵、破壁提取、脱胶、碱炼和脱臭处理过程处理所得。由于制备得到的初级微生物油脂经吸附树脂柱吸附处理时,能够一并脱除初级微生物油脂中的色素,在降低微生物油脂中缩水甘油酯、氯丙醇和pahs的同时,还能够脱除色素,能够缩短并简化工艺流程,提高处理效率。

具体地,在微生物菌种的发酵过程中,为使微生物菌种在培养基中的发酵效果更好,其发酵的温度保持在25-35℃,ph保持在6-8。具体地,培养基采用常规的培养基即可,需含有氮、磷、钾等营养元素。

具体地,在微生物菌种发酵过程中,每隔一段时间即对发酵液进行取样,或按照发酵程度的不同合理安排取样时间,并对其中的各项相关指标进行检测,以监控发酵的程度。各项相关指标可以是发酵液中的菌体的油脂含量,以及发酵液中总糖、还原糖、氨基氮或菌体浓度。

具体地,微生物菌种发酵完成后,即开始对发酵液中的微生物细胞进行破壁处理,破壁处理可采用生物酶解法或机械破壁。例如,向发酵完成后的发酵液中加入碱性蛋白酶进行破壁处理。在发酵过程完成后,可将破壁处理时的发酵液的ph调节至7-10的范围内,并通过显微镜镜检,以检测发酵液中微生物细胞的破壁效果,破壁至没有完整的细胞为止。

在另一个具体的实施例中,向所述发酵液经过过滤、烘干处理所得的菌体中加入有机溶剂,然后升温至30-45℃,再经剪切、搅拌、过滤和脱溶后得到微生物毛油。具体地,当采用有机溶剂为己烷或丁烷,其升温后的温度为30-45℃。具体地,此过程属于微生物油脂的提取过程,即发酵液经过滤、烘干,加入有机溶剂后,再升温,并经剪切、搅拌和脱溶的过程,是提取微生物毛油的过程,属于获取微生物油脂的提取过程。

在另一个具体的实施例中,将所述发酵液经过离心机浓缩得到浓缩菌体,浓缩菌体升温至55-65℃、调节ph为8.0-10.0、加入碱性蛋白酶酶解破壁后在线升温75-85℃,并直接进行离心分离处理,以得到微生物毛油。

具体地,对经过破壁处理的菌体直接升温处理后,无需再向菌体中添加有机溶剂,直接进行离心分离,即可达到提取的目的。采用升温后离心处理的方法,能够简化处理过程,节约溶剂回收成本,减少环境污染。

在另一个具体的实施例中,初级微生物油脂经吸附树脂柱处理后,再经分子蒸馏处理;

其中,吸附树脂柱中树脂的平均孔径为10-10.5nm;吸附树脂柱的直径为10-100cm,径高比为1:7-1:9;初级微生物油脂进入吸附树脂柱的进料速度为50kg/h;初级微生物油脂进入吸附树脂柱时的温度为40-50℃;分子蒸馏处理的真空度为0.1-0.2pa;温度为180-190℃。

制备所得的微生物毛油再依次经精炼和脱臭处理,以获取符合质量要求的微生物油脂。具体地,精炼过程包括脱胶、碱炼处理,常规的脱色处理工艺可以被后期的树脂吸附取代,进而缩短了生产工时,有助于提升精炼产能,上述脱胶、碱炼、脱臭处理过程采用常规的处理工艺进行处理即可。

可以理解的是,采用不同的微生物菌种,该制备方法可用于制备多种微生物初级微生物油脂。例如,二十碳四烯酸、二十二碳六烯酸、二十碳五烯酸等。

可以理解的是,采用吸附树脂柱和/或分子蒸馏处理以降低油脂中的缩水甘油酯、氯丙醇含量和pahs的方法,其初级微生物油脂不限于微生物油脂,也可用于其他油脂。

本发明的有益效果主要如下:

(1)将制备得到的初级微生物油脂经具有特定孔径的树脂吸附处理后,不仅能够有效的同时降低油脂中的缩水甘油酯和氯丙醇含量,而且,油脂中的有益成分如ara等的损失率很低。

(2)通过对初级微生物油脂进入吸附树脂柱中的温度、进料速度,以及吸附树脂柱的径高比的控制,能够进一步增强吸附树脂柱对初级微生物油脂中缩水甘油酯和氯丙醇的吸附效果;

(3)在采用吸附树脂柱处理初级微生物油脂的基础上,再进一步采用分子蒸馏处理,能够有效的降低最终产品中的缩水甘油酯和氯丙醇含量。

具体实施方式

下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。

以下实施例中,在制备初级微生物油脂的过程中,脱胶、碱炼、脱色、脱臭等精炼工艺条件相同。

实施例1

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取450kg初级微生物油脂,40℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂平均孔径10-10.5nm,进料速度50kg/h,得油437.8kg,收率97.30%,与未通过树脂柱吸附的成品油对比数据如下见表1。

表1经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗2.7%。

实施例2

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下,通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油489kg,收率97.8%。与未通过树脂柱吸附的成品油对比数据见表2。

表2经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗2.2%。

实施例3

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等精炼工艺后产出初级微生物油脂,取500kg初级微生物油脂,60℃条件下,通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油487kg,收率97.40%,与未通过树脂柱吸附的成品油对比数据见表3。

表3经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗2.6%。

实施例4

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:9,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油491kg,收率98.2%,与未通过树脂柱吸附的成品油对比数据见表4。

表4经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗1.8%。

实施例5

以裂殖壶藻作为发酵菌种,发酵液经离心机浓缩脱水,得到浓缩菌体,调节ph后加蛋白酶破壁、加溶剂提取得到二十二碳六烯酸(dha)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出成品油。取400kg成品油,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:7,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油386kg,收率96.5%,与未通过树脂柱吸附的成品油对比数据见表5。

表5经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对dha的含量造成明显影响,油脂损耗3.5%。

实施例6

以裂殖壶藻作为发酵菌种,发酵液经离心机浓缩脱水,得到浓缩菌体,调节ph后加蛋白酶破壁、加溶剂提取得到二十二碳六烯酸(dha)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出成品油。取400kg成品油,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度40kg/h,得油388kg,收率97.00%,与未通过吸附树脂柱吸附的成品油对比数据见表6。

表6经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对dha的含量造成明显影响,油脂损耗3.0%。

实施例7

以裂殖壶藻作为发酵菌种,发酵液经离心机浓缩脱水,得到浓缩菌体,调节ph后加蛋白酶破壁、加溶剂提取得到二十二碳六烯酸(dha)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出成品油,取400kg成品油,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度60kg/h,得油394kg,收率98.5%,与未通过树脂柱吸附的成品油对比数据见表7。

表7经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对dha的含量造成明显影响,油脂损耗1.5%。

实施例8

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径6.5-7.5nm,进料速度50kg/h,得油490kg,收率98.0%,与未通过树脂柱吸附的成品油对比数据见表8。

表8经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗2.0%。

实施例9

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂,取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径12-17nm,进料速度50kg/h,得油483kg,收率96.6%,与未通过树脂柱吸附的成品油对比数据见表9。

表9经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了成品油中缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗3.4%。

实施例10

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂,取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油489kg,收率97.8%,将吸附后的油脂进行分子蒸馏,分子蒸馏真空度0.5pa,分子蒸馏温度165℃,得油485kg,总收率97.0%,与经树脂吸附、未经分子蒸馏油样以及未通过树脂柱吸附的成品油对比数据见表10。

表10经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了缩水甘油酯、氯丙醇、pahs的含量,且没有对ara的含量造成明显影响,油脂损耗2.2%,通过分子蒸馏进一步降低了成品油中缩水甘油酯和氯丙醇的含量,得率未受明显影响,油脂损耗3.0%。

实施例11

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂,取500kg初级微生物油脂,50℃条件下通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油490kg,收率98.0%,将吸附后的油脂进行分子蒸馏,分子蒸馏真空度0.1pa,分子蒸馏温度185℃,得油484kg,总收率96.8%,与经树脂吸附、未经分子蒸馏油样,以及未通过树脂柱吸附的成品油对比数据见表11。

表11经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了缩水甘油酯、氯丙醇和pahs的含量,且没有对ara的含量造成明显影响,油脂损耗2.0%,通过分子蒸馏进一步降低了成品油中缩水甘油酯和氯丙醇的含量,得率未受明显影响,油脂损耗3.2%。

实施例12

以高山被包霉作为发酵菌种,发酵液经板框过滤得到浓缩菌体,菌体烘干后加入溶剂,剪切搅拌,提取得到二十碳四烯酸(ara)毛油,该毛油经酸化脱胶、碱炼、脱臭等工艺后产出初级微生物油脂。取500kg初级微生物油脂,50℃条件下,通过聚丙烯型大孔吸附树脂柱,吸附树脂柱的直径为50cm,吸附树脂柱的径高比1:8,其中的树脂的平均孔径10-10.5nm,进料速度50kg/h,得油491kg,收率98.2%,将吸附后的油脂进行分子蒸馏,分子蒸馏真空度0.3pa,分子蒸馏温度195℃,得油482kg,总收率96.4%,与经树脂吸附未经分子蒸馏油样,以及未通过树脂柱吸附的成品油对比数据见表12。

表12经吸附树脂柱处理和未经吸附树脂柱处理的成品油中主要成分含量

由上表可见,通过树脂吸附,降低了缩水甘油酯、氯丙醇、pahs的含量,且没有对ara的含量造成明显影响,油脂损耗1.8%,通过分子蒸馏进一步降低了成品油中缩水甘油酯和氯丙醇的含量,得率未受明显影响,油脂损耗3.6%。

对比例1

以与实施例1中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表1。

对比例2

以与实施例2中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表2。

对比例3

以与实施例3中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表3。

对比例4

以与实施例4中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表4。

对比例5

以与实施例5中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表5。

对比例6

以与实施例6中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表6。

对比例7

以与实施例7中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表7。

对比例8

以与实施例8中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表8。

对比例9

以与实施例9中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理。该微生物油脂中的主要成分含量见表9。

对比例10

以与实施例10中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理和分子蒸馏处理。该微生物油脂中的主要成分含量见表10。

对比例11

以与实施例11中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理和分子蒸馏处理。该微生物油脂中的主要成分含量见表11。

对比例12

以与实施例12中同样的方法制备微生物油脂,其区别仅在于:不进行吸附树脂柱吸附处理和分子蒸馏处理。该微生物油脂中的主要成分含量见表12。

由表1-12可以看出,经吸附树脂柱吸附处理后的微生物油脂中,其缩水甘油酯、氯丙醇、pahs的含量明显降低,但有益成分如ara或dha的损失率很低。

对比例13

以与实施例10中同样的方法制备微生物油脂,其区别仅在于:不进行分子蒸馏处理。该微生物油脂中的主要成分含量见表10。

对比例14

以与实施例11中同样的方法制备微生物油脂,其区别仅在于:不进行分子蒸馏处理。该微生物油脂中的主要成分含量见表11。

对比例15

以与实施例12中同样的方法制备微生物油脂,其区别仅在于:不进行分子蒸馏处理。该微生物油脂中的主要成分含量见表12。

对比例16

以与实施例1中同样的方法制备微生物油脂,其区别仅在于:吸附树脂柱中树脂的平均孔径为20-22nm。该微生物油脂中的主要成分含量如下:缩水甘油酯为<0.1ppm、氯丙醇为0.21ppm、ara为49%、pahs为1.73%。

对比例17

以与实施例12中同样的方法制备微生物油脂,其区别仅在于:吸附树脂柱中树脂的平均孔径为18-21nm。该微生物油脂中的主要成分含量:缩水甘油酯为<0.1ppm、氯丙醇为0.17ppm、ara为48.5%、pahs为1.15%。

由表10-12可以看出,经吸附树脂柱处理后,再经分子蒸馏处理,能够显著降低微生物油脂中的缩水甘油酯和氯丙醇含量。

最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1