平行行走系统和包括其的移动平台设备的制作方法

文档序号:30174854发布日期:2022-05-26 11:34阅读:104来源:国知局
平行行走系统和包括其的移动平台设备的制作方法

1.本实用新型涉及转向系统领域,特别是涉及一种用于同时操控单个车轮相互平行转向的平行行走系统和包括其的移动平台设备。


背景技术:

2.各种各样的便携式移动起重设备、搬运设备和类似的设备在许多不同的行业中都有应用。为了便于迁移,这种设备通常安装在轮子上。然而,它们所承载的负荷可能是沉重而不平衡的。因此,设备的转向能力不仅要求便于操作,其稳定性也是必要条件。虽然我们知道许多用于提升装置、搬运装置等类似装置的转向系统,但它们通常是与两轮驱动车辆相关的转向系统,因此不能提供设备的所有车轮的同时转向。考虑到这种设备经常承担沉重而不平衡的负载,特别是在工业应用上,需要设备所有车轮能同时转动,以提供最佳的稳定性。
3.此外,传统的载具、移动机构等在任意方向平移时的灵活性很小,以最小的旋转半径进行自体旋转时也很困难。例如,在狭窄的停车场中,一辆运载重物的车辆通常只能朝一个方向来回移动,角度偏差很小,而且不能在进入、离开和重新定位时进行必要的急转弯。此外,在尝试进行这样的操控时,车辆所载的货物会发生惯性移位,常常达到整个车辆可能失去平衡的程度。因此,需要有一个平行行走系统来解决上述问题。


技术实现要素:

4.本实用新型要解决的技术问题是提供一种平行行走系统,使其用于便携设备、便携载具平台等的转向系统,可以平行和同时的方式操控各个车轮,实现各个车轮的同步、瞬时、平行地转动方向。
5.为解决上述技术问题,本实用新型提供一种平行行走系统,其适用于便携设备、便携载具平台等的转向系统,可平行、同时地操控各个车轮。所述平行行走系统包括第一铰接连杆总成和第二铰接连杆总成。第一铰接连杆总成有一个第一中心横杆、第一纵向连杆和第二纵向连杆,其中第一纵向连杆固定在第一中心横杆的第一端并从此处纵向延伸,第二纵向连杆固定在第一中心横杆的第二端并从此处纵向延伸。同理,第二铰接连杆总成有一个第二中心横杆、第三纵向连杆和第四纵向连杆,第三纵向连杆固定在第二中心横杆的第一端并从此处纵向延伸,第四纵向连杆固定在第二中心横杆的第二端并从此处纵向延伸。第二中心横杆可相对滑动地安装在第一铰接连杆总成的第一中心横杆上。所述第一纵向连杆和所述第二纵向连杆可以从所述第一中心横杆反向平行延长,同样,所述第三纵向连杆和所述第四纵向连杆也可以从所述第二中心横杆反向平行延长。第一,第二,第三和第四纵向连杆的长度可以调节。
6.一个偏心转向曲柄销铰接到所述第一铰接连杆总成的第一中心横杆上,同时旋转驱动第一铰接连杆总成和第二铰接连杆总成。该系统还包含第一、第二、第三和第四车轮系总成。第一、第二、第三和第四轮系总成分别包括一个转向轭,一个安置在转向轭上并可沿
转向轭回转的滚动轮,一个安装在转向轭上的电动滑环,一个安置在电动滑环轴向上的主销,和一个具有相对第一端和第二端的偏心曲柄臂,所述第一端固定在主销的上端,所述第二端用于安装滚轮曲柄销。第一纵向连杆的自由端铰接在第一轮系总成的滚轮曲柄销上,第二纵向连杆的自由端铰接在第二轮系总成的滚轮曲柄销上,第三纵向连杆的自由端铰接在第三轮系总成的滚轮曲柄销上,第四纵向连杆的自由端铰接在第四轮系总成的滚轮曲柄销上。第一、第二、第三和第四轮系总成分别还可以包括设置在电动滑环上端和偏心曲柄臂之间的随动旋转盘。每个轮系可以是任何合适类型的轮子,包括但不限于,一个自驱电动轮,一个自动转向和/或自动驱动的麦克纳姆轮或类似的轮子。
7.第一和第二铰接连杆总成安置在一个中空的底盘内,第一、第二、第三和第四轮系总成安装在中空的底盘上,使得各自的轮子安装在中空底盘的外部,其各自的偏心曲柄臂安装在中空底盘的内部。至少采用一个线性动力单元可选择性驱动第一铰接连杆总成的第一中心横杆相对于第二铰接连杆总成的第二中心横杆做滑动运动。
8.此外,第一、第二、第三和第四转向制动器可以安装在中空底盘内,分别选择性地对第一、第二、第三和第四轮系总成的角度转向运动施加制动。
9.在一实施例中,偏心转向曲柄是一转向曲柄销,所述平行行走系统进一步包括一个旋转驱动装置,一个第一驱动齿轮与所述旋转驱动装置连接,第二传动齿轮与第一驱动齿轮啮合,第三传动齿轮与第二传动齿轮啮合。转向曲柄销偏心地安装在第三传动齿轮上。在本实施例中,离合器可用于选择性地移动第二传动齿轮与第一驱动齿轮和第三传动齿轮脱离,从而在执行离合器时停止转向曲柄销的旋转。
10.在另一实施例中,偏心转向曲柄由转向驱动器驱动,该转向驱动器将转向齿轮的旋转运动传递给偏心转向曲柄。作为另一种选择,可以将中空平台安装在至少两个所述平行行走系统上形成移动平台设备,其中所述中空底盘安装在中空平台外部,所述转向齿轮安装在中空平台内部。在本实施例中,一个环形链条可以旋转地连接所述至少两个平行行走系统的转向齿轮以驱动其同时转向。可在中空平台内安装链条收紧器,以选择性地调节环形链条的松紧度。所述至少两个平行行走系统的其中一个转向齿轮可以直接由方向盘或类似装置驱动。
11.在进一步实施例中,至少二个平行行走系统可以安装到具有至少一个环形环道的平台上。所述的至少二个平行行走系统以相互固定的角度位置铰接滑行在这个环形环道上。例如,可以提供同心的内外环形轨道。在本实施例中,每个平行行走系统都具有彼此独立转向系统,但它们以固定的方式与平台连接。每个平行行走系统可以各自携带一个远程遥控控制的转向驱动总成、电机或类似的装置,它们同时操作,以驱动每个平行行走系统同步、瞬时、平行地转动方向。每个转向驱动总成可连接一个角度传感器,用来监测和控制相应偏心转向曲柄的旋转角度。因此,每个被连接的平行行走系统都可以监控本身的旋转角度,并做出任何必要的误差修正,以使自己相对于由平台连接的其他平行行走系统定位准确。应当说明的是,可以使用任何合适类型的遥控器,遥控器也可以用机载可编程控制器代替,或与机载可编程控制器一起使用。
12.该实用新型的以上描述及其他特点将结合附图进行详细说明。
附图说明
13.上述仅是本实用新型技术方案的概述,为了能够更清楚了解本实用新型的技术手段,以下结合附图与具体实施方式对本实用新型作进一步的详细说明。
14.图1是平行行走系统的透视图。
15.图2是图1中平行行走系统的部分透视图,底盘上盖和一部分内部部件被移除,以显示平行行走系统的细节。
16.图3是图1中平行行走系统的示范轮系总成的透视图。
17.图4是图1中平行行走系统的转向制动器范例的透视图。
18.图5是图1中平行行走系统的转向驱动总成范例透视图。
19.图6是图1中平行行走系统的局部透视图,底盘被移除以显示一个分离的转向连杆结构的细节。
20.图7是移除底盘后的平行行走系统俯视图,图中所示为轮系平行移动的状态。
21.图8是平行行走系统的俯视图,底盘被移除。图中所示为轮系零转弯半径旋转的状态。
22.图9是图1中平行行走系统带底盘的透视图,图中所示为车轮零转弯半径旋转的状态。
23.图10是平行行走系统的另一实施案例的透视图,所示为安装在十字形框架上的自驱动轮系。
24.图11是图10中平行行走系统的透视图,所示为用于重新配置转向连杆的线性推杆。
25.图12是图10中平行行走系统的透视图,所示为底盘上盖封盖转向连杆内部结构。
26.图13所示为一对图10所示平行行走系统的组合体,用于支撑一个平台。
27.图14是图13所示一对平行行走系统的透视图,平台端盖被移除,以显示转向驱动总成的结构细节。
28.图15是透视图,显示具有图10中至少两个连接在一起的平行行走系统的移动单元的备选配置。
29.在附图中,各个附图标识与相关特征一直对应。
具体实施方式
30.如图1-3和图6所示,所述平行行走系统10包括底盘12、覆盖底盘12的封盖14和多个轮系总成16a、16b、16c、16d可旋转地安装到底盘12上。在图1和图2中,底盘12显示为矩形形态,封盖14显示为具有与底盘12相配合的外观形态。此外,四套轮系总成16a、16b、16c、16d显示安装在底盘12的各个对角处。应当说明的是,底盘12和封盖14的总体配置和相对尺寸仅为示例目的,并不限于矩形。同样,应当说明的是,可以使用任何适当数量的轮系总成,并且四个轮系总成16a、16b、16c、16d仅供示例用。此外,应当指出的是,轮系总成16a、16b、16c、16d可以安装在任何相对于底盘12合适的位置,如图1和2的角安装配置仅用于示例目的。在图2中,封盖14已被移除,以显示底盘12的内部结构。
31.每个轮系总成与其他轮系总成本质上是相同的。虽然图3仅对轮系总成16a进行了说明,但可以理解为,其余每个轮系总成16b、16c、16d基本上是相同的。如图所示,轮系总成
16a包括用于安装车轮18a的转向轭20。轮系总成16b、16c、16d分别对应滚动轮18b、18c、18d,需要说明的是,滚动轮18a、18b、18c、18d的总体配置、尺寸和外观仅供示例目的。每个滚动轮18a、18b、18c、18d可以是任何合适类型的滚动轮子,包括但不限于,一种自驱动的电动动力轮子,一种自动转向和/或自动驱动的麦克纳姆轮,或类似的其他车轮。麦克纳姆轮是一种著名的为车辆或其他设备设计的多向车轮,可提供多方向的行走运动。麦克纳姆轮在美国专利号3,876,255中进行了描述,该专利于1975年4月8日颁发给伊隆(ilon),特此纳入参考。简单地说,麦克纳姆轮是一个具有一系列橡胶外滚轮斜附在其整个轮辋圆周的车轮。这些滚轮通常每个都有一个相对于车轮平面和轴线呈45
°
的旋转轴。每个麦克纳姆轮都是一个独立的非转向驱动轮,具有自己的动力系统,并在旋转时产生垂直于滚柱轴的推进力,这可以转化为与车辆相关的纵向和横向分量。
32.在目前的轮系总成中,电动滑环22安装在与主销24同轴的转向轭20上,当主销转向时,转向轭20和附带的滚动轮转向。偏心曲柄臂26a的第一端28刚性连接在主销24的上端,滚轮曲柄销32a安装在偏心曲柄臂26a第二端30上。每个轮系总成16b、16c、16d分别包括类似的相应偏心曲柄臂26b、26c、26d和滚轮曲柄销32b、32c、32d。所述电动滑环22上端与偏心曲柄臂26a之间设有随动旋转盘34。驱动偏心曲柄臂26a旋转,当它相对于随动旋转盘34摆动时,驱动主销24旋转,以使滚动轮18a转变方向。从电源延伸出的电线穿过电动滑环22。如图2所示,当安装到底盘12上时,每个轮系总成有两个自由度,即围绕主销24的垂直轴进行转向旋转,并围绕其中心水平轴进行滚动。
33.为了使轮系总成16a-16d保持平行转向关系,可以对每个轮系总成16a、16b、16c、16d分别使用相应的转向制动器38a、38b、38c、38d。如图2所示,轮系总成16a、16b、16c、16d安装在底盘12的底托36上,从而使滚动轮18a、18b、18c、18d分离于底盘12的外部,以使得旋转盘和每个轮系总成16a、16b、16c、16d的曲柄臂26a、26b、26c、26d都定位在底盘12内部。转向制动器38a、38b、38c、38d安装在底盘12内的底托36上,每个转向制动器38a、38b、38c、38d的中心线与相应的主销同轴。每一个转向制动器38a、38b、38c、38d本质上相同。图4示出一种转向制动器的示例38a,其中包括多个安装在环形壳体42上的、由线性动力单元44驱动的周向制动靴40。应当说明的是,任何合适类型的转向制动器都可以使用。转向制动器,如转向制动器38a,是已知的。这种转向制动器在美国专利号11,015,664中进行了描述,该专利于2021年5月25日颁发给本发明人,特此纳入参考。
34.如图2所示,转向驱动总成50安装在底盘12的底托36的中心位置。如图5所示,转向驱动总成50包括动力单元52,用于驱动第一驱动齿轮54的旋转。应当说明的是,动力单元52可以采用任何合适的类型,如旋转动力单元、电机、线性/旋转互换的动力单元,或其他类似的动力单元。第一驱动齿轮54通过第二中间齿轮56与第三从动齿轮58相连。第二中间齿轮56可以通过一个离合器60(例如,一个螺线管)与第一驱动齿轮54和第三从动齿轮58脱离啮合。因此,当离合器60脱离时,如图5所示,第一驱动齿轮54的转动带动第二中间齿轮56的转动,第二中间齿轮56的转动带动第三从动齿轮58的转动。然而,当离合器60啮合时,第二中间齿轮56被拉起,与第一驱动齿轮54和第三从动齿轮58脱离啮合,从而使第三从动齿轮58停止转动。如图所示,转向曲柄销62偏心地安装在第三从动齿轮58上。
35.如图6-9所示,为了将第三从动齿轮58的转动力矩传递给每个轮系总成16a、16b、16c、16d,从而使轮系总成16a、16b、16c、16d同时转动,第一和第二铰接连杆总成70、72(或
称底层铰接连杆总成70和顶层铰接连杆总成72)形成一个复合转向连杆总成,将转向曲柄销62连接到每个轮系总成16a、16b、16c、16d的滚轮曲柄销32a、32b、32c、32d上。第一铰接连杆总成70包括具有相对的第一端76和第二端78的中心横杆74,中心横杆74的第一和第二端76、78分别在其正交方向延伸出一个安装法兰板。第一纵向连杆80(或称轮系铰接板80)安装在中心横杆74的第一端76处的安装法兰板上并与其正交延伸,轮系总成16d的滚轮曲柄销32d铰接地安装在其自由端84处。第二纵向连杆82(或称轮系铰接板82)安装在中心横杆74的第二端78处的安装法兰板上并与其正交延伸,轮系总成16b的滚轮曲柄销32b铰接地安装在其自由端86处。第二铰接连杆总成72(或称顶层连杆总成72)包括具有相对第一端90和第二端92的中心横杆88,中心横杆88的第一和第二端90、92分别在其正交方向延伸出一个安装法兰板。第三纵向连杆94(或称轮系铰接板94)安装在中心横杆88的第一端90处的安装法兰板上并与其正交延伸,轮系总成16a的滚轮曲柄销32a铰接地安装在其自由端96处。第四纵向连杆98(或称轮系铰接板98)安装在中心横杆88的第二端92处的安装板上与其正交延伸,轮系总成16c的滚轮曲柄销32c铰接地安装在其自由端100处。如图6所示,转向曲柄销62固定在第一铰接连杆总成70的中心横杆74上,第二铰接连杆总成72的中心横杆88安装在第一铰接连杆总成70的中心横杆74上。因此,当第三从动齿轮58被驱动旋转时,由第一铰接连杆总成70和第二铰接连杆总成72组成的整体结构也被驱动并沿相同的旋转环形路径旋转,这是由于转向曲柄销62与第一铰接连杆总成70连接,从而同步带动每个轮系总成16a、16b、16c、16d同向同步平行转动。
36.在图6-9的示例中,转向连杆总成基本采用h形构件,其中第一纵向连杆80和第三纵向连接杆94是直线型的,第二纵向连杆82和第四纵向连杆98也是直线型的,形成h型转向连杆的两个平行纵向臂。所述纵向连杆80、82、94和98宜采用等长臂,所述第一纵向连杆80沿与所述第二纵向连杆82相反的方向延伸,所述第三纵向连杆94沿与所述第四纵向连杆98相反的方向延伸。此外,第一铰接连杆总成70的中心横杆74相对于第二铰接连杆总成72的中心横杆88进行轴向滑动。参照图6,可在第二铰接连杆总成72的中心横杆88上开有一个或多个槽102、104、106,用以接收从第一铰接连杆总成70的中心横杆74上延伸出的相应的滚轮销轴108、110、112、114,以限制第二铰接连杆总成72仅在第一铰接连杆总成70上的轴向滑动。
37.如图6和7所示,当第一铰接连杆总成70的中心横杆74和第二铰接连杆总成72的中心横杆88处于无相对滑动时,第一铰接连杆总成70和第二铰接连杆总成72整体形成h型结构,轮系总成16a、16b、16c、16d彼此平行排列。然而,如图8和9所示,需要操纵16a、16b、16c、16d的轮毂,使它们之间脱离平行状态。具体来说,在图8的示例中,轮系总成16a、16b、16c、16d分别转向使得整个系统将沿着圆形路径运动(如图8虚线所示)。为了实现这种变化,需要至少一个线性动力单元118驱动第二铰接连杆总成72的中心横杆88相对于第一铰接连杆总成70的中心横杆74滑动,反之亦然。应当指出的是,线性动力单元118可以是任意合适类型的线性动力单元,电机或类似的装置。为了显示转向连杆总成的细节,图6中省略了线性动力单元118。图7显示了一个线性动力单元118,通过缸筒连接到第二铰接连杆总成72上,通过活塞连接到第一铰接连杆总成70,活塞缩回,使铰接连杆总成70、72呈现h型结构。图8显示线性动力单元118的活塞伸出的状态。由于铰接连杆总成70/72被槽102-106中的滚动销轴108-114限制而相对横向滑动,当纵向连杆82和94的距离拉开远离时,纵向连杆80和98
的相对距离就会靠近,从而在轮系曲柄26a-26d处产生张力,迫使各个滚动轮18a-18d进入如图8所示滚动状态,使得装载在底盘上的所有载荷进行没有任何平动的零半径自体转弯。当自体零半径转弯完成后,线性动力单元118的活塞被收合在缸体内重新回归各个转向连杆,将各个轮系总成再调整为平行状态使其适宜平移运动。另外,回到图6,如图所示,每个纵向连杆80、98、82、94可以包括各自的长度调节器120、124、128、132,允许对每个连杆的长度进行微小的调整。每个长度调节器120、124、128、132可分别与对应的刚性平衡器122、126、130、134结合使用,以防止长度调节器120、124、128、132长度的松或紧产生不必要的转向误差。在图7-9中,转向驱动总成50已被移除,以清楚地说明线性动力单元118以及第一和第二铰接连杆总成70、72之间的关系。
38.如上所述,图1-9所示的基本矩形结构只是一个示例。图10说明了相同原理在标准圆形配置的平行行走系统200的构造中的应用。与上一实施例相似,所述平行行走系统200包括四个轮系总成216a、216b、216c、216d,每个分别安装在十字安装架202的相应臂204a、204b、204c、204d。应当说明的是,安装架202的总体配置和相对尺寸仅供示例用途。同样,应当指出的是,可以使用任何适当数量的轮系总成,四个轮系总成216a、216b、216c、216d仅供示例用途。此外,轮系总成216a、216b、216c、216d可以安装在相对于臂204a、204b、204c、204d的任何合适的位置,图10所示的十字臂端部安装方式仅用于示例性目的。
39.与上一实施例相似,每个轮系总成实质上与其他轮系总成相同。如图所示,每个轮系总成216a、216b、216c、216d包括转向轭220a、220b、220c、220d,分别安装在对应的转向轭上的滚动轮218a、218b、218c、218d。与上一个实施例类似,应当说明的是,滚动轮218a、218b、218c、218d的整体结构、尺寸和外观仅用于示例目的。每个滚动轮218a、218b、218c、218d可用任意合适的车轮类型,包括但不限于,一种自驱动的电动车轮。
40.与上一实施例类似,电动滑环222a、222b、222c、222d安装在相应的转向轭220a、220b、220c、220d上,与相应的主销224a、224b、224c、224d同轴。正如前面的实施例,偏心曲柄臂226a、226b、226c、226d的第一端刚性连接到相应的主销224a、224b、224c、224d的上端,滚轮曲柄销232a、232b、232c、232d安装在相应的偏心曲柄臂226a、226b、226c、226d上相对第二端。在对应的电动滑环222a、222b、222c、222d上端与对应的偏心曲柄臂226a、226b、226c、226d之间设置有旋转盘234a、234b、234c、234d。当每个偏心曲柄臂226a、226b、226c、226d相对于相应的旋转盘234a、234b、234c、234d转动时,会驱动相应的主销224a、224b、224c、224d转动,以使得相应的滚动轮218a、218b、218c、218d转向。
41.在图10和图11中,提供了一种转向驱动器270,该转向驱动器将转向齿轮284的转动转化为偏心转向曲柄臂272的转动。转向齿轮284可由任何合适类型的旋转驱动器驱动,包括旋转动力单元,方向盘(将在后面讨论),或类似的装置。偏心转向曲柄臂272以一种类似于前一实施案例中转向曲柄销62与第一铰接连杆总成70的中心横杆74的连接方式驱动偏心转向旋转。转向操作方式类似于前面描述的平行行走系统。
42.为了将偏心转向曲柄臂272的转动运动传递给每个轮系总成216a、216b、216c、216d,使得轮系总成216a、216b、216c、216d可以同步操纵,第一、第二铰接连杆总成271、273分别将偏心转向曲柄臂272连接到轮系总成216a、216b、216c、216d的每个滚轮曲柄销232a、232b、232c、232d。与上一个实施例相似,第一铰接连杆总成271包括具有相对第一端276和第二端278的中心横杆274。第一纵向连杆280连接到第一端276并从此处延伸,使其自由端
285铰接到轮系总成216d的滚轮曲柄销232d。第二纵向连杆282与第二端278相连并从第二端278延伸,其自由端286与轮系总成216b的滚轮曲柄销232b铰接。
43.第二铰接连杆总成273还包括一个中心横杆288,它的第一和第二两端分别为290和292。第三纵向连杆294与第一端290连接并从此处延伸,使其自由端296铰接地连接在所述轮系总成216a的滚轮曲柄销232a上。第四纵向连杆298与第二端292连接并从此处延伸,使其自由端300铰接到轮系总成216c的滚轮曲柄销232c。与上一实施例类似,偏心转向曲柄臂272连接到第一铰接连杆总成271的中心横杆274上,第二铰接连杆总成273的中心横杆288滑动安装在中心横杆274上。因此,正如驱动转向曲轴臂272沿着偏心路径旋转一样,第一铰接连杆总成271和第二铰接连杆总成273形成的整体构件也被驱动并沿着相同的旋转角路径进行旋转,同时驱动每个轮系总成216a、216b、216c、216d同步转向。
44.如在上一个实施例所示,第一铰接连杆总成271的中心横杆274相对于第二铰接连杆总成273的中心横杆288滑动。第一铰接连杆总成271的中心横杆288上可以开有一个或多个滑动槽302、304,以接收对应的滚动销轴308、310,这些滚动销轴位于第二铰接连杆总成273的中心横杆274上,从而保持二者的相对滑动关系。与前面的实施例类似,为了使第一铰接连杆总成271相对于第二铰接连杆总成273滑动(反之亦然),可以采用一个或多个线性动力单元318。在图11中,线性动力单元318的两端分别与第三纵向连杆294的自由端296和第二纵向连杆282的自由端286轴向铰接,线性动力单元320的两端分别与第一连纵向连杆280的自由端285和第四纵向连杆298的自由端300轴向铰接。应该说明的是,线性动力单元可以连接到纵向连杆的其他相邻副上。应当指出的是,线性动力单元318、320可能是任何合适类型的线性动力单元,电机或类似的装置。此外,类似于上一实施例,每个纵向连杆可包括各自的长度调节器321、324、328、332。允许对每个纵向连杆的长度做微小调整,长度调节器321、324、328、332以类似于前一个实施例的方式操作,每个也与相应的刚性平衡器322、326、330、334相配合,分别限制长度调节器321、324、328、332松动或收紧造成不必要的旋转运动。
45.应该说明,在图10中,为了清楚地说明第一和第二铰接连杆总成271、273,没有显示线性驱动器318,320。此外,为了更好地说明平行行走系统200的转向操作,图10和图11并没有显示外底盘。图12给出了图10和图11的平行行走系统200的圆形底盘340的示例,包括相应的圆形封盖342。如图所示,转向驱动器270部分穿过圆形封盖342上的通孔344,允许转向齿轮284连接到一个外部的旋转动力源,如旋转动力单元,方向盘(将在下面讨论),或类似的装置。进一步如图所示,一个减震弹簧346(或任何其他合适类型的悬挂)可以安装在圆形封盖342上,与转向驱动器270同轴,可以稳定安装平台、工具或类似的载荷装置。应当说明的是,还可以添加任何适当的附加组件。图12所示为一个示例性角度传感器348,可与转向驱动器270连接用于监测和控制转向曲柄臂272的转角方向。例如,任何监测到的偏离预期角度的旋转方向都可以通过调整相应的自动驱动电动轮的速度进行误差平衡。
46.如图13和14所示,平行行走系统200可用于支撑运输平台350。虽然图13和图14仅显示了两个这样的平行行走系统200。但是,应该理解为可以同时使用任意数量的行走系统200。此外,应该说明的是,平台350仅用于示例目的,可以有任何所需的总体配置和相关尺寸。也应该指出,平台350可以同时采用一个或多个平行行走系统200来作为行走支撑。
47.在图14中,为了显示每个平行行走系统200的转向齿轮284安装在平台350的内部,
已移除平台350的盖板352。如图所示,为了同步平行行走系统200之间的转向,一个链轮链条机构或皮带连杆机构的链条或皮带354连接转向齿轮284。如此,当驱动其中一个平行行走系统200的转向齿轮284转动时,另一个平行行走系统200的转向齿轮284同时以相同的角速度和相同的角方向转动。这样,每个平行行走系统200的轮子可以同步平行瞬时地转动。
48.在图13和14中,一个范例的方向盘356与其中一个平行行走系统200的转向齿轮284相连,可以手动驱动其转动。如上所述,任何适合类型的驱动旋转都可以使用,而且应该说明的是,手动方向盘356显示仅供示范用途。转向齿轮284可用旋转动力单元、电机等旋转驱动器来替换。此外,如图所示,在平台350内还可以安装一个刹紧链条的收紧器358,以根据需要手动调整链或皮带354的松紧度。应当指出的是,收紧器358是可选的,仅供示范用途。
49.如上所述,任意数目的平行行走系统200可以连在一起。在图15的进一步示例性配置中,有三个这样的平行行走系统200通过各自的中心铰接附件与平台360连接在一起,应当说明的是,三个平行行走系统200仅为示范目的而显示,并且两个或更多这样的平行行走系统200可以在此配选使用。应进一步指出,平台360仅用于示范和说明目的,可能有任何合适的形状、相对尺寸或整体配置。在本例中,两个平行行走系统200铰接地连接到一个外环形轨道364上,另一个平行行走系统200连接到一个内环形轨道366上,内环形轨道366与外环形轨道364同心定位。应该指出的是,分配给每个环形轨道的平行行走系统的数量如图15所示,仅供示例用途,可以有所不同。除了每个平行行走系统200的中心连接到平台360之外,每个平行行走系统200也可以围绕其相应的轨道进行周向转动。
50.与图13和14实施例中平行行走系统200的驱动齿轮284连接不同,在图15中,每个平行行走系统200转向独立于其他平行行走系统200。在图15中,每个平行行走系统200携带远程控制的旋转动力单元、电机或类似的设备,代替图13和14中的示例方向盘356。因此,当遥控器362发送控制信号s到每个平行行走系统200时,机载远程控制的旋转动力单元、电机或类似装置同时驱动每个平行行走系统200的驱动齿轮284同步等速转动。正如上文关于图12所讨论的,一个角度传感器348连接到每个转向驱动器270上,用于监测和控制相应的转向曲柄臂272的转角方向。因此,每个平行行走系统200都可以监控其自身的角度方向,并对平台360连接的其他平行行走系统200进行必要的误差修正,以正确地定位自身。应该说明的是,可以使用任何合适类型的遥控器,遥控器362可以被替换,或与机载可编程控制器一起使用。
51.需要指出的是,平行行走系统并不局限于特定的上述各个实施案例,还有围绕权利要求陈述的范围扩展的任何及其他所有方案,或者制作和使用本文件中明确显示在上述图纸或描述的技术的相关应用。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1