一种重油悬浮床加氢尾油的高值化利用工艺的制作方法

文档序号:20452047发布日期:2020-04-17 23:08阅读:170来源:国知局
一种重油悬浮床加氢尾油的高值化利用工艺的制作方法

本发明属于石油化工领域,特别涉及一种重油悬浮床加氢尾油的高值化利用工艺。



背景技术:

重油悬浮床加氢工艺,又称浆态床加氢工艺、浆液床加氢工艺,特别适合应用于劣质重/渣油的加工。重油悬浮床加氢工艺采用非负载的分散型催化剂,固体粉末催化剂或水/油溶性催化剂均匀分散在重油原料中,空桶反应器中不设置催化剂床层,分散型催化剂随物料经过反应器后,主要富集在尾油产物中,不进行分离收集。目前分散型催化剂一般采用过渡金属硫化物,随着悬浮床加氢工艺处理量的日益增大,消耗的大量分散型催化剂具有较高的经济价值,随尾油处理会造成严重的资源浪费,同时也会造成环境污染。

中国发明专利201510189928.3公开了一种以加氢裂化尾油制备中间相沥青的方法,采用加氢裂化尾油为原料,加入1~8wt%的共炭化添加剂,在高压釜中于380~420℃、6~10mpa、惰性气体气氛和搅拌条件下炭化6~15h得到中间相沥青。作为优选:所述的加氢裂化尾油为环烷基原油常压渣油的加氢裂化尾油;所述的共炭化添加剂为酚醛树脂、丁苯橡胶中的一种;所述惰性气体包括氩气或氮气;搅拌条件为400~900r/min。加氢裂化尾油来源广泛、价格低廉;制备工艺简单;制得的中间相沥青光学结构好,中间相含量高。

中国发明专利201110145901.6公开了一种富氧煤焦油高值化利用方法,将富氧煤焦油首先在酚提取单元分离为粗酚油和脱酚馏分油,脱酚馏分油在加氢转化单元完成加氢反应,得到一个富氢气相产物和一个以烃类为主的加氢液相产物。富氢气相产物经碱洗操作进入加氢转化单元前端循环使用,加氢液相产物进入分馏单元,分出汽柴油产品,尾油进入加氢转化单元与脱馏分油混合作为加氢原料。该发明可高值化利用煤焦油原料,并可延长加氢转化单元运行周期。

本发明的目的在于提供一种重油悬浮床加氢尾油的高值化利用工艺,将含有石油焦微粒和分散型纳米催化剂微粒的尾油通过碳化和结构活化,制备得到具有高附加值的过渡金属硫化物/活性碳复合材料,该产品可广泛应用于储能、催化、环保等领域。



技术实现要素:

本发明的目的在于克服现有技术存在的不足,提供一种重油悬浮床加氢尾油的高值化利用工艺,针对含有大量石油焦微粒和分散型纳米催化剂微粒的重油悬浮床加氢尾油,设计采用碳化和结构活化处理工艺,制备得到具有高附加值的过渡金属硫化物/活性碳复合材料。

本发明是采用以下的技术方案实现的:

一种重油悬浮床加氢尾油的高值化利用工艺,包括以下步骤:

(1)尾油预处理;

(2)与碱金属氢氧化物混合均匀,在h2/he混合气氛下,升温进行结构活化;

(3)冷却后经洗涤、干燥得到过渡金属硫化物/活性碳复合材料。

进一步,所述尾油来自重质原料油经过悬浮床加氢工艺后的产物,所述重质原料油包括重质原油、常压渣油、减压渣油、煤焦油、沥青;

所述悬浮床加氢工艺采用分散型纳米催化剂,所述分散型纳米催化剂为过渡金属硫化物,选自硫化镍纳米催化剂、二硫化钼纳米催化剂、二硫化钨纳米催化剂中的一种或几种。

进一步,所述尾油中含有大量石油焦微粒和分散型纳米催化剂微粒,而且分散型纳米催化剂微粒以小于20纳米的尺度分散在尾油中。

进一步,所述步骤(1)中预处理过程为:首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,然后使用糠醛萃取,将剩余部分冷却后粉碎、研磨至35~400目。

优选的,所述步骤(1)中预处理过程为:首先通过减压蒸馏去除尾油中沸点小于550℃的馏分;将剩余部分使用糠醛萃取,将萃余物冷却后粉碎、研磨至35~400目;所述萃取条件为:温度为60℃,剂油比为0.7,萃取时间为30min。

进一步,所述步骤(2)中预处理后的尾油与碱金属氢氧化物的质量比为1:0.2~10;

所述碱金属氢氧化物为氢氧化钾或氢氧化钠;

所述h2与he的体积比1:9;

所述结构活化过程中,升温速率为2~20℃/min,活化温度为700~1000℃,处理时间为0.5~6小时。

进一步,所述步骤(3)中洗涤过程包括依次采用蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤三个步骤。

进一步,所述复合材料的比表面积为2500~3200m2/g,所述复合材料中过渡金属硫化物含量为6~45wt%。

本发明的另一目的在于提供一种过渡金属硫化物/活性碳复合材料,采用上述重油悬浮床加氢尾油的高值化利用工艺制备得到。

本发明还提供了上述过渡金属硫化物/活性碳复合材料应用于锂离子电池负极材料、超级电容器电极材料、水电解制氢催化材料、汞吸附材料领域。

本发明采用含有大量石油焦微粒和分散型纳米催化剂微粒的重油悬浮床加氢尾油这一低附加值、极难处理的复杂体系为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,然后通过糠醛萃取除去其中的强极性组分,经破碎后在高温和混合气氛下采用碱金属氢氧化物对其进行碳化和结构活化,处理过程中尾油大分子在分散型纳米催化剂和氢气的作用下能够部分发生加氢裂化反应,生成的小分子烃类物质逃逸离开反应体系使尾油颗粒内部形成孔隙,从而使碱金属氢氧化物能够通过孔隙进入尾油颗粒内部发生活化反应,最终制备得到高比表面积的过渡金属硫化物/活性碳复合材料。

与现有技术相比,本发明的技术方案具有以下优点和进步:

本发明提供的重油悬浮床加氢尾油的高值化利用工艺具有工艺简单、原料广泛易得、成本低廉、产物附加值高、产物应用广泛等优点。

附图说明

图1为实施例1所制备硫化镍/活性碳复合材料的透射电镜照片。

图2为实施例2所制备二硫化钼/活性碳复合材料的透射电镜照片。

图3为实施例3所制备二硫化钨/活性碳复合材料的透射电镜照片。

图4为对比例1所制备硫化镍/活性碳复合材料的透射电镜照片。

图5为对比例2所制备二硫化钼/活性碳复合材料的透射电镜照片。

具体实施方式

下面结合附图对本发明的实施方案进行详细描述,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器均为可以通过市售购买获得的常规产品。

实施例1

以克拉玛依减压渣油在分散型硫化镍纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~200目,然后将其与氢氧化钾按质量比1:10混合均匀,在h2/he(体积比1:9)混合气氛下,以5℃/min速率升温至700℃进行结构活化,活化时间2小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到硫化镍/活性碳复合材料,所述复合材料的比表面积为3126m2/g,所述复合材料中硫化镍含量为17.5wt%,硫化镍以粒径小于20纳米的颗粒均匀分散在复合材料中。

实施例2

以委内瑞拉超稠油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~300目,然后将其与氢氧化钠按质量比1:0.5混合均匀,在h2/he(体积比1:9)混合气氛下,以2℃/min速率升温至1000℃进行结构活化,活化时间6小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为2519m2/g,所述复合材料中二硫化钼含量为33.6wt%,二硫化钼以单片层结构均匀分散在复合材料中。

实施例3

以沥青在分散型二硫化钨纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至150~400目,然后将其与氢氧化钾按质量比1:8混合均匀,在h2/he(体积比1:9)混合气氛下,以20℃/min速率升温至950℃进行结构活化,活化时间0.5小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钨/活性碳复合材料,所述复合材料的比表面积为3095m2/g,所述复合材料中二硫化钨含量为45wt%,二硫化钨以单片层结构均匀分散在复合材料中。

实施例4

以中低温煤焦油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~100目,然后将其与氢氧化钾按质量比1:5混合均匀,在h2/he(体积比1:9)混合气氛下,以12℃/min速率升温至800℃进行结构活化,活化时间4小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为2885m2/g,所述复合材料中二硫化钼含量为6wt%,二硫化钼以单片层结构均匀分散在复合材料中。

对比例1

以克拉玛依减压渣油在水溶性镍催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~200目,然后将其与氢氧化钾按质量比1:10混合均匀,在h2/he(体积比1:9)混合气氛下,以5℃/min速率升温至700℃进行结构活化,活化时间2小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到硫化镍/活性碳复合材料,所述复合材料的比表面积为879m2/g,所述复合材料中硫化镍含量为1.3wt%,分散的硫化镍粒径大于100纳米。

对比例2

以委内瑞拉超稠油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至35~300目,然后将其与氢氧化钠按质量比1:0.5混合均匀,在he气氛下,以2℃/min速率升温至1000℃进行结构活化,活化时间6小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/活性碳复合材料,所述复合材料的比表面积为408m2/g,所述复合材料中二硫化钼含量为4.1wt%,分散的二硫化钼粒径大于50纳米。

对比例3

以委内瑞拉超稠油在分散型二硫化钼纳米催化剂的作用下经过悬浮床加氢反应工艺得到的尾油为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,将处理后剩余部分冷却后粉碎、研磨至35~300目,然后将其与氢氧化钠按质量比1:0.5混合均匀,在h2/he(体积比1:9)混合气氛下,以2℃/min速率升温至1000℃进行结构活化,活化时间6小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到二硫化钼/氧化钼/活性碳复合材料,所述复合材料的比表面积为522m2/g,所述复合材料中二硫化钼含量为3.2wt%,氧化钼含量为1.1wt%,分散的二硫化钼和氧化钼粒径大于80纳米。

对比例4

以沥青为原料,首先通过减压蒸馏去除尾油中沸点小于550℃的馏分,在温度为60℃,剂油比为0.7,萃取时间为30min的条件下使用糠醛萃取,将处理后剩余部分冷却后粉碎、研磨至150~400目,然后将其与氢氧化钾按质量比1:8混合均匀,在h2/he(体积比1:9)混合气氛下,以20℃/min速率升温至950℃进行结构活化,活化时间0.5小时,冷却后先后经蒸馏水洗涤、稀盐酸溶液酸洗、蒸馏水洗涤,最终干燥得到活性碳,所述活性碳的比表面积为113m2/g,不含其它过渡金属硫化物。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1