半导体器件的形成方法与流程

文档序号:11064233阅读:367来源:国知局
半导体器件的形成方法与制造工艺

本发明涉及半导体制造技术领域,特别涉及一种半导体器件的形成方法。



背景技术:

随着半导体制造技术的飞速发展,半导体器件朝着更高的元件密度,以及更高的集成度的方向发展。晶体管作为最基本的半导体器件目前正被广泛应用,因此随着半导体器件的元件密度和集成度的提高,平面晶体管的栅极尺寸也越来越短,传统的平面晶体管对沟道电流的控制能力变弱,产生短沟道效应,产生漏电流,最终影响半导体器件的电学性能。

为了克服晶体管的短沟道效应,抑制漏电流,现有技术提出了鳍式场效应晶体管(Fin FET),鳍式场效应晶体管是一种常见的多栅器件。

现有的鳍式场效应晶体管的结构包括:位于所述衬底上的鳍部;位于衬底表面且覆盖部分所述鳍部侧壁的介质层;横跨所述鳍部和介质层上、且覆盖部分鳍部侧壁和顶部表面的栅极结构;位于栅极结构两侧的鳍部内的源漏区。所述栅极结构包括:位于介质层表面、鳍部的部分侧壁和顶部表面的栅介质层、位于栅介质层表面的栅极层、以及位于栅极层和栅介质层侧壁表面的侧墙。为了使所述鳍式场效应管能够与衬底上的其它半导体器件构成芯片电路,所述鳍式场效应管的源漏区、栅极层中的一者或多者表面需要形成导电结构,例如导电插塞或电互连线。

然而,随着工艺节点的缩小,鳍式场效应管的尺寸缩小、器件密度提高,使得形成鳍式场效应管的工艺难度不断增大,形成的鳍式场效应管的电学性能有待提高。



技术实现要素:

本发明解决的问题是提供一种半导体器件的形成方法,改善形成的半导体器件的电学性能。

为解决上述问题,本发明提供一种半导体器件的形成方法,包括:提供 包括若干有源区和将相邻有源区隔开的隔离区的基底,所述基底表面形成有栅极结构,所述栅极结构两侧的有源区基底内形成有源漏区,所述基底表面以及栅极结构表面形成有层间介质层;在所述栅极结构表面以及层间介质层表面形成第一掩膜层;在所述第一掩膜层表面形成第二掩膜层,且所述第二掩膜层的材料与第一掩膜层的材料不同;在所述第二掩膜层表面形成若干分立的第一图形层,所述第一图形层投影于栅极结构顶部表面的图形至少铺满栅极结构顶部表面,相邻第一图形层之间具有第一开口,所述第一开口的图形贯穿所述源漏区和位于相邻源漏区之间的隔离区;以所述第一图形层为掩膜,刻蚀所述第二掩膜层直至暴露出第一掩膜层表面;去除所述第一图形层;在所述暴露出的第一掩膜层表面和刻蚀后第二掩膜层表面形成若干分立的第二图形层,所述第二图形层位于相邻源漏区之间的隔离区正上方,且所述第二图形层暴露出的区域与有源区一致;以所述第二图形层为掩膜,刻蚀所述暴露出的第一掩膜层直至暴露出层间介质层顶部表面;去除所述第二图形层;以刻蚀后第一掩膜层为掩膜,刻蚀所述层间介质层直至暴露出源漏区表面,在所述层间介质层内形成接触通孔;在所述接触通孔暴露出的源漏区表面形成金属硅化物层。

可选的,所述隔离区内形成有隔离层,所述第二图形层位于部分隔离层正上方。

可选的,所述第一开口位于所述部分隔离层正上方,还位于紧挨所述部分隔离层的源漏区正上方。

可选的,所述基底包括:衬底;位于衬底表面的若干分立的鳍部;位于所述衬底表面的隔离层,所述隔离层覆盖鳍部的部分侧壁表面,且所述隔离层顶部低于鳍部顶部;其中,所述栅极结构横跨所述鳍部,且所述栅极结构位于部分隔离层表面、以及鳍部的侧壁和顶部表面,所述源漏区位于所述栅极结构两侧的鳍部内。

可选的,所述鳍部的数量大于1,且若干鳍部平行排列,所述栅极结构横跨至少一个鳍部。

可选的,所述若干第一图形层的排列方向与鳍部排列方向相互垂直,且 所述第一开口的图形贯穿至少一个鳍部内的源区或漏区。

可选的,所述栅极结构的数量大于1,且若干栅极结构平行排列,所述若干栅极结构的排列方向与第一图形层排列方向相互平行,所述若干栅极结构的排列方向与第二图形层排列方向相互平行,每一栅极结构横跨至少一个鳍部。

可选的,所述若干第一图形层平行排列;所述若干第二图形层平行排列。

可选的,所述第一掩膜层的材料为氧化硅、氮化硅、氮氧化硅、碳氮氧化硅、氮化钛或氮化钽;所述第二掩膜层的材料为氧化硅、氮化硅、氮氧化硅、碳氮氧化硅、氮化钛或氮化钽。

可选的,所述第一掩膜层的材料为氮化钛或氮化钽;所述第二掩膜层的材料为氧化硅、氮化硅、氮氧化硅或碳氮化硅。

可选的,所述源漏区内还形成有应力层,所述应力层的材料为碳化硅或锗化硅。

可选的,形成所述金属硅化物层的工艺步骤包括:形成覆盖所述接触通孔底部和侧壁表面、以及层间介质层表面的金属层;对所述金属层进行退火处理,使金属层的材料与源漏区材料发生反应,形成所述金属硅化物层;去除未发生反应的金属层。

可选的,所述金属硅化物层的材料为硅化镍。

可选的,所述第一图形层的材料为光刻胶,形成所述第一图形层的工艺步骤包括:在所述栅极结构表面以及层间介质层表面涂布光刻胶膜;对所述光刻胶膜进行曝光处理以及显影处理,形成所述第一图形层。

可选的,所述第二图形层的材料为光刻胶,形成所述第二图形层的工艺步骤包括:在所述暴露出的第一掩膜层表面以及刻蚀后第二掩膜层表面涂布光刻胶膜;对所述光刻胶膜进行曝光处理以及显影处理,形成所述第二图形层。

本发明还提供一种半导体器件的形成方法,

提供包括若干有源区和将所述有源区隔离开的隔离区的基底,所述基底 表面形成有栅极结构,所述栅极结构两侧的有源区基底内形成有源漏区,所述基底表面以及栅极结构表面形成有层间介质层;在所述栅极结构表面以及层间介质层表面形成第一掩膜层;在所述第一掩膜层表面形成第二掩膜层,且所述第二掩膜层的材料与第一掩膜层的材料不同;在所述第二掩膜层表面形成若干分立的第二图形层,所述第二图形层位于相邻源漏区之间的隔离区正上方,且所述第二图形层暴露出的区域与有源区一致;以所述第二图形层为掩膜,刻蚀所述第二掩膜层直至暴露出第一掩膜层表面;去除所述第二图形层;在所述暴露出的第一掩膜层表面以及刻蚀后第二掩膜层表面形成若干分立的第一图形层,所述第一图形层投影于栅极结构顶部表面的图形至少铺满栅极结构顶部表面,相邻第一图形层之间具有第一开口,所述第一开口的图形贯穿所述源漏区和位于相邻源漏区之间的隔离区;以所述第一图形层为掩膜,刻蚀所述暴露出的第一掩膜层直至暴露出层间介质层顶部表面;去除所述第一图形层;以刻蚀后第一掩膜层为掩膜,刻蚀所述层间介质层直至暴露出源漏区表面,在所述层间介质层内形成接触通孔;在所述接触通孔暴露出的源漏区表面形成金属硅化物层。

可选的,所述隔离区内形成有隔离层,所述第二图形层位于部分隔离层正上方。

可选的,所述第一开口位于所述部分隔离层正上方,还位于紧挨部分隔离层的源漏区正上方。

可选的,所述第一掩膜层的材料为氧化硅、氮化硅、氮氧化硅、碳氮氧化硅、氮化钛或氮化钽;所述第二掩膜层的材料为氧化硅、氮化硅、氮氧化硅、碳氮氧化硅、氮化钛或氮化钽。

可选的,所述基底包括:衬底;位于衬底表面的若干分立的鳍部;位于所述衬底表面的隔离层,所述隔离层覆盖鳍部的部分侧壁表面,且所述隔离层顶部低于鳍部顶部;其中,所述栅极结构横跨所述鳍部,且所述栅极结构位于部分隔离层表面、以及鳍部的侧壁和顶部表面,所述源漏区位于所述栅极结构两侧的鳍部内。

与现有技术相比,本发明的技术方案具有以下优点:

本发明提供的半导体器件的形成方法技术方案中,在栅极结构表面以及层间介质层表面形成第一掩膜层,在第一掩膜层表面形成第二掩膜层,且第二掩膜层的材料与第一掩膜层的材料不同;在第二掩膜层表面形成若干分立的第一图形层,所述第一图形层投影于栅极结构表面的图形至少铺满栅极结构顶部表面,使得后续刻蚀层间介质层形成接触通孔时不会对栅极结构造成刻蚀,且相邻第一图形层之间具有第一开口,所述第一开口的图形贯穿源漏区和位于相邻源漏区之间的隔离区,使得第一光刻胶层侧壁位置和形貌与后续形成的接触通孔的侧壁位置和形貌有关;以第一图形层为掩膜刻蚀第二掩膜层,直至暴露出第一掩膜层表面;接着,在暴露出的第一掩膜层表面和刻蚀后第二掩膜层表面形成第二图形层,所述第二图形层位于相邻源漏区之间的隔离区上方,且所述第二图形层暴露出的区域与有源区一致,使得第二图形层的侧壁位置和形貌与后续形成的接触通孔的侧壁位置和形貌有关;以所述第二图形层为掩膜,刻蚀所述暴露出的第一掩膜层直至暴露出层间介质层顶部表面;去除所述第二图形层;以刻蚀后第一掩膜层为掩膜,刻蚀所述层间介质层直至暴露出源漏区表面,在所述层间介质层内形成接触通孔。本发明中无需考虑第一图形层和第二图形层之间的图形对准问题,从而避免了对准误差问题以及线端终点误差问题,所形成的接触通孔中一边界侧壁位置和形貌与第一图形层位置和形貌有关,与所述边界相对的另一边界侧壁位置和形貌与第二图形层的位置和形貌有关,通过提高形成的第一图形层和第二图形层的位置精确度和形貌精确度,能够改善形成的接触通孔的位置精确度和形貌精确度,进而使得形成的金属硅化物层边界形貌优良,提高金属硅化物层的位置精确度,提高形成的半导体器件的电学性能。

进一步,所述第一图形层的排列方向与鳍部排列方向相互垂直,且与栅极结构的排列方向相互平行,减小了第一图形层的形成工艺难度,使得形成的第一图形层的位置精确度和形貌精确度更佳,从而进一步改善形成的接触通孔的形貌。

更进一步,所述第一掩膜层的材料为氮化钛或氮化钽,使得刻蚀工艺对第一掩膜层和层间介质层具有较高的刻蚀选择比,进一步提高形成的接触通孔的形貌。

附图说明

图1至图17为本发明一实施例提供的形成半导体器件过程的结构示意图。

具体实施方式

如背景技术所述,随着工艺节点的缩小,鳍式场效应管的尺寸缩小、器件密度提高,使得形成鳍式场效应管的工艺难度不断增大,形成的鳍式场效应管的电学性能有待提高。

经研究发现,为了减小源漏区与导电结构之间的接触电阻,通常在形成导电结构之前,需要在源漏区表面形成金属硅化物层。随着工艺节点的缩小,位于源漏区表面的金属硅化物层的尺寸也随之缩小,使得形成金属硅化物层的难度增大,而且所形成的金属硅化物层形貌较差。

为此,提出采用双重图形化法来定义金属硅化物层的图形,将定义金属硅化物层图形的掩膜版分解为具有第一图形的第一层掩膜版、以及具有第二图形的第二层掩膜版,其中,第一图形投影于基底表面的图形为第一投影图形,第二图形投影于基底表面的图形为第二投影图形,所述第一投影图形定义金属硅化物层的图形,第二投影图形定义相邻金属硅化物层的图形,所述第一投影图形与第二投影图形之间的距离定义出相邻金属硅化物层之间的距离。然而,随着工艺节点的不断缩小,半导体工艺过程越来越难以控制,例如,第一层掩膜版和第二层掩膜版之间的对准(overlay)问题、线段(line end)问题以及尖角圆化(corner rounding)等问题越来越显著,使得在源漏区表面形成的金属硅化物层的位置精确度差,且形成的金属硅化物层的边界形貌不佳,金属硅化物层的边界容易形成圆角,致使形成的金属硅化物层的电性能不稳定,进而导致形成的半导体器件的电学性能差。

为解决上述问题,本发明提供一种半导体器件的形成方法,提供包括若干有源区和将相邻有源区隔开的隔离区的基底,所述基底表面形成有栅极结构,所述栅极结构两侧的有源区基底内形成有源漏区,所述基底表面以及栅极结构表面形成有层间介质层;在所述栅极结构表面以及层间介质层表面形成第一掩膜层;在所述第一掩膜层表面形成第二掩膜层,且所述第二掩膜层 的材料与第一掩膜层的材料不同;在所述第二掩膜层表面形成若干分立的第一图形层,所述第一图形层投影于栅极结构顶部表面的图形至少铺满栅极结构顶部表面,相邻第一图形层之间具有第一开口,所述第一开口的图形贯穿所述源漏区和位于相邻源漏区之间的隔离区;以所述第一图形层为掩膜,刻蚀所述第二掩膜层直至暴露出第一掩膜层表面;去除所述第一图形层;在所述暴露出的第一掩膜层表面和刻蚀后第二掩膜层表面形成若干分立的第二图形层,所述第二图形层位于相邻源漏区之间的隔离区正上方,且所述第二图形层暴露出的区域与有源区一致;以所述第二图形层为掩膜,刻蚀所述暴露出的第一掩膜层直至暴露出层间介质层顶部表面;去除所述第二图形层;以刻蚀后第一掩膜层为掩膜,刻蚀所述层间介质层直至暴露出源漏区表面,在所述层间介质层内形成接触通孔;在所述接触通孔暴露出的源漏区表面形成金属硅化物层。

本发明中无需考虑第一图形层与第二图形层之间的图形对准问题,从而提高了工艺灵活性,且避免了图形对准造成的对准误差、线端终点误差以及尖角圆化等问题,使得形成的接触通孔具有良好的位置精确度和形貌精确度,从而提高形成的金属硅化物层的位置精确度,且金属硅化物层的边界形貌良好,从而提高形成的半导体器件的电学性能。

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。

图1至图17为本发明一实施例提供的半导体器件形成过程结构示意图。

参考图1至图3,图1为图2和图3的俯视图,图2是图1沿XX1方向的剖面结构示意图,图3是图1沿YY1方向的剖面结构示意图,提供包括若干有源区(未标示)和将相邻有源区隔离开的隔离区(未标示)的基底,所述基底表面形成有栅极结构,所述栅极结构两侧的有源区基底内形成有源漏区(未标示),所述基底表面以及栅极结构表面形成有层间介质层204。

需要说明的是,为了便于图示和描述,图1为未示出层间介质层204、源漏区的俯视图,且图2中示出了第一源漏区和第二源漏区。图1中虚线框中示出了器件区(未标示),所述器件区内具有若干有源区,后续会在所述器件 区内形成接触通孔。

所述基底内具有若干有源区(Active Area),其中,每一有源区内相应形成有栅极结构、源漏区,且所述隔离区内形成有隔离层203。本实施例中,形成的半导体器件为鳍式场效应管,所述基底包括:衬底201,位于衬底201表面的若干分立的鳍部202,位于衬底201表面的隔离层203,所述隔离层203覆盖鳍部202的部分侧壁表面,且所述隔离层203顶部低于鳍部206顶部。所述栅极结构横跨鳍部202,且所述栅极结构覆盖鳍部202的部分顶部和侧壁表面、以及部分隔离层203表面。

本实施例中,所述鳍部202的数量大于1,且所述鳍部202平行排列,所述栅极结构横跨至少一个鳍部202。本实施例中,所述栅极结构的数量也大于1,且所述栅极结构平行排列,所述栅极结构的排列方向与鳍部202的排列方向相互垂直,且每一栅极结构横跨至少一个鳍部202。

在另一实施例中,所述半导体器件为平面晶体管,所述基底为平面基底,所述平面基底为硅衬底、锗衬底、硅锗衬底或碳化硅衬底、绝缘体上硅衬底或绝缘体上锗衬底、玻璃衬底或III-V族化合物衬底(例如氮化镓衬底或砷化镓衬底等),栅极结构形成于所述平面基底表面。

所述衬底201的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底201还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底;所述鳍部202的材料包括硅、锗、锗化硅、碳化硅、砷化镓或镓化铟;所述隔离层203作为半导体器件的隔离结构,起到电隔离相邻鳍部202的作用,所述隔离层203的材料为氧化硅、氮化硅或氮氧化硅。本实施例中,本实施例中,所述衬底201为硅衬底,所述鳍部202的材料为硅,所述隔离层203的材料为氧化硅。

所述源漏区包括分别位于栅极结构相对两侧的有源区基底内的源区或漏区,其中,源区用于形成半导体器件的源极,漏区用于形成半导体器件的漏极。本实施例中,所述基底包括第一区域I和第二区域II,所述第一区域I为NMOS区域或PMOS区域,所述第二区域II为NMOS区域或PMOS区域。本实施例以第一区域I为NMOS区域,第二区域II为PMOS区域作为示例。所述栅极结构包括:位于第一区域I基底表面的第一栅极结构,位于第二区域 II基底表面的第二栅极结构。所述源漏区包括:分别位于第一栅极结构两侧的基底内的第一源漏区(未标示),分别位于第二栅极结构两侧的基底内的第二源漏区(未标示)。

本实施例中,所述第一源漏区内还形成有第一应力层214,所述第一应力层214的材料为碳化硅,所述第一应力层214内掺杂有N型离子,例如为P、As或Sb。所述第二源漏区内还形成有第二应力层224,所述第二应力层224的材料为锗化硅,所述第二应力层224内掺杂有P型离子,例如为B、Ga或In。

所述第一栅极结构包括:第一栅介质层211、位于第一栅介质层211表面的第一功函数层212、以及位于第一功函数层212表面的第一导电栅极213;所述第二栅极结构包括:第二栅介质层221、位于第二栅介质层221表面的第二功函数层222、以及位于第二功函数层222表面的第二导电栅极223。所述第一栅极结构还包括:位于第一栅介质层221侧壁表面、第一功函数层212侧壁表面以及第一金属栅极213侧壁表面的第一侧墙(未图示)。所述第二栅极结构还包括:位于第二栅介质层221侧壁表面、第二功函数层222侧壁表面以及第二金属栅极223侧壁表面的第二侧墙(未图示)。

所述第一栅介质层221的材料为高k栅介质材料,所述第二栅介质层221的材料为高k栅介质材料,高k栅介质材料为HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。所述第一功函数层212的材料为N型功函数材料,第一功函数层212的材料为TiAl、TaAlN、TiAlN、MoN、TaCN或AlN。所述第二功函数层222的材料为P型功函数材料,第二功函数层222的材料为Ta、TiN、TaN、TaSiN或TiSiN。所述第一导电栅极213的材料为Al、Cu、Ag、Au、Pt、Ni、Ti或W;所述第二导电栅极223的材料为Al、Cu、Ag、Au、Pt、Ni、Ti或W。本实施例中,所述第一栅介质层211的材料为HfO2,所述第二栅介质层221的材料为HfO2,所述第一功函数层212的材料为TiAlN,所述第二功函数层222的材料为TiN,所述第一导电栅极213的材料为W,所述第二导电栅极223的材料为W。

本实施例中,所述第一栅极结构还包括位于第一导电栅极213顶部表面的硬掩膜层206,所述第二栅极结构还包括位于第二导电栅极223顶部表面的 硬掩膜层206,所述硬掩膜层206能够起到保护第一导电栅极213以及第二导电栅极223顶部表面的作用。本实施例中,所述硬掩膜层206的材料为氮化硅。在其他实施例中,所述硬掩膜层的材料还能够为氮氧化硅或碳氮氧化硅。

在其他实施例中,所述第一栅极结构还能够为伪栅结构(dummy gate),所述第二栅极结构为伪栅结构,其中,第一栅极结构为单层结构或叠层结构,第二栅极结构为单层结构或叠层结构。

所述层间介质层204起到电隔离第一栅极结构和第二栅极结构的作用,本实施例中,由于第一栅极结构和第二栅极结构中形成有硬掩膜层206,所述硬掩膜层206起到保护第一导电栅极213和第二导电栅极223的作用,因此所述层间介质层204的顶部能够与第一栅极结构顶部以及第二栅极结构顶部齐平。在其他实施例中,所述层间介质层顶部还能够高于第一栅极结构顶部和第二栅极结构顶部,即所述层间介质层覆盖第一栅极结构顶部表面和第二栅极结构顶部表面。

所述层间介质层204的材料为氧化硅、氮化硅、氮氧化硅中的一种或多种,形成工艺包括化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺。本实施例中,所述层间介质层204的材料为氧化硅,形成工艺包括等离子体增强化学气相沉积(PECVD)工艺。

参考图4至图5,图4为在图2基础上的示意图,图5为在图3基础上的示意图,在所述栅极结构表面以及层间介质层204表面形成第一掩膜层231;在所述第一掩膜层231表面形成第二掩膜层232,所述第二掩膜层232的材料与第一掩膜层231的材料不同。

所述第一掩膜层231和第二掩膜层232的材料不同,从而使得后续刻蚀工艺对第一掩膜层231和第二掩膜层232的刻蚀速率不同。所述第一掩膜层231的材料为氧化硅、氮化硅、氮氧化硅、碳氮化硅、碳氮氧化硅、氮化钛或氮化钽;所述第二掩膜层232的材料为氧化硅、氮化硅、氮氧化硅、碳氮化硅、碳氮氧化硅、氮化钛或氮化钽。

后续会以图形化后的第一掩膜层231为掩膜刻蚀层间介质层204,形成暴露出第一源漏区的接触通孔,形成暴露出第二源漏区的接触通孔。为了提高 后续刻蚀工艺对第一掩膜层231和层间介质层204的刻蚀选择比,使得后续形成接触通孔具有良好形貌,采用氮化钛或氮化钽作为第一掩膜层231的材料,采用氧化硅、氮化硅、氮氧化硅、碳氮化硅或碳氮氧化硅作为第二掩膜层232的材料。

本实施例中,所述第一掩膜层231的材料为氮化钛,所述第一掩膜层231的厚度为10埃至500埃,所述第二掩膜层232的材料为氧化硅,所述第二掩膜层232的厚度为10埃至500埃。

参考图6至图8,图6为俯视图,图7为在图4基础上的示意图,图8为在图5基础上的示意图,在所述第二掩膜层232表面形成若干分立的第一图形层301,所述第一图形层301投影于栅极结构顶部表面的投影图形至少铺满栅极结构顶部表面,相邻第一图形层301之间具有第一开口311,所述第一开口311的图形贯穿所述源漏区和位于相邻源漏区之间的隔离区。

需要说明的是,图6为未示出第一掩膜层231和第二掩膜层232的俯视图。

本实施例中,所述若干第一图形层301平行排列,所述第一图形层301的排列方向与鳍部202排列方向相互垂直,且第一图形层301的排列方向与栅极结构排列方向相互平行;所述第一开口311为条状图形;所述第一开口位于部分隔离层203正上方,还位于紧挨所述部分隔离层203的源漏区正上方。

所述第一图形层301的图形为条状图形,所述第一开口311为条状图形,所述第一图形层301至少覆盖第一栅极结构整个顶部以及第二栅极结构整个顶部,因此,所述第一图形层301投影于第一栅极结构顶部表面投影图形至少铺满所述第一栅极结构顶部表面,所述第一图形层301投影于第二栅极结构顶部表面的投影图形至少铺满所述第二栅极结构。本实施例中,为了防止后续形成的金属硅化物层与第一栅极结构、第二栅极结构电连接,所述第一图形层301投影于第一栅极结构顶部表面的投影图形面积大于第一栅极结构顶部表面面积,所述第一图形层301投影于第二栅极结构顶部表面的投影图形面积大于第二栅极结构顶部表面面积,从而使得后续形成的接触通孔侧壁 不会将第一栅极结构侧壁表面和第二栅极结构侧壁表面暴露。在沿所述若干第一图形层301的排列方向上,所述第一图形层301尺寸大于第一栅极结构尺寸;在沿所述若干第一图形层301的排列方向上,所述第一图形层301尺寸大于第二栅极结构尺寸。

所述鳍部202的数量大于1,所述第一开口311的图形贯穿至少一个鳍部202内的源漏区。本实施例中,相邻第一图形301之间的第一开口311分别位于第一源漏区、第二源漏区的正上方,所述第一开口311还位于相邻鳍部202之间的隔离层203正上方。所述第一开口311的图形贯穿所述第一源漏区或第二源漏区,且所述第一开口311的图形贯穿至少一个鳍部202内的第一源漏区或第二源漏区。

本实施例中,所述第一图形层301的材料为光刻胶,形成所述第一图形层301的工艺步骤包括:在所述层间介质层204表面、第一栅极结构表面以及第二栅极结构表面涂布光刻胶膜;对所述光刻胶膜进行曝光处理以及显影处理,形成所述第一图形层301。

所述第一图形层301的侧壁形貌与后续形成的接触通孔侧壁形貌有关,因此所述第一图形层302的侧壁形貌与后续形成的金属硅化物层的边界形貌有关。由于所述第一图形层301具有较大的图形尺寸且相邻第一图形层301之间的距离较大,使得形成第一图形层301工艺受到光刻工艺极限的影响小,形成的第一图形层301均具有较高的位置精确度和形貌精确度,从而使得后续在层间介质层204内形成的接触通孔具有良好的位置精确度和形貌精确度,改善形成的金属硅化物层的形貌。

参考图9至图10,图9为在图7基础上的示意图,图10为在图8基础上的示意图,以所述第一图形层301(参考图6至图8)为掩膜,刻蚀所述第二掩膜层232直至暴露出第一掩膜层231表面。

本实施例中,采用干法刻蚀工艺,以第一图形层301为掩膜刻蚀所述第二掩膜层232,将第一图形层301的图形传递至第二掩膜层232内。由于第一掩膜层232和第二掩膜层231的材料不同,使得干法刻蚀工艺对第二掩膜层232的刻蚀速率大于对第一掩膜层231的刻蚀速率。

接着,去除所述第一图形层301,采用湿法去胶或灰化工艺去除所述第一图形层301。

参考图11至图13,图11为俯视图,图12为在图9基础上的示意图,图13为在图10基础上的示意图,在所述暴露出的第一掩膜层231表面以及刻蚀后第二掩膜层232表面形成若干分立的第二图形层302,所述第二图形层302位于相邻源漏区之间的隔离区正上方,且所述第二图形层302暴露出的区域与有源区一致。

需要说明的是,为了便于说明,图11为同时示出了第一图形层301和第二图形层302的俯视图。本实施例中,为了节约生产成本,仅在器件区上方形成所述第二图形层302。

本实施例中,所述若干第二图形层302平行排列,所述第二图形层302为条状图形;所述第二图形层302位于相邻源漏区之间的隔离层203正上方。

所述第二图形层302暴露出的区域位于有源区正上方,因此,所述第二图形层302暴露出的区域位于第一栅极结构、第一源漏区的正上方,所述第二图形层302暴露出的区域位于第二栅极结构、第二源漏区正上方。所述第二图形层302位于部分隔离层203正上方。

本实施例中,所述第二图形层302的材料为光刻胶,形成所述第二图形层302的工艺步骤包括:在所述暴露出的第一掩膜层231表面以及刻蚀后第二掩膜层232表面涂布光刻胶膜;对所述光刻胶膜进行曝光处理以及显影处理,形成所述第二图形层302。

所述第二图形层302的侧壁形貌与后续形成的接触通孔侧壁形貌有关,因此所述第二图形层302的侧壁形貌与后续形成的金属硅化物层的边界形貌有关。由于第二图形层302具有较大的图形尺寸、且相邻第二图形层302之间的距离较大,使得形成第二图形层302工艺受到光刻工艺极限的影响小,形成的第二图形层302具有较高的位置精确度和形貌精确度,从而使得后续在层间介质层204内形成的接触通孔具有良好的位置精确度和形貌精确度,改善形成的金属硅化物层的形貌。

同时,本实施例中,形成的金属硅化物层的边界形貌与第一图形层301 或第二图形层302中的一种图形侧壁形貌有关,无需考虑第一图形层301和第二图形层302中的图形对准问题,且避免了第一图形层301和第二图形层302进行图形对准时出现的对准误差问题、图形线端终点误差问题,因此,本实施例后续形成的接触通孔形貌优良。

而现有技术中,第一图形层和第二图形层需要进行图形对准,从而使得图形对准时出现对准误差问题、图形线端终点误差问题,使得形成的接触通孔形貌差,进而造成形成的金属硅化物层形貌不佳。

参考图14,图14为在图13基础上的示意图,以所述第二图形层302为掩膜,刻蚀所述暴露出的第一掩膜层231直至暴露出层间介质层204顶部表面,在所述第一区域I第一掩膜层231内形成第一沟槽303,在所述第二区域II第一掩膜层231内形成第二沟槽304。

本实施例中,采用干法刻蚀工艺,刻蚀去除所述暴露出的第一硬掩膜层231直至暴露出层间介质层204表面。

所述第一沟槽303位于第一源漏区正上方,所述第一沟槽303的图形贯穿至少一个鳍部202内的第一源漏区。所述第二沟槽304位于第二源漏区正上方,所述第二沟槽304的图形贯穿至少一个鳍部202内的第二源漏区。

本实施例中,所述第一沟槽303横跨若干个第一源漏区,所述第二沟槽304横跨若干个第二源漏区。

由前述分析可知,所述第一图形层301和第二图形层302中的图形位置精确度和形貌精确度良好,第一沟槽303的边界形貌仅与第一图形层301和第二图形层302中的一种图形侧壁形貌有关,且本实施例中无需考虑第一图形层301和第二图形层302中的图形对准问题以及图形线端终点问题,避免了图形对准误差、图形线端终点误差和尖角圆化的问题,因此形成的第一沟槽303和第二沟槽304也具有良好的位置精确度和形貌精确度,从而提高后续形成的接触通孔的形貌。

接着,去除所述第二图形层302,采用湿法去胶或灰化工艺去除所述第二图形层302。

参考图15至图16,图15为在图12基础上的示意图,图15为在图14基 础上的示意图,以刻蚀后第一掩膜层231为掩膜,刻蚀所述层间介质层204直至暴露出源漏区表面,在所述层间介质层204内形成接触通孔313。

具体的,以所述第一掩膜层231为掩膜,沿第一沟槽303(参考图13)刻蚀所述层间介质层204,在所述第一区域I层间介质层204内形成接触通孔313,所述接触通孔313暴露出第一源漏区表面;沿第二沟槽304(参考图13)刻蚀所述层间介质层204,在所述第二区域II层间介质层204内形成接触通孔313,所述接触通孔313暴露出第二源漏区表面。

采用干法刻蚀工艺,刻蚀所述第一区域I层间介质层204形成接触通孔313,刻蚀所述第二区域II层间介质层204形成接触通孔313。

本实施例中,所述第一掩膜层231的材料为氮化钛,所述第二掩膜层232(参考图13)的材料为氧化硅,所述层间介质层204的材料为氧化硅,为此,在以第一掩膜层231为掩膜刻蚀层间介质层204的工艺过程中,所述第二掩膜层232会被刻蚀去除。且刻蚀工艺对第一掩膜层231和层间介质层204具有较高的刻蚀选择比,从而使得形成的接触通孔313具有良好形貌。

所述接触通孔313的图形贯穿至少一个鳍部202内的第一源漏区或第二源漏区。本实施例中,所述接触通孔313横跨若干个第一源漏区或第二源漏区,暴露出所述若干个第一源漏区表面或第二源漏区表面。且在形成接触通孔313的刻蚀工艺过程中,还会刻蚀去除位于相邻第一源漏区之间或相邻第二源漏区之间的部分厚度层间介质层204,因此所述接触通孔313还会暴露出相邻第一源漏区之间、相邻第二源漏区之间的层间介质层204。

在本实施例中,所述接触通孔313暴露出第一源漏区整个顶部表面,所述接触通孔313暴露出第二源漏区整个顶部表面。在其他实施例中,所述接触通孔暴露出第一源漏区部分顶部表面,所述接触通孔暴露出第二源漏区部分顶部表面。

由前述分析可知,本实施例中,所述接触通孔313的侧壁形貌仅与第一图形层301或第二图形层302中的一种图形侧壁形貌有关,第一图形层301和第二图形层302均具有较高的位置精确度和形貌精确度,且无需考虑第一图形层301和第二图形层302的图形对准问题,从而避免了图形对准误差问 题、图形线端终点问题以及尖角圆化问题,因此,本实施例形成的接触通孔313具有较高的位置精确度和形貌精确度,且接触通孔313受到工艺节点不断减小的影响小,提高了工艺灵活性,使得形成的接触通孔313侧壁形貌良好,所述接触通孔313具有较高的位置精确度和形貌精确度。

参考图17,图17为在图16基础上的示意图,在所述接触通孔313暴露出的源漏区表面形成金属硅化物层314。

本实施例中,形成的金属硅化物层314位于第一源漏区表面以及第二源漏区表面,且每一分立的金属硅化物层314横跨至少一个鳍部202内的第一源漏区或第二源漏区。后续会在第一源漏区和第二源漏区表面形成导电结构,所述金属硅化物层314有利于减小第一源漏区与后续形成的导电结构之间的接触电阻、减小第二源漏区与后续形成的导电结构的接触电阻。

本实施例中,所述金属硅化物层314的材料为硅化镍,形成所述金属硅化物层314的工艺步骤包括:在所述第一掩膜层231表面、接触通孔313底部和侧壁表面形成镍层;对所述镍层进行退火处理,使得镍层中的镍与第一源漏区和第二源漏区中的硅发生金属硅化反应,在第一源漏区表面形成金属硅化物层,使得镍层中的镍与第二源漏区中的硅发生金属硅化反应,在第二源漏区表面形成金属硅化物层;去除剩余的镍层。

由于接触通孔313具有良好的位置精确度和形貌精确度,所述接触通孔313的侧壁形貌优良,因此,本实施例在接触通孔313底部表面形成的金属硅化物层314也具有良好的形貌以及较高的位置精确度。所述金属硅化物层314一边界的形貌与第一图形层301侧壁形貌有关,与所述一边界相对的另一边界的形貌与第二图形层302侧壁形貌有关,通过提高形成的第一图形层301和第二图形层302的形貌精确度,避免或减小了对准问题、图形线端终点问题和尖角圆化问题,因此能够使所述金属硅化物层314的边界形貌得到提高,从而改善形成的金属硅化物层的电性能,提高形成的半导体器件的电学性能。

后续的工艺步骤还包括:在所述金属硅化物层314表面形成导电结构。

本实施例中,先将第一图形层301内的图形传递至第二掩膜层232内,暴露出第一掩膜层231;接着再将第二图形层302内的图形传递至暴露出的第 一掩膜层231内,形成图形化的第一掩膜层231,以图形化的第一掩膜层231为掩膜刻蚀层间介质层204形成接触通孔313。

在其他实施例中,还能够先将第二图形层内的图形传递至第二掩膜层内,暴露出第一掩膜层;接着再将第一图形层302内的图形传递至暴露出的第一掩膜层内,形成图形化的第一掩膜层,以图形化的第一掩膜层为掩膜刻蚀层间介质层形成接触通孔。具体的,形成所述半导体器件的工艺步骤包括:提供包括若干有源区和将所述有源区隔离开的隔离区的基底,所述基底表面形成有栅极结构,所述栅极结构两侧的有源区基底内形成有源漏区,所述基底表面以及栅极结构表面形成有层间介质层;在所述栅极结构表面以及层间介质层表面形成第一掩膜层;在所述第一掩膜层表面形成第二掩膜层,且所述第二掩膜层的材料与第一掩膜层的材料不同;在所述第二掩膜层表面形成若干分立的第二图形层,所述第二图形层位于相邻源漏区之间的隔离区正上方,且所述第二图形层暴露出的区域与有源区一致;以所述第二图形层为掩膜,刻蚀所述第二掩膜层直至暴露出第一掩膜层表面;去除所述第二图形层;在所述暴露出的第一掩膜层表面以及刻蚀后第二掩膜层表面形成若干分立的第一图形层,所述第一图形层投影于栅极结构顶部表面的图形至少铺满栅极结构顶部表面,相邻第一图形层之间具有第一开口,所述第一开口的图形贯穿所述源漏区和位于相邻源漏区之间的隔离区;以所述第一图形层为掩膜,刻蚀所述暴露出的第一掩膜层直至暴露出层间介质层顶部表面;去除所述第一图形层;以刻蚀后第一掩膜层为掩膜,刻蚀所述层间介质层直至暴露出源漏区表面,在所述层间介质层内形成接触通孔;在所述接触通孔暴露出的源漏区表面形成金属硅化物层。

具体的,所述隔离区内形成有隔离层,所述第二图形层位于部分隔离层正上方。所述基底包括:衬底;位于衬底表面的若干分立的鳍部;位于所述衬底表面的隔离层,所述隔离层覆盖鳍部的部分侧壁表面,且所述隔离层顶部低于鳍部顶部;其中,所述栅极结构横跨所述鳍部,且所述栅极结构位于部分隔离层表面、以及鳍部的侧壁和顶部表面,所述源漏区位于所述栅极结构两侧的鳍部内。所述基底还包括将相邻有源区隔离开的隔离层,所述第二图形层位于部分隔离层正上方。所述第一开口位于部分隔离层正上方,还位 于紧挨部分隔离层的源区漏区正上方。所述第一掩膜层的材料为氧化硅、氮化硅、氮氧化硅、碳氮氧化硅、氮化钛或氮化钽;所述第二掩膜层的材料为氧化硅、氮化硅、氮氧化硅、碳氮氧化硅、氮化钛或氮化钽。

有关第一掩膜层、第二掩膜层可参考前述实施例对第一掩膜层231(参考图4至图5)和第二掩膜层232(参考图4至图5)的描述;有关第一图形层的描述可参数前述实施例对第一图形层301(参考图6至图8)的描述;有关第二图形层的描述可参考前述实施例对第二图形层302(参考图11至图13)的描述,在此不再赘述。

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1