半导体器件的形成方法与流程

文档序号:13474700阅读:224来源:国知局
半导体器件的形成方法与流程

本发明涉及半导体制作技术领域,特别涉及一种半导体器件的形成方法



背景技术:

集成电路尤其超大规模集成电路的主要半导体器件是金属-氧化物-半导体场效应管(mos晶体管)。随着集成电路制作技术的不断发展,半导体器件技术节点不断减小,半导体结构的几何尺寸遵循摩尔定律不断缩小。当半导体结构尺寸减小到一定程度时,各种因为半导体结构的物理极限所带来的二级效应相继出现,半导体结构的特征尺寸按比例缩小变得越来越困难。其中,在半导体制作领域,最具挑战性的是如何解决半导体结构漏电流大的问题。半导体结构的漏电流大,主要是由传统栅介质层厚度不断减小所引起的。

当前提出的解决方法是,采用高k栅介质材料代替传统的二氧化硅栅介质材料,并使用金属作为栅电极,以避免高k材料与传统栅电极材料发生费米能级钉扎效应以及硼渗透效应。高k金属栅的引入,减小了半导体结构的漏电流。

尽管高k金属栅极的引入能够在一定程度上改善半导体器件的电学性能,但是现有技术形成的半导体器件的电学性能仍有待提高。



技术实现要素:

本发明解决的问题是提供一种半导体器件的形成方法,改善半导体器件的电学性能。

为解决上述问题,本发明提供一种半导体器件的形成方法,包括:提供基底以及位于基底上的层间介质层,所述层间介质层内形成有相互贯穿的第一开口和第二开口,且所述第一开口位于所述基底与第二开口之间,所述第一开口底部暴露出基底表面;在所述第一开口底部和侧壁上、以及第二开口侧壁上形成高k栅介质层,所述高k栅介质层内具有缺陷;在所述高k栅介质层上形成盖帽层,所述盖帽层中含有氧离子;在位于所述第一开口底部的盖帽层上形成非晶硅层,所述非晶硅层暴露出第二开口侧壁上的盖帽层;对所述非晶硅层、盖帽层以及高k栅介质层进行退火处理,所述退火处理适于使盖帽层中的氧离子向所述高k栅介质层内扩散,所述退火处理还适于使非晶硅层吸收所述盖帽层中的氧离子;在进行所述退火处理之后,去除所述非晶硅层;在所述盖帽层上形成填充满所述第一开口和第二开口的金属层

可选的,所述缺陷包括氧空位;在所述退火处理过程中,所述氧离子向所述高k栅介质层内扩散,使所述高k栅介质层内的氧空位含量减少。

可选的,所述非晶硅层的厚度为20埃~80埃;所述盖帽层的厚度为10埃~60埃。

可选的,所述盖帽层的材料为含有氧离子的tin。

可选的,所述退火处理包括依次进行的第一退火处理以及第二退火处理,其中,所述第二退火处理的退火温度高于所述第一退火处理的退火温度。

可选的,所述第一退火处理的工艺为尖峰退火;所述第二退火处理的工艺为激光退火或闪光退火。

可选的,所述第一退火处理的退火温度为800℃~1000℃;所述第二退火处理的退火温度为950℃~1150℃。

可选的,采用湿法刻蚀工艺,刻蚀去除所述非晶硅层。

可选的,所述湿法刻蚀工艺的刻蚀液体为氢氧化铵溶液或四甲基氢氧化铵溶液,其中,刻蚀液体温度为25℃~75℃。

可选的,在形成所述高k栅介质层之前,还包括步骤,在所述第一开口底部的基底上形成界面层。

可选的,所述第一开口的深度小于等于第二开口的深度。

可选的,形成所述非晶硅层的工艺步骤包括:在所述第一开口底部和侧壁的盖帽层上、以及第二开口侧壁的盖帽层上形成非晶硅膜;在所述非晶硅膜上形成填充满所述第一开口的填充层;以所述填充层为掩膜,刻蚀去除位于所述第二开口侧壁上的非晶硅膜;去除所述填充层。

可选的,形成所述填充层的工艺步骤包括:在所述非晶硅膜上形成填充满所述第一开口和第二开口的填充膜;回刻蚀去除位于所述第二开口内的填充膜,形成所述填充层。

可选的,所述填充层的材料包括odl材料、barc材料或duo材料。

可选的,形成所述非晶硅层的工艺步骤包括:在所述盖帽层上形成填充满所述第一开口和第二开口的非晶硅膜;回刻蚀去除位于所述第二开口内的非晶硅膜,保留位于所述第一开口内的非晶硅膜作为所述非晶硅层。

可选的,所述高k栅介质层的材料包括hfo2、hfsio、hfsion、hftao、hftio、hfzro、zro2或al2o3。

可选的,在形成所述高k栅介质层之后,形成所述非晶硅层之前,还包括步骤,对所述高k栅介质层进行修复处理。

可选的,所述修复处理的快速热退火处理或者尖峰退火处理,其中,快速热退火处理的退火温度为750℃,退火时长为5s~10s;尖峰退火处理的退火温度为850℃。

可选的,所述基底包括pmos区域和nmos区域,其中,所述pmos区域的层间介质层内形成有所述第一开口和第二开口,所述nmos区域的层间介质层内形成有所述第一开口和第二开口。

可选的,所述基底包括衬底以及位于衬底上的分立的鳍部,其中,所述第一开口横跨所述鳍部,且所述第一开口底部暴露出鳍部部分顶部和侧壁表面。

与现有技术相比,本发明的技术方案具有以下优点:

本发明提供的半导体器件的形成方法的技术方案中,在高k栅介质层上形成含有氧离子的盖帽层后;在第一开口底部的盖帽层上形成非晶硅层;对所述非晶硅层、盖帽层以及高k栅介质层进行退火处理,所述退火处理适于使盖帽层中的氧离子向所述高k栅介质层内扩散,所述退火处理还适于使非晶硅层吸收所述盖帽层中的氧离子。本发明中第一开口底部的高k栅介质层中的缺陷含量减少,从而减小了半导体器件中的弛豫电流;并且,在退火处理过程中非晶硅层能够吸附盖帽层中的氧离子,使得向高k栅介质层内扩散的氧离子含量减少,防止氧离子扩散进入第一开口底部的基底内,避免第一开口底部的基底被氧化;此外,本发明中形成的非晶硅层暴露出第二开口侧壁上的盖帽层,使得非晶硅层与盖帽层之间的接触面积较小,因此在退火处理过程中非晶硅层施加在盖帽层上的应力较小,从而防止盖帽层或高k栅介质层受到过大应力而产生裂缝。因此,本发明形成的半导体器件的电学性能优良。

附图说明

图1至图11为本发明一实施例提供的半导体器件形成过程的剖面结构示意图。

具体实施方式

如背景技术所述,现有技术形成的半导体器件的电学性能有待提高。

经研究发现,尽管采用高k栅介质材料作为栅介质层的材料,在一定程度上能够改善半导体结构的电学性能,例如,半导体结构中的漏电流(leakagecurrent)减小,然而,半导体结构中的弛豫电流(drcurrent,dielectricrelaxationcurrent)仍然较大,造成半导体结构的电学性能差,例如,半导体结构的正偏压-温度不稳定特性(pbti,positivebiasetemperatureinstability)和负偏压-温度不稳定特性(nbti,negativebiasetemperatureinstability)显著。进一步研究发现,导致半导体结构中弛豫电流大的原因包括:高k栅介质材料中具有缺陷(defect),进而导致在高k栅介质材料中产生电子陷阱(electrontraps),导致高k栅介质材料的介电弛豫效应显著,造成高k栅介质材料具有较大损耗角。

高k栅介质材料中的缺陷包括氧空位(oxygenvacancy)、悬挂键和未成键离子中的一种或多种,若能够减少高k栅介质材料中缺陷含量,则能显著改善半导体结构的电学性能。为此,在形成高k栅介质层之后,在高k栅介质层上形成盖帽层,接着对盖帽层和高k栅介质层进行退火处理,使盖帽层中的氧离子扩散进入高k栅介质层内,所述氧离子占据氧空位,从而减少高k栅介质层中氧空位含量。

进一步分析发现,向高k栅介质层内扩散的氧离子含量难以控制,容易造成扩散进入高k栅介质层内的氧离子含量过高,所述氧离子对基底表面进行进一步氧化,造成高k栅介质层与基底之间的界面层的厚度变厚。

并且,对于形成的半导体器件为鳍式场效应管而言,由于鳍部侧壁表面晶面为(110),相较于晶面(100)而言,晶面(110)的鳍部侧壁表面具有更多的悬挂键(danglingbonds),因此鳍部侧壁表面更易吸收氧离子,上述界面层厚度变厚的问题更为显著。

为此,在进行退火处理之前,在盖帽层上形成非晶硅层,所述非晶硅层中含有较多的悬挂键,因此在进行退火处理过程中所述非晶硅层能够吸收盖帽层中的部分氧离子,以减小扩散至高k栅介质层内的氧离子含量,避免对基底造成过度氧化的问题。然而,非晶硅层在退火处理过程中会引入其他的问题,造成形成的半导体器件的性能仍然较差。经分析发现,所述非晶硅层引入的问题主要如下:

在位于层间介质层的开口内形成高k栅介质层以及盖帽层之后,形成覆盖盖帽层的非晶硅层,所述非晶硅层与盖帽层之间的接触面积大。在退火处理过程中,非晶硅层与盖帽层之间由于晶格常数差异性变大进而导致产生应力问题,并且由于二者接触面积较大,导致非晶硅层施加在盖帽层上的应力过大,所述应力还会传递至高k栅介质层内,造成高k栅介质层或盖帽层产生裂缝,从而造成形成的半导体器件的性能低下。

为解决上述问题,本发明提供一种半导体器件的形成方法,包括:提供基底以及位于基底上的层间介质层,所述层间介质层内形成有相互贯穿的第一开口和第二开口,且所述第一开口位于所述基底与第二开口之间,所述第一开口底部暴露出基底表面;在所述第一开口底部和侧壁上、以及第二开口侧壁上形成高k栅介质层,所述高k栅介质层内具有缺陷;在所述高k栅介质层上形成盖帽层,所述盖帽层中含有氧离子;在位于所述第一开口底部的盖帽层上形成非晶硅层,所述非晶硅层暴露出第二开口侧壁上的盖帽层;对所述非晶硅层、盖帽层以及高k栅介质层进行退火处理,所述退火处理适于使盖帽层中的氧离子向所述高k栅介质层内扩散,所述退火处理还适于使非晶硅层吸收所述盖帽层中的氧离子;在进行所述退火处理之后,去除所述非晶硅层;在所述盖帽层上形成填充满所述第一开口和第二开口的金属层。

本发明中,既减小了高k栅介质层内的氧空位缺陷含量,又防止高k栅介质层或盖帽层中产生裂缝问题,并且还避免第一开口底部的基底被过度氧化,从而使得形成的半导体器件具有优异的电学性能。

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。

图1至图11为本发明一实施例提供的半导体器件形成过程的剖面结构示意图。

参考图1,提供基底以及位于基底上的层间介质层204,所述层间介质层204内形成有相互贯穿的第一开口210和第二开口220,且所述第一开口210位于所述基底与第二开口220之间,所述第一开口210底部暴露出基底表面。

为了便于图示和说明,图1中虚线示出了第一开口210和第二开口220的分界位置。

本实施例中,以形成的半导体器件为cmos器件为例,所述基底包括pmos区域i以及nmos区域ii,其中,所述pmos区域i的层间介质层204内形成有所述第一开口210和第二开口220,所述nmos区域ii的层间介质层204内形成有所述第一开口210和第二开口220。在其他实施例中,所述基底还可以仅包括pmos区域或仅包括nmos区域。

以下将以形成的半导体器件为鳍式场效应管为例,所述基底包括:衬底201、以及位于衬底201表面的鳍部202。

所述衬底201的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底201还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底;所述鳍部202的材料包括硅、锗、锗化硅、碳化硅、砷化镓或镓化铟。本实施例中,所述衬底201为硅衬底,所述鳍部202的材料为硅。

本实施例中,形成所述衬底201、鳍部202的工艺步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的硬掩膜层;以所述硬掩膜层为掩膜刻蚀所述初始衬底,刻蚀后的初始衬底作为衬底201,位于衬底201表面的凸起作为鳍部202。

所述基底还包括:位于所述衬底201表面的隔离层203,所述隔离层203覆盖鳍部202的部分侧壁表面,且所述隔离层203顶部低于鳍部202顶部。所述隔离层203作为cmos器件的隔离结构。所述隔离层203的材料为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离层203的材料为氧化硅。

在另一实施例中,形成的半导体器件为平面晶体管,所述基底为平面基底,所述平面基底为硅衬底、锗衬底、硅锗衬底或碳化硅衬底、绝缘体上硅衬底或绝缘体上锗衬底、玻璃衬底或iii-v族化合物衬底,iii-v族化合物衬底为氮化镓衬底或砷化镓衬底。

位于所述pmos区域i的第一开口210和第二开口220横跨所述pmos区域i的鳍部202,且所述第一开口210底部暴露出pmos区域i鳍部202部分顶部和侧壁表面;位于所述pmos区域i的第一开口210和第二开口220为后续形成第一栅极结构预留空间位置。

位于所述nmos区域ii的第一开口210和第二开口220横跨所述nmos区域ii的鳍部202,且所述第一开口210底部暴露出nmos区域ii鳍部202部分顶部和侧壁表面;位于所述nmos区域ii的第一开口210和第二开口220为后续形成第二栅极结构预留空间位置。

本实施例中,后续会在第一开口210底部和侧壁上形成高k栅介质层,且在第一开口210底部高k栅介质层上形成非晶硅层,且还会在第一开口201侧壁高k栅介质层上形成非晶硅层;所述第一开口210的深度不宜过深,否则后续形成的非晶硅层与高k栅介质层之间的接触面积过大,在后续的退火处理过程中非晶硅层施加在高k栅介质层上的应力过大,易造成高k栅介质层断裂。为此,本实施例中,所述第一开口210的深度小于等于所述第二开口220的深度。

并且,所述第一开口210的深度还大于或等于后续在第一开口210底部上形成的高k栅介质层的厚度、盖帽层的厚度、以及非晶硅层的厚度之和。

所述pmos区域i的第一开口210两侧的鳍部202内还形成有第一源漏掺杂区211,所述nmos区域ii的第一开口210两侧的鳍部202内还形成有第二源漏掺杂区212,所述第一源漏掺杂区211与第二源漏掺杂区212的掺杂离子类型不同。本实施例中,所述第一源漏掺杂区211的掺杂离子为p型离子,例如为b、ga或in;所述第二源漏掺杂区212的掺杂离子为n型离子,例如为p、as或sb。

形成所述层间介质层204、第一开口210以及第二开口220的工艺步骤包括:在所述pmos区域i部分基底表面形成第一伪栅;在所述nmos区域ii部分基底表面形成第二伪栅;在所述第一伪栅两侧的pmos区域i基底内形成第一源漏掺杂区211;在所述第二伪栅两侧的nmos区域ii基底内形成第二源漏掺杂区212;在所述基底表面形成层间介质层204,所述层间介质层204覆盖第一伪栅侧壁表面以及第二伪栅侧壁表面;刻蚀去除所述第一伪栅,在所述pmos区域i形成所述第一开口210和第二开口220;刻蚀去除所述第二伪栅,在所述nmos区域ii形成所述第一开口210和第二开口220。

本实施例中,所述第一伪栅和第二伪栅侧壁上还形成有侧墙200,在刻蚀去除所述第一伪栅和第二伪栅之后,保留所述侧墙200。本实施例中,所述侧墙200的材料为氮化硅。

参考图2,在所述第一开口210底部和侧壁上、以及第二开口220侧壁上形成高k栅介质层206,所述高k栅介质层206内具有缺陷。

本实施例中,所述高k栅介质层206还位于层间介质层204顶部上。

所述高k栅介质层206的材料为高k栅介质材料,其中,高k栅介质材料指的是,相对介电常数大于氧化硅相对介电常数的栅介质材料,所述高k栅介质层206的材料为hfo2、hfsio、hfsion、hftao、hftio、hfzro、zro2或al2o3。

采用化学气相沉积、物理气相沉积或原子层沉积工艺形成所述高k栅介质层206。本实施例中,所述高k栅介质层206的材料为hfo2,所述高k栅介质层206的厚度为5埃至15埃,采用原子层沉积工艺形成所述高k栅介质层206。

所述高k栅介质层206内具有缺陷,所述缺陷包括氧空位、悬挂键和未成键离子中的一种或多种。

以氧空位缺陷为例,由于高k栅介质材料大多为离子晶体,每一个金属离子都与氧离子有较多的键存在,当氧离子缺失时则易形成氧空位,所述氧空位在高k栅介质材料的禁带中央引入了带隙态,成为导电机制中的缺陷能级;若直接以所述高k栅介质层206作为栅极结构中栅介质层一部分,则形成的半导体器件中介电弛豫问题显著。

需要说明的是,本实施例中,为了改善高k栅介质层206与基底之间的界面性能,在形成所述高k栅介质层206之前,还包括步骤,在所述第一开口210底部形成界面层205。本实施例中,所述界面层205位于所述第一开口210暴露出的鳍部202顶部和侧壁表面。在一具体实施例中,采用热氧化工艺形成所述界面层205,所述界面层205的材料为氧化硅。在其他实施例中,还可以采用化学氧化工艺以及热氧化工艺形成所述界面层。

在形成所述高k栅介质层206之后,还包括步骤,对所述高k栅介质层206进行修复处理,所述修复处理有利于提高高k栅介质层206的致密度。所述修复处理为快速热退火处理或者尖峰退火处理,其中,快速热退火处理的退火温度为750℃,退火时长为5s~10s;尖峰退火处理的退火温度为850℃。

参考图3,在所述高k栅介质层206上形成盖帽层207,所述盖帽层207中含有氧离子。

本实施例中,所述盖帽层207不仅对高k栅介质层206起到保护作用,避免后续的工艺对高k栅介质层207造成损伤;并且,在后续的退火处理过程中,所述盖帽层207中的氧离子扩散进入高k栅介质层207内,从而使高k栅介质层207中氧空位含量减少。

本实施例中,所述盖帽层207的材料为含有氧离子的tin。在其他实施例中,所述盖帽层的材料还可以为含有氧离子的tan。

为保证后续扩散进入至高k栅介质层206中的氧离子含量充足,所述盖帽层207中的氧离子含量不宜过少;并且,所述盖帽层207中的氧离子含量也不宜过高,否则后续退火处理过程中氧离子完全占据高k栅介质层206中的氧空位后,氧离子继续向高k栅介质层206内扩散而到达鳍部202表面,造成鳍部202表面被氧化。为此,本实施例中,所述盖帽层207中的氧离子摩尔百分含量为0.5%~5%。

本实施例中,所述盖帽层207的厚度为10埃~60埃。

参考图4,在所述第一开口210底部和侧壁的盖帽层207上、以及第二开口220侧壁的盖帽层207上形成非晶硅膜208。

所述非晶硅膜208为后续形成位于第一开口210底部的盖帽层207上的非晶硅层提供工艺基础。

所述非晶硅膜208的材料为非晶硅,所述非晶硅膜208中含有较多的悬挂键,相应使得后续形成的非晶硅层中也含量较多悬挂键。

所述非晶硅膜208的厚度不宜过薄,否则后续形成的非晶硅层的厚度过薄,则后续退火处理过程中非晶硅层吸附盖帽层207中氧离子的能力有限;所述非晶硅膜208的厚度也不宜过厚,否则后续形成的非晶硅层的厚度过厚,在退火处理过程中非晶硅层施加在高k栅介质层206上的应力较大,容易造成高k栅介质层206发生断裂问题;并且,在退火处理过程中非晶硅层吸附盖帽层207中氧离子的能力过强,造成扩散至高k栅介质层206中的氧离子含量相应减少,导致退火处理后高k栅介质层206中的氧空位含量仍较多。

为此,本实施例中,所述非晶硅膜208的厚度为20埃~80埃。

本实施例中,采用化学气相沉积工艺形成所述非晶硅膜208.在其他实施例中,还可以采用原子层沉积工艺或物理气相沉积工艺形成所述非晶硅膜208。

参考图5,在所述非晶硅膜208上形成填充满所述第一开口210和第二开口220的填充膜209。

所述填充膜209为后续形成填充满第一开口210的填充层提供工艺基础。所述填充膜209的材料为易于被去除的材料,并且后续去除填充层的工艺不会对高k栅介质层206和盖帽层207造成不良影响。

综合上述因素考虑,所述填充膜209的材料为odl(organicdielectriclayer)材料、barc(bottomanti-reflectivecoating)材料或duo(deepuvlightabsorbingoxide)材料;采用旋转涂覆工艺形成所述填充膜209。其中,所述duo材料是一种硅氧烷聚合体材料,包括ch3-siox、si-oh、或sioh3等。

本实施例中,所述填充膜209的材料为odl材料。采用旋转涂覆工艺形成所述填充膜209,在形成所述填充膜209之后,还可以对所述填充膜209顶部表面进行平坦化处理。在一实施例中,形成的填充膜209顶部高于层间介质层204顶部的非晶硅膜208。在另一实施例中,形成的填充膜209顶部还可以与层间介质层204顶部的非晶硅膜208顶部齐平。

参考图6,回刻蚀去除位于所述第二开口220内的填充膜209(参考图5),在所述非晶硅膜208上形成填充满所述第一开口210(参考图4)的填充层301。

本实施例中,采用干法刻蚀工艺,刻蚀去除位于所述第二开口220内的填充膜209。

在其他实施例中,还可以采用湿法刻蚀工艺,刻蚀去除所述第二开口内的填充膜。或者,依次采用干法刻蚀工艺和湿法刻蚀工艺,刻蚀去除所述第二开口内的填充膜。

参考图7,在所述第一开口210底部的盖帽层207上形成非晶硅层302,所述非晶硅层302暴露出第二开口220侧壁上的盖帽层207。

具体的,以所述填充层301为掩膜,刻蚀去除位于所述第二开口220侧壁上的非晶硅膜208(参考图6),形成位于所述第一开口210底部高k栅介质层206上的非晶硅层302。

采用干法刻蚀工艺,刻蚀去除位于第二开口220侧壁上的非晶硅膜208。

本实施例中,所述非晶硅层302还位于第一开口210侧壁的盖帽层207上。在其他实施例中,所述非晶硅层还可以仅位于第一开口底部的盖帽层上。

由前述对非晶硅膜208的相应描述可知,本实施例中,所述非晶硅层302的材料为非晶硅,所述非晶硅层302的厚度为20埃~80埃。

参考图8,去除所述填充层301(参考图7)。

本实施例中,采用灰化工艺去除所述填充层301,所述灰化工艺采用的气体包括o2。在其他实施例中,还可以采用湿法去胶工艺,去除所述填充层。

需要说明的是,在其他实施例中,形成所述非晶硅层的工艺还可以包括:在所述盖帽层上形成填充满所述第一开口和第二开口的非晶硅膜;回刻蚀去除位于所述第二开口内的非晶硅膜,保留位于所述第一开口内的非晶硅膜作为所述非晶硅层。

参考图9,对所述非晶硅层302、盖帽层207以及高k栅介质层206进行退火处理303。

所述退火处理303适于使盖帽层207中的氧离子向所述高k栅介质层206内扩散,所述退火处理303还适于使非晶硅层302吸收所述盖帽层207中的氧离子。

由于高k栅介质层206中具有氧空位缺陷,在所述退火处理过程中,所述氧离子向所述高k栅介质层206内扩散,使所述高k栅介质层206内的氧空位含量减少。具体的,所述氧离子扩散进入高k栅介质层206中占据氧空位位置,从而减小高k栅介质层206中氧空位缺陷含量,进而改善高k栅介质层206的介电弛豫问题,改善半导体器件的正偏压-温度不稳定特性和负偏压-温度不稳定特性。

所述退火处理303还有利于钝化高k栅介质层206内的悬挂键或未成键离子,从而减小高k栅介质层206内悬挂键含量或未成键离子含量。

并且,所述退火处理303还有利于钝化界面层205中未成键的硅离子和未成键的氧离子,所述未成键的硅离子和未成键的氧离子进行化学重组,从而改善界面层205的性能,提高界面层205的绝缘性和致密度。

此外,在退火处理303过程中,所述非晶硅层302还吸附盖帽层207中的氧离子,所述非晶硅层302中的悬挂键对氧离子具有较强的吸附作用;因此,有效的减少了向高k栅介质层206中扩散的氧离子的含量,避免氧离子扩散至高k栅介质层206中后不存在氧空位捕获所述氧离子,进而防止所述氧离子扩散至第一开口210底部的基底内,避免第一开口210底部的基底被氧化。

若高k栅介质层中的氧空位已被氧离子占据,盖帽层中仍有氧离子继续向高k栅介质层内扩散,则所述扩散的氧离子将经由高k栅介质层扩散至第一开口底部的基底内,对第一开口底部的基底造成氧化。

本实施例中,所述退火处理303包括依次进行的第一退火处理以及第二退火处理,其中,所述第二退火处理的退火温度高于所述第一退火处理的退火温度。采用两道退火处理工艺步骤,有利于进一步提高对高k栅介质层206中的缺陷修复效果。

所述第一退火处理的工艺为尖峰退火;所述第二退火处理的工艺为激光退火或闪光退火。在一具体实施例中,所述第一退火处理的退火温度为800℃~1000℃;所述第二退火处理的退火温度为950℃~1150℃。

需要说明的是,在其他实施例中,所述退火处理还可以为一道退火处理工艺。

由于高k栅介质层206中,影响半导体器件电学性能的区域主要为第一开口210底部的高k栅介质层206,本实施例中,所述退火处理303减小了位于第一开口210底部的高k栅介质层206内的缺陷含量,例如第一开口210底部的高k栅介质层206内的氧空位含量减少。因此,影响半导体器件电学性能的高k栅介质层206的性能得到改善。

同时,由于层间介质层204以及侧墙200紧挨第二开口220侧壁,因此位于第二开口220侧壁上的盖帽层207中的氧离子扩散进入至层间介质层204和侧墙200中,所述扩散进入层间介质层204和侧墙200中的氧离子对半导体器件的电学性能影响很小甚至可以忽略不计。

此外,在退火处理303过程中,所述非晶硅层302的材料内部结构发生变化,所述盖帽层207以及高k栅介质层206的材料内部结构发生变化,使得非晶硅层302、盖帽层207以及高k栅介质层206之间由于晶格常数失配而产生应力问题。本实施例中,由于盖帽层207与非晶硅层302之间的接触面积较小,因此,非晶硅层302施加在盖帽层207中的应力也相应较小,相应的高k栅介质层206中受到的应力也较小,从而避免高k栅介质层206在受到过大应力的条件下产生裂缝,避免盖帽层207在受到过大应力的条件下产生裂缝,保证高k栅介质层206以及盖帽层207具有优良性能。

本实施例中,所述第一开口210底部暴露出的鳍部202部分顶部和侧壁表面,所述鳍部202侧壁表面具有悬挂键;然而,由于高k栅介质层206中的氧空位会吸附氧离子,并且非晶硅层302中的悬挂键也会吸附氧离子,使得与盖帽层207距离较远的鳍部202侧壁表面的悬挂键吸附氧离子的难度显著增加,从而避免退火处理过程中第一开口210底部的基底被氧化。本实施例避免了界面层205的厚度变厚的问题。

参考图10,在进行所述退火处理303(参考图9)之后,去除所述非晶硅层302(参考图9)。

本实施例中,采用湿法刻蚀工艺,刻蚀去除所述非晶硅层302。所述湿法刻蚀工艺的刻蚀液体为四甲基氢氧化铵溶液或氨水溶液。

为避免所述刻蚀去除非晶硅层302的工艺对高k栅介质层206和盖帽层207造成损伤,所述刻蚀液体的温度不宜过高。为此,本实施例中,所述刻蚀液体的温度为25℃~75℃。

参考图11,在所述盖帽层层207上形成填充满所述第一开口210(参考图10)和第二开口220(参考图10)的金属层304。

所述金属层304的材料为al、cu、w、ag、au、pt、ni或ti中的一种或多种;采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述金属层304。本实施例中,所述金属层304的材料为w;采用金属有机化学气相沉积工艺形成所述金属层304。

形成所述金属层304的工艺步骤包括:在所述盖帽层207上形成填充满所述第一开口210和第二开口220的金属膜,所述金属膜顶部高于层间介质层204顶部;研磨去除高于所述层间介质层204的金属膜形成所述金属层304,还研磨去除高于所述层间介质层204顶部的盖帽层207以及高k栅介质层206。

本实施例中,为了改善半导体器件的阈值电压,在形成所述金属层304之前,还可以在所述pmos区域i的盖帽层207上形成p型功函数层311,在所述nmos区域ii的盖帽层207上形成n型功函数层312。其中,p型功函数材料的功函数值范围为5.1ev至5.5ev,n型功函数材料功函数值范围为3.9ev至4.5ev,例如为4ev、4.1ev或4.3ev。

本实施例中,所述p型功函数层311的材料为tin。在其他实施例中,所述p型功函数层的材料还可以为tan、tisin或tasin。本实施例中,所述n型功函数层312的材料为tial。在其他实施例中,所述n型功函数层的材料还可以为tialn、tialc或aln中的一种或几种。

由于本实施例减少了高k栅介质层206中的氧空位含量,改善了高k栅介质层206的介电弛豫问题,从而减小了半导体器件的弛豫电流,因此本实施例能够改善半导体器件的正偏压温度不稳定特性和负偏压温度不稳定特性,提高半导体器件的电学性能。

此外,由于盖帽层207与非晶硅层302(参考图9)之间的接触面积较小,因此退火处理过程中非晶硅层302向盖帽层207以及高k栅介质层206施加的应力较小,从而使得退火处理过程中盖帽层207以及高k栅介质层206始终保持良好的形貌,防止高k栅介质层206和盖帽层207产生裂缝,提高形成的半导体器件的电学性能。

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1